Spaces:
Running
Running
"""Tests for sho1d.py""" | |
from sympy.core.numbers import (I, Integer) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.physics.quantum import Dagger | |
from sympy.physics.quantum.constants import hbar | |
from sympy.physics.quantum import Commutator | |
from sympy.physics.quantum.qapply import qapply | |
from sympy.physics.quantum.innerproduct import InnerProduct | |
from sympy.physics.quantum.cartesian import X, Px | |
from sympy.functions.special.tensor_functions import KroneckerDelta | |
from sympy.physics.quantum.hilbert import ComplexSpace | |
from sympy.physics.quantum.represent import represent | |
from sympy.external import import_module | |
from sympy.testing.pytest import skip | |
from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp, | |
SHOKet, SHOBra, | |
Hamiltonian, NumberOp) | |
ad = RaisingOp('a') | |
a = LoweringOp('a') | |
k = SHOKet('k') | |
kz = SHOKet(0) | |
kf = SHOKet(1) | |
k3 = SHOKet(3) | |
b = SHOBra('b') | |
b3 = SHOBra(3) | |
H = Hamiltonian('H') | |
N = NumberOp('N') | |
omega = Symbol('omega') | |
m = Symbol('m') | |
ndim = Integer(4) | |
np = import_module('numpy') | |
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) | |
ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy') | |
a_rep = represent(a, basis=N, ndim=4, format='sympy') | |
N_rep = represent(N, basis=N, ndim=4, format='sympy') | |
H_rep = represent(H, basis=N, ndim=4, format='sympy') | |
k3_rep = represent(k3, basis=N, ndim=4, format='sympy') | |
b3_rep = represent(b3, basis=N, ndim=4, format='sympy') | |
def test_RaisingOp(): | |
assert Dagger(ad) == a | |
assert Commutator(ad, a).doit() == Integer(-1) | |
assert Commutator(ad, N).doit() == Integer(-1)*ad | |
assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand() | |
assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand() | |
assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand() | |
assert ad.rewrite('xp').doit() == \ | |
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X) | |
assert ad.hilbert_space == ComplexSpace(S.Infinity) | |
for i in range(ndim - 1): | |
assert ad_rep_sympy[i + 1,i] == sqrt(i + 1) | |
if not np: | |
skip("numpy not installed.") | |
ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy') | |
for i in range(ndim - 1): | |
assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1)) | |
if not np: | |
skip("numpy not installed.") | |
if not scipy: | |
skip("scipy not installed.") | |
ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil') | |
for i in range(ndim - 1): | |
assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1)) | |
assert ad_rep_numpy.dtype == 'float64' | |
assert ad_rep_scipy.dtype == 'float64' | |
def test_LoweringOp(): | |
assert Dagger(a) == ad | |
assert Commutator(a, ad).doit() == Integer(1) | |
assert Commutator(a, N).doit() == a | |
assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand() | |
assert qapply(a*kz) == Integer(0) | |
assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand() | |
assert a.rewrite('xp').doit() == \ | |
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X) | |
for i in range(ndim - 1): | |
assert a_rep[i,i + 1] == sqrt(i + 1) | |
def test_NumberOp(): | |
assert Commutator(N, ad).doit() == ad | |
assert Commutator(N, a).doit() == Integer(-1)*a | |
assert Commutator(N, H).doit() == Integer(0) | |
assert qapply(N*k) == (k.n*k).expand() | |
assert N.rewrite('a').doit() == ad*a | |
assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*( | |
Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2) | |
assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2) | |
for i in range(ndim): | |
assert N_rep[i,i] == i | |
assert N_rep == ad_rep_sympy*a_rep | |
def test_Hamiltonian(): | |
assert Commutator(H, N).doit() == Integer(0) | |
assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand() | |
assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2)) | |
assert H.rewrite('xp').doit() == \ | |
(Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2) | |
assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2)) | |
for i in range(ndim): | |
assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2)) | |
def test_SHOKet(): | |
assert SHOKet('k').dual_class() == SHOBra | |
assert SHOBra('b').dual_class() == SHOKet | |
assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n) | |
assert k.hilbert_space == ComplexSpace(S.Infinity) | |
assert k3_rep[k3.n, 0] == Integer(1) | |
assert b3_rep[0, b3.n] == Integer(1) | |