Spaces:
Running
Running
# -*- encoding: utf-8 -*- | |
""" | |
TODO: | |
* Address Issue 2251, printing of spin states | |
""" | |
from __future__ import annotations | |
from typing import Any | |
from sympy.physics.quantum.anticommutator import AntiCommutator | |
from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j | |
from sympy.physics.quantum.commutator import Commutator | |
from sympy.physics.quantum.constants import hbar | |
from sympy.physics.quantum.dagger import Dagger | |
from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate | |
from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2 | |
from sympy.physics.quantum.innerproduct import InnerProduct | |
from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator | |
from sympy.physics.quantum.qexpr import QExpr | |
from sympy.physics.quantum.qubit import Qubit, IntQubit | |
from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD | |
from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet | |
from sympy.physics.quantum.tensorproduct import TensorProduct | |
from sympy.physics.quantum.sho1d import RaisingOp | |
from sympy.core.function import (Derivative, Function) | |
from sympy.core.numbers import oo | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.matrices.dense import Matrix | |
from sympy.sets.sets import Interval | |
from sympy.testing.pytest import XFAIL | |
# Imports used in srepr strings | |
from sympy.physics.quantum.spin import JzOp | |
from sympy.printing import srepr | |
from sympy.printing.pretty import pretty as xpretty | |
from sympy.printing.latex import latex | |
MutableDenseMatrix = Matrix | |
ENV: dict[str, Any] = {} | |
exec('from sympy import *', ENV) | |
exec('from sympy.physics.quantum import *', ENV) | |
exec('from sympy.physics.quantum.cg import *', ENV) | |
exec('from sympy.physics.quantum.spin import *', ENV) | |
exec('from sympy.physics.quantum.hilbert import *', ENV) | |
exec('from sympy.physics.quantum.qubit import *', ENV) | |
exec('from sympy.physics.quantum.qexpr import *', ENV) | |
exec('from sympy.physics.quantum.gate import *', ENV) | |
exec('from sympy.physics.quantum.constants import *', ENV) | |
def sT(expr, string): | |
""" | |
sT := sreprTest | |
from sympy/printing/tests/test_repr.py | |
""" | |
assert srepr(expr) == string | |
assert eval(string, ENV) == expr | |
def pretty(expr): | |
"""ASCII pretty-printing""" | |
return xpretty(expr, use_unicode=False, wrap_line=False) | |
def upretty(expr): | |
"""Unicode pretty-printing""" | |
return xpretty(expr, use_unicode=True, wrap_line=False) | |
def test_anticommutator(): | |
A = Operator('A') | |
B = Operator('B') | |
ac = AntiCommutator(A, B) | |
ac_tall = AntiCommutator(A**2, B) | |
assert str(ac) == '{A,B}' | |
assert pretty(ac) == '{A,B}' | |
assert upretty(ac) == '{A,B}' | |
assert latex(ac) == r'\left\{A,B\right\}' | |
sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))") | |
assert str(ac_tall) == '{A**2,B}' | |
ascii_str = \ | |
"""\ | |
/ 2 \\\n\ | |
<A ,B>\n\ | |
\\ /\ | |
""" | |
ucode_str = \ | |
"""\ | |
β§ 2 β«\n\ | |
β¨A ,Bβ¬\n\ | |
β© β\ | |
""" | |
assert pretty(ac_tall) == ascii_str | |
assert upretty(ac_tall) == ucode_str | |
assert latex(ac_tall) == r'\left\{A^{2},B\right\}' | |
sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") | |
def test_cg(): | |
cg = CG(1, 2, 3, 4, 5, 6) | |
wigner3j = Wigner3j(1, 2, 3, 4, 5, 6) | |
wigner6j = Wigner6j(1, 2, 3, 4, 5, 6) | |
wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9) | |
assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)' | |
ascii_str = \ | |
"""\ | |
5,6 \n\ | |
C \n\ | |
1,2,3,4\ | |
""" | |
ucode_str = \ | |
"""\ | |
5,6 \n\ | |
C \n\ | |
1,2,3,4\ | |
""" | |
assert pretty(cg) == ascii_str | |
assert upretty(cg) == ucode_str | |
assert latex(cg) == 'C^{5,6}_{1,2,3,4}' | |
assert latex(cg ** 2) == R'\left(C^{5,6}_{1,2,3,4}\right)^{2}' | |
sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") | |
assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)' | |
ascii_str = \ | |
"""\ | |
/1 3 5\\\n\ | |
| |\n\ | |
\\2 4 6/\ | |
""" | |
ucode_str = \ | |
"""\ | |
β1 3 5β\n\ | |
β β\n\ | |
β2 4 6β \ | |
""" | |
assert pretty(wigner3j) == ascii_str | |
assert upretty(wigner3j) == ucode_str | |
assert latex(wigner3j) == \ | |
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)' | |
sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") | |
assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)' | |
ascii_str = \ | |
"""\ | |
/1 2 3\\\n\ | |
< >\n\ | |
\\4 5 6/\ | |
""" | |
ucode_str = \ | |
"""\ | |
β§1 2 3β«\n\ | |
β¨ β¬\n\ | |
β©4 5 6β\ | |
""" | |
assert pretty(wigner6j) == ascii_str | |
assert upretty(wigner6j) == ucode_str | |
assert latex(wigner6j) == \ | |
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}' | |
sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") | |
assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)' | |
ascii_str = \ | |
"""\ | |
/1 2 3\\\n\ | |
| |\n\ | |
<4 5 6>\n\ | |
| |\n\ | |
\\7 8 9/\ | |
""" | |
ucode_str = \ | |
"""\ | |
β§1 2 3β«\n\ | |
βͺ βͺ\n\ | |
β¨4 5 6β¬\n\ | |
βͺ βͺ\n\ | |
β©7 8 9β\ | |
""" | |
assert pretty(wigner9j) == ascii_str | |
assert upretty(wigner9j) == ucode_str | |
assert latex(wigner9j) == \ | |
r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}' | |
sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))") | |
def test_commutator(): | |
A = Operator('A') | |
B = Operator('B') | |
c = Commutator(A, B) | |
c_tall = Commutator(A**2, B) | |
assert str(c) == '[A,B]' | |
assert pretty(c) == '[A,B]' | |
assert upretty(c) == '[A,B]' | |
assert latex(c) == r'\left[A,B\right]' | |
sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))") | |
assert str(c_tall) == '[A**2,B]' | |
ascii_str = \ | |
"""\ | |
[ 2 ]\n\ | |
[A ,B]\ | |
""" | |
ucode_str = \ | |
"""\ | |
β‘ 2 β€\n\ | |
β£A ,Bβ¦\ | |
""" | |
assert pretty(c_tall) == ascii_str | |
assert upretty(c_tall) == ucode_str | |
assert latex(c_tall) == r'\left[A^{2},B\right]' | |
sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") | |
def test_constants(): | |
assert str(hbar) == 'hbar' | |
assert pretty(hbar) == 'hbar' | |
assert upretty(hbar) == 'β' | |
assert latex(hbar) == r'\hbar' | |
sT(hbar, "HBar()") | |
def test_dagger(): | |
x = symbols('x') | |
expr = Dagger(x) | |
assert str(expr) == 'Dagger(x)' | |
ascii_str = \ | |
"""\ | |
+\n\ | |
x \ | |
""" | |
ucode_str = \ | |
"""\ | |
β \n\ | |
x \ | |
""" | |
assert pretty(expr) == ascii_str | |
assert upretty(expr) == ucode_str | |
assert latex(expr) == r'x^{\dagger}' | |
sT(expr, "Dagger(Symbol('x'))") | |
def test_gate_failing(): | |
a, b, c, d = symbols('a,b,c,d') | |
uMat = Matrix([[a, b], [c, d]]) | |
g = UGate((0,), uMat) | |
assert str(g) == 'U(0)' | |
def test_gate(): | |
a, b, c, d = symbols('a,b,c,d') | |
uMat = Matrix([[a, b], [c, d]]) | |
q = Qubit(1, 0, 1, 0, 1) | |
g1 = IdentityGate(2) | |
g2 = CGate((3, 0), XGate(1)) | |
g3 = CNotGate(1, 0) | |
g4 = UGate((0,), uMat) | |
assert str(g1) == '1(2)' | |
assert pretty(g1) == '1 \n 2' | |
assert upretty(g1) == '1 \n 2' | |
assert latex(g1) == r'1_{2}' | |
sT(g1, "IdentityGate(Integer(2))") | |
assert str(g1*q) == '1(2)*|10101>' | |
ascii_str = \ | |
"""\ | |
1 *|10101>\n\ | |
2 \ | |
""" | |
ucode_str = \ | |
"""\ | |
1 β β10101β©\n\ | |
2 \ | |
""" | |
assert pretty(g1*q) == ascii_str | |
assert upretty(g1*q) == ucode_str | |
assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }' | |
sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))") | |
assert str(g2) == 'C((3,0),X(1))' | |
ascii_str = \ | |
"""\ | |
C /X \\\n\ | |
3,0\\ 1/\ | |
""" | |
ucode_str = \ | |
"""\ | |
C βX β\n\ | |
3,0β 1β \ | |
""" | |
assert pretty(g2) == ascii_str | |
assert upretty(g2) == ucode_str | |
assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}' | |
sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))") | |
assert str(g3) == 'CNOT(1,0)' | |
ascii_str = \ | |
"""\ | |
CNOT \n\ | |
1,0\ | |
""" | |
ucode_str = \ | |
"""\ | |
CNOT \n\ | |
1,0\ | |
""" | |
assert pretty(g3) == ascii_str | |
assert upretty(g3) == ucode_str | |
assert latex(g3) == r'\text{CNOT}_{1,0}' | |
sT(g3, "CNotGate(Integer(1),Integer(0))") | |
ascii_str = \ | |
"""\ | |
U \n\ | |
0\ | |
""" | |
ucode_str = \ | |
"""\ | |
U \n\ | |
0\ | |
""" | |
assert str(g4) == \ | |
"""\ | |
U((0,),Matrix([\n\ | |
[a, b],\n\ | |
[c, d]]))\ | |
""" | |
assert pretty(g4) == ascii_str | |
assert upretty(g4) == ucode_str | |
assert latex(g4) == r'U_{0}' | |
sT(g4, "UGate(Tuple(Integer(0)),ImmutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))") | |
def test_hilbert(): | |
h1 = HilbertSpace() | |
h2 = ComplexSpace(2) | |
h3 = FockSpace() | |
h4 = L2(Interval(0, oo)) | |
assert str(h1) == 'H' | |
assert pretty(h1) == 'H' | |
assert upretty(h1) == 'H' | |
assert latex(h1) == r'\mathcal{H}' | |
sT(h1, "HilbertSpace()") | |
assert str(h2) == 'C(2)' | |
ascii_str = \ | |
"""\ | |
2\n\ | |
C \ | |
""" | |
ucode_str = \ | |
"""\ | |
2\n\ | |
C \ | |
""" | |
assert pretty(h2) == ascii_str | |
assert upretty(h2) == ucode_str | |
assert latex(h2) == r'\mathcal{C}^{2}' | |
sT(h2, "ComplexSpace(Integer(2))") | |
assert str(h3) == 'F' | |
assert pretty(h3) == 'F' | |
assert upretty(h3) == 'F' | |
assert latex(h3) == r'\mathcal{F}' | |
sT(h3, "FockSpace()") | |
assert str(h4) == 'L2(Interval(0, oo))' | |
ascii_str = \ | |
"""\ | |
2\n\ | |
L \ | |
""" | |
ucode_str = \ | |
"""\ | |
2\n\ | |
L \ | |
""" | |
assert pretty(h4) == ascii_str | |
assert upretty(h4) == ucode_str | |
assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)' | |
sT(h4, "L2(Interval(Integer(0), oo, false, true))") | |
assert str(h1 + h2) == 'H+C(2)' | |
ascii_str = \ | |
"""\ | |
2\n\ | |
H + C \ | |
""" | |
ucode_str = \ | |
"""\ | |
2\n\ | |
H β C \ | |
""" | |
assert pretty(h1 + h2) == ascii_str | |
assert upretty(h1 + h2) == ucode_str | |
assert latex(h1 + h2) | |
sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") | |
assert str(h1*h2) == "H*C(2)" | |
ascii_str = \ | |
"""\ | |
2\n\ | |
H x C \ | |
""" | |
ucode_str = \ | |
"""\ | |
2\n\ | |
H β¨ C \ | |
""" | |
assert pretty(h1*h2) == ascii_str | |
assert upretty(h1*h2) == ucode_str | |
assert latex(h1*h2) | |
sT(h1*h2, | |
"TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") | |
assert str(h1**2) == 'H**2' | |
ascii_str = \ | |
"""\ | |
x2\n\ | |
H \ | |
""" | |
ucode_str = \ | |
"""\ | |
β¨2\n\ | |
H \ | |
""" | |
assert pretty(h1**2) == ascii_str | |
assert upretty(h1**2) == ucode_str | |
assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}' | |
sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))") | |
def test_innerproduct(): | |
x = symbols('x') | |
ip1 = InnerProduct(Bra(), Ket()) | |
ip2 = InnerProduct(TimeDepBra(), TimeDepKet()) | |
ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1)) | |
ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1))) | |
ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2)) | |
ip_tall2 = InnerProduct(Bra(x), Ket(x/2)) | |
ip_tall3 = InnerProduct(Bra(x/2), Ket(x)) | |
assert str(ip1) == '<psi|psi>' | |
assert pretty(ip1) == '<psi|psi>' | |
assert upretty(ip1) == 'β¨ΟβΟβ©' | |
assert latex( | |
ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }' | |
sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))") | |
assert str(ip2) == '<psi;t|psi;t>' | |
assert pretty(ip2) == '<psi;t|psi;t>' | |
assert upretty(ip2) == 'β¨Ο;tβΟ;tβ©' | |
assert latex(ip2) == \ | |
r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }' | |
sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))") | |
assert str(ip3) == "<1,1|1,1>" | |
assert pretty(ip3) == '<1,1|1,1>' | |
assert upretty(ip3) == 'β¨1,1β1,1β©' | |
assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }' | |
sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))") | |
assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>" | |
assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>' | |
assert upretty(ip4) == 'β¨1,1,jβ=1,jβ=1β1,1,jβ=1,jβ=1β©' | |
assert latex(ip4) == \ | |
r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }' | |
sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))") | |
assert str(ip_tall1) == '<x/2|x/2>' | |
ascii_str = \ | |
"""\ | |
/ | \\ \n\ | |
/ x|x \\\n\ | |
\\ -|- /\n\ | |
\\2|2/ \ | |
""" | |
ucode_str = \ | |
"""\ | |
β± β β² \n\ | |
β± xβx β²\n\ | |
β² βββ β±\n\ | |
β²2β2β± \ | |
""" | |
assert pretty(ip_tall1) == ascii_str | |
assert upretty(ip_tall1) == ucode_str | |
assert latex(ip_tall1) == \ | |
r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }' | |
sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))") | |
assert str(ip_tall2) == '<x|x/2>' | |
ascii_str = \ | |
"""\ | |
/ | \\ \n\ | |
/ |x \\\n\ | |
\\ x|- /\n\ | |
\\ |2/ \ | |
""" | |
ucode_str = \ | |
"""\ | |
β± β β² \n\ | |
β± βx β²\n\ | |
β² xββ β±\n\ | |
β² β2β± \ | |
""" | |
assert pretty(ip_tall2) == ascii_str | |
assert upretty(ip_tall2) == ucode_str | |
assert latex(ip_tall2) == \ | |
r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }' | |
sT(ip_tall2, | |
"InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))") | |
assert str(ip_tall3) == '<x/2|x>' | |
ascii_str = \ | |
"""\ | |
/ | \\ \n\ | |
/ x| \\\n\ | |
\\ -|x /\n\ | |
\\2| / \ | |
""" | |
ucode_str = \ | |
"""\ | |
β± β β² \n\ | |
β± xβ β²\n\ | |
β² ββx β±\n\ | |
β²2β β± \ | |
""" | |
assert pretty(ip_tall3) == ascii_str | |
assert upretty(ip_tall3) == ucode_str | |
assert latex(ip_tall3) == \ | |
r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }' | |
sT(ip_tall3, | |
"InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))") | |
def test_operator(): | |
a = Operator('A') | |
b = Operator('B', Symbol('t'), S.Half) | |
inv = a.inv() | |
f = Function('f') | |
x = symbols('x') | |
d = DifferentialOperator(Derivative(f(x), x), f(x)) | |
op = OuterProduct(Ket(), Bra()) | |
assert str(a) == 'A' | |
assert pretty(a) == 'A' | |
assert upretty(a) == 'A' | |
assert latex(a) == 'A' | |
sT(a, "Operator(Symbol('A'))") | |
assert str(inv) == 'A**(-1)' | |
ascii_str = \ | |
"""\ | |
-1\n\ | |
A \ | |
""" | |
ucode_str = \ | |
"""\ | |
-1\n\ | |
A \ | |
""" | |
assert pretty(inv) == ascii_str | |
assert upretty(inv) == ucode_str | |
assert latex(inv) == r'A^{-1}' | |
sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))") | |
assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))' | |
ascii_str = \ | |
"""\ | |
/d \\\n\ | |
DifferentialOperator|--(f(x)),f(x)|\n\ | |
\\dx /\ | |
""" | |
ucode_str = \ | |
"""\ | |
βd β\n\ | |
DifferentialOperatorβββ(f(x)),f(x)β\n\ | |
βdx β \ | |
""" | |
assert pretty(d) == ascii_str | |
assert upretty(d) == ucode_str | |
assert latex(d) == \ | |
r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)' | |
sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))") | |
assert str(b) == 'Operator(B,t,1/2)' | |
assert pretty(b) == 'Operator(B,t,1/2)' | |
assert upretty(b) == 'Operator(B,t,1/2)' | |
assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)' | |
sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))") | |
assert str(op) == '|psi><psi|' | |
assert pretty(op) == '|psi><psi|' | |
assert upretty(op) == 'βΟβ©β¨Οβ' | |
assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}' | |
sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))") | |
def test_qexpr(): | |
q = QExpr('q') | |
assert str(q) == 'q' | |
assert pretty(q) == 'q' | |
assert upretty(q) == 'q' | |
assert latex(q) == r'q' | |
sT(q, "QExpr(Symbol('q'))") | |
def test_qubit(): | |
q1 = Qubit('0101') | |
q2 = IntQubit(8) | |
assert str(q1) == '|0101>' | |
assert pretty(q1) == '|0101>' | |
assert upretty(q1) == 'β0101β©' | |
assert latex(q1) == r'{\left|0101\right\rangle }' | |
sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))") | |
assert str(q2) == '|8>' | |
assert pretty(q2) == '|8>' | |
assert upretty(q2) == 'β8β©' | |
assert latex(q2) == r'{\left|8\right\rangle }' | |
sT(q2, "IntQubit(8)") | |
def test_spin(): | |
lz = JzOp('L') | |
ket = JzKet(1, 0) | |
bra = JzBra(1, 0) | |
cket = JzKetCoupled(1, 0, (1, 2)) | |
cbra = JzBraCoupled(1, 0, (1, 2)) | |
cket_big = JzKetCoupled(1, 0, (1, 2, 3)) | |
cbra_big = JzBraCoupled(1, 0, (1, 2, 3)) | |
rot = Rotation(1, 2, 3) | |
bigd = WignerD(1, 2, 3, 4, 5, 6) | |
smalld = WignerD(1, 2, 3, 0, 4, 0) | |
assert str(lz) == 'Lz' | |
ascii_str = \ | |
"""\ | |
L \n\ | |
z\ | |
""" | |
ucode_str = \ | |
"""\ | |
L \n\ | |
z\ | |
""" | |
assert pretty(lz) == ascii_str | |
assert upretty(lz) == ucode_str | |
assert latex(lz) == 'L_z' | |
sT(lz, "JzOp(Symbol('L'))") | |
assert str(J2) == 'J2' | |
ascii_str = \ | |
"""\ | |
2\n\ | |
J \ | |
""" | |
ucode_str = \ | |
"""\ | |
2\n\ | |
J \ | |
""" | |
assert pretty(J2) == ascii_str | |
assert upretty(J2) == ucode_str | |
assert latex(J2) == r'J^2' | |
sT(J2, "J2Op(Symbol('J'))") | |
assert str(Jz) == 'Jz' | |
ascii_str = \ | |
"""\ | |
J \n\ | |
z\ | |
""" | |
ucode_str = \ | |
"""\ | |
J \n\ | |
z\ | |
""" | |
assert pretty(Jz) == ascii_str | |
assert upretty(Jz) == ucode_str | |
assert latex(Jz) == 'J_z' | |
sT(Jz, "JzOp(Symbol('J'))") | |
assert str(ket) == '|1,0>' | |
assert pretty(ket) == '|1,0>' | |
assert upretty(ket) == 'β1,0β©' | |
assert latex(ket) == r'{\left|1,0\right\rangle }' | |
sT(ket, "JzKet(Integer(1),Integer(0))") | |
assert str(bra) == '<1,0|' | |
assert pretty(bra) == '<1,0|' | |
assert upretty(bra) == 'β¨1,0β' | |
assert latex(bra) == r'{\left\langle 1,0\right|}' | |
sT(bra, "JzBra(Integer(1),Integer(0))") | |
assert str(cket) == '|1,0,j1=1,j2=2>' | |
assert pretty(cket) == '|1,0,j1=1,j2=2>' | |
assert upretty(cket) == 'β1,0,jβ=1,jβ=2β©' | |
assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }' | |
sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") | |
assert str(cbra) == '<1,0,j1=1,j2=2|' | |
assert pretty(cbra) == '<1,0,j1=1,j2=2|' | |
assert upretty(cbra) == 'β¨1,0,jβ=1,jβ=2β' | |
assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}' | |
sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") | |
assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>' | |
# TODO: Fix non-unicode pretty printing | |
# i.e. j1,2 -> j(1,2) | |
assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>' | |
assert upretty(cket_big) == 'β1,0,jβ=1,jβ=2,jβ=3,jβ,β=3β©' | |
assert latex(cket_big) == \ | |
r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }' | |
sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") | |
assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|' | |
assert pretty(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j1,2=3|' | |
assert upretty(cbra_big) == 'β¨1,0,jβ=1,jβ=2,jβ=3,jβ,β=3β' | |
assert latex(cbra_big) == \ | |
r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}' | |
sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") | |
assert str(rot) == 'R(1,2,3)' | |
assert pretty(rot) == 'R (1,2,3)' | |
assert upretty(rot) == 'β (1,2,3)' | |
assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)' | |
sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))") | |
assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)' | |
ascii_str = \ | |
"""\ | |
1 \n\ | |
D (4,5,6)\n\ | |
2,3 \ | |
""" | |
ucode_str = \ | |
"""\ | |
1 \n\ | |
D (4,5,6)\n\ | |
2,3 \ | |
""" | |
assert pretty(bigd) == ascii_str | |
assert upretty(bigd) == ucode_str | |
assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)' | |
sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") | |
assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)' | |
ascii_str = \ | |
"""\ | |
1 \n\ | |
d (4)\n\ | |
2,3 \ | |
""" | |
ucode_str = \ | |
"""\ | |
1 \n\ | |
d (4)\n\ | |
2,3 \ | |
""" | |
assert pretty(smalld) == ascii_str | |
assert upretty(smalld) == ucode_str | |
assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)' | |
sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))") | |
def test_state(): | |
x = symbols('x') | |
bra = Bra() | |
ket = Ket() | |
bra_tall = Bra(x/2) | |
ket_tall = Ket(x/2) | |
tbra = TimeDepBra() | |
tket = TimeDepKet() | |
assert str(bra) == '<psi|' | |
assert pretty(bra) == '<psi|' | |
assert upretty(bra) == 'β¨Οβ' | |
assert latex(bra) == r'{\left\langle \psi\right|}' | |
sT(bra, "Bra(Symbol('psi'))") | |
assert str(ket) == '|psi>' | |
assert pretty(ket) == '|psi>' | |
assert upretty(ket) == 'βΟβ©' | |
assert latex(ket) == r'{\left|\psi\right\rangle }' | |
sT(ket, "Ket(Symbol('psi'))") | |
assert str(bra_tall) == '<x/2|' | |
ascii_str = \ | |
"""\ | |
/ |\n\ | |
/ x|\n\ | |
\\ -|\n\ | |
\\2|\ | |
""" | |
ucode_str = \ | |
"""\ | |
β± β\n\ | |
β± xβ\n\ | |
β² ββ\n\ | |
β²2β\ | |
""" | |
assert pretty(bra_tall) == ascii_str | |
assert upretty(bra_tall) == ucode_str | |
assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}' | |
sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))") | |
assert str(ket_tall) == '|x/2>' | |
ascii_str = \ | |
"""\ | |
| \\ \n\ | |
|x \\\n\ | |
|- /\n\ | |
|2/ \ | |
""" | |
ucode_str = \ | |
"""\ | |
β β² \n\ | |
βx β²\n\ | |
ββ β±\n\ | |
β2β± \ | |
""" | |
assert pretty(ket_tall) == ascii_str | |
assert upretty(ket_tall) == ucode_str | |
assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }' | |
sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))") | |
assert str(tbra) == '<psi;t|' | |
assert pretty(tbra) == '<psi;t|' | |
assert upretty(tbra) == 'β¨Ο;tβ' | |
assert latex(tbra) == r'{\left\langle \psi;t\right|}' | |
sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))") | |
assert str(tket) == '|psi;t>' | |
assert pretty(tket) == '|psi;t>' | |
assert upretty(tket) == 'βΟ;tβ©' | |
assert latex(tket) == r'{\left|\psi;t\right\rangle }' | |
sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))") | |
def test_tensorproduct(): | |
tp = TensorProduct(JzKet(1, 1), JzKet(1, 0)) | |
assert str(tp) == '|1,1>x|1,0>' | |
assert pretty(tp) == '|1,1>x |1,0>' | |
assert upretty(tp) == 'β1,1β©β¨ β1,0β©' | |
assert latex(tp) == \ | |
r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}' | |
sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))") | |
def test_big_expr(): | |
f = Function('f') | |
x = symbols('x') | |
e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1)) | |
e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2)) | |
e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1))) | |
e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval( | |
0, oo)) + HilbertSpace()) | |
assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)' | |
ascii_str = \ | |
"""\ | |
/ 3 \\ \n\ | |
|/ +\\ | \n\ | |
2 / + +\\ <| /d \\ | + +> \n\ | |
/J \\ x \\A + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\ | |
\\ z/ \\\\ \\dx / / / \ | |
""" | |
ucode_str = \ | |
"""\ | |
β§ 3 β« \n\ | |
βͺβ β β βͺ \n\ | |
2 β β β β β¨β βd β β β β β¬ \n\ | |
βJ β β¨ βA + B β β βͺβDifferentialOperatorβββ(f(x)),f(x)β β ,A + B βͺβ (β¨1,0β + β¨1,1β)β (β0,0β© + β1,-1β©)\n\ | |
β zβ β©β βdx β β β \ | |
""" | |
assert pretty(e1) == ascii_str | |
assert upretty(e1) == ucode_str | |
assert latex(e1) == \ | |
r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)' | |
sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))") | |
assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]' | |
ascii_str = \ | |
"""\ | |
[ 2 ] / -2 + +\\ [ 2 ]\n\ | |
[/J \\ ,A + B]*<E ,D *C >*[J ,J ]\n\ | |
[\\ z/ ] \\ / [ z]\ | |
""" | |
ucode_str = \ | |
"""\ | |
β‘ 2 β€ β§ -2 β β β« β‘ 2 β€\n\ | |
β’βJ β ,A + Bβ₯β β¨E ,D β C β¬β β’J ,J β₯\n\ | |
β£β zβ β¦ β© β β£ zβ¦\ | |
""" | |
assert pretty(e2) == ascii_str | |
assert upretty(e2) == ucode_str | |
assert latex(e2) == \ | |
r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]' | |
sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))") | |
assert str(e3) == \ | |
"Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>" | |
ascii_str = \ | |
"""\ | |
[ + ] / 2 \\ \n\ | |
/1 3 5\\*[B + A,C + D]x |- J + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\ | |
| | \\ z/ \n\ | |
\\2 4 6/ \ | |
""" | |
ucode_str = \ | |
"""\ | |
β‘ β β€ β 2 β \n\ | |
β1 3 5ββ β£B + A,C + Dβ¦β¨ β- J + J ββ β1,0β©β¨1,1ββ (β1,0,jβ=1,jβ=1β© + β1,1,jβ=1,jβ=1β©)β¨ β1,-1,jβ=1,jβ=1β©\n\ | |
β β β zβ \n\ | |
β2 4 6β \ | |
""" | |
assert pretty(e3) == ascii_str | |
assert upretty(e3) == ucode_str | |
assert latex(e3) == \ | |
r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}' | |
sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))") | |
assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)' | |
ascii_str = \ | |
"""\ | |
// 1 2\\ x2\\ / 2 \\\n\ | |
\\\\C x C / + F / x \\L + H/\ | |
""" | |
ucode_str = \ | |
"""\ | |
ββ 1 2β β¨2β β 2 β\n\ | |
ββC β¨ C β β F β β¨ βL β Hβ \ | |
""" | |
assert pretty(e4) == ascii_str | |
assert upretty(e4) == ucode_str | |
assert latex(e4) == \ | |
r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)' | |
sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))") | |
def _test_sho1d(): | |
ad = RaisingOp('a') | |
assert pretty(ad) == ' \N{DAGGER}\na ' | |
assert latex(ad) == 'a^{\\dagger}' | |