Spaces:
Running
Running
from sympy.core.numbers import (Rational, oo, pi) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.integrals.integrals import integrate | |
from sympy.simplify.simplify import simplify | |
from sympy.abc import omega, m, x | |
from sympy.physics.qho_1d import psi_n, E_n, coherent_state | |
from sympy.physics.quantum.constants import hbar | |
nu = m * omega / hbar | |
def test_wavefunction(): | |
Psi = { | |
0: (nu/pi)**Rational(1, 4) * exp(-nu * x**2 /2), | |
1: (nu/pi)**Rational(1, 4) * sqrt(2*nu) * x * exp(-nu * x**2 /2), | |
2: (nu/pi)**Rational(1, 4) * (2 * nu * x**2 - 1)/sqrt(2) * exp(-nu * x**2 /2), | |
3: (nu/pi)**Rational(1, 4) * sqrt(nu/3) * (2 * nu * x**3 - 3 * x) * exp(-nu * x**2 /2) | |
} | |
for n in Psi: | |
assert simplify(psi_n(n, x, m, omega) - Psi[n]) == 0 | |
def test_norm(n=1): | |
# Maximum "n" which is tested: | |
for i in range(n + 1): | |
assert integrate(psi_n(i, x, 1, 1)**2, (x, -oo, oo)) == 1 | |
def test_orthogonality(n=1): | |
# Maximum "n" which is tested: | |
for i in range(n + 1): | |
for j in range(i + 1, n + 1): | |
assert integrate( | |
psi_n(i, x, 1, 1)*psi_n(j, x, 1, 1), (x, -oo, oo)) == 0 | |
def test_energies(n=1): | |
# Maximum "n" which is tested: | |
for i in range(n + 1): | |
assert E_n(i, omega) == hbar * omega * (i + S.Half) | |
def test_coherent_state(n=10): | |
# Maximum "n" which is tested: | |
# test whether coherent state is the eigenstate of annihilation operator | |
alpha = Symbol("alpha") | |
for i in range(n + 1): | |
assert simplify(sqrt(n + 1) * coherent_state(n + 1, alpha)) == simplify(alpha * coherent_state(n, alpha)) | |