Spaces:
Running
Running
from sympy.core.numbers import Integer | |
from sympy.core.symbol import Symbol | |
from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence | |
from sympy.physics.quantum.hilbert import HilbertSpace | |
from sympy.core.containers import Tuple | |
x = Symbol('x') | |
y = Symbol('y') | |
def test_qexpr_new(): | |
q = QExpr(0) | |
assert q.label == (0,) | |
assert q.hilbert_space == HilbertSpace() | |
assert q.is_commutative is False | |
q = QExpr(0, 1) | |
assert q.label == (Integer(0), Integer(1)) | |
q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1)) | |
assert q.label == (Integer(0), Integer(1)) | |
assert q.hilbert_space == HilbertSpace() | |
def test_qexpr_commutative(): | |
q1 = QExpr(x) | |
q2 = QExpr(y) | |
assert q1.is_commutative is False | |
assert q2.is_commutative is False | |
assert q1*q2 != q2*q1 | |
q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace()) | |
assert q.is_commutative is False | |
def test_qexpr_commutative_free_symbols(): | |
q1 = QExpr(x) | |
assert q1.free_symbols.pop().is_commutative is False | |
q2 = QExpr('q2') | |
assert q2.free_symbols.pop().is_commutative is False | |
def test_qexpr_subs(): | |
q1 = QExpr(x, y) | |
assert q1.subs(x, y) == QExpr(y, y) | |
assert q1.subs({x: 1, y: 2}) == QExpr(1, 2) | |
def test_qsympify(): | |
assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3)) | |
assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \ | |
(Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3) | |
assert _qsympify_sequence((1,)) == (1,) | |