Spaces:
Running
Running
from sympy.core.mul import Mul | |
from sympy.core.numbers import (I, Integer, Rational, pi) | |
from sympy.core.symbol import (Wild, symbols) | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.matrices import Matrix, ImmutableMatrix | |
from sympy.physics.quantum.gate import (XGate, YGate, ZGate, random_circuit, | |
CNOT, IdentityGate, H, X, Y, S, T, Z, SwapGate, gate_simp, gate_sort, | |
CNotGate, TGate, HadamardGate, PhaseGate, UGate, CGate) | |
from sympy.physics.quantum.commutator import Commutator | |
from sympy.physics.quantum.anticommutator import AntiCommutator | |
from sympy.physics.quantum.represent import represent | |
from sympy.physics.quantum.qapply import qapply | |
from sympy.physics.quantum.qubit import Qubit, IntQubit, qubit_to_matrix, \ | |
matrix_to_qubit | |
from sympy.physics.quantum.matrixutils import matrix_to_zero | |
from sympy.physics.quantum.matrixcache import sqrt2_inv | |
from sympy.physics.quantum import Dagger | |
def test_gate(): | |
"""Test a basic gate.""" | |
h = HadamardGate(1) | |
assert h.min_qubits == 2 | |
assert h.nqubits == 1 | |
i0 = Wild('i0') | |
i1 = Wild('i1') | |
h0_w1 = HadamardGate(i0) | |
h0_w2 = HadamardGate(i0) | |
h1_w1 = HadamardGate(i1) | |
assert h0_w1 == h0_w2 | |
assert h0_w1 != h1_w1 | |
assert h1_w1 != h0_w2 | |
cnot_10_w1 = CNOT(i1, i0) | |
cnot_10_w2 = CNOT(i1, i0) | |
cnot_01_w1 = CNOT(i0, i1) | |
assert cnot_10_w1 == cnot_10_w2 | |
assert cnot_10_w1 != cnot_01_w1 | |
assert cnot_10_w2 != cnot_01_w1 | |
def test_UGate(): | |
a, b, c, d = symbols('a,b,c,d') | |
uMat = Matrix([[a, b], [c, d]]) | |
# Test basic case where gate exists in 1-qubit space | |
u1 = UGate((0,), uMat) | |
assert represent(u1, nqubits=1) == uMat | |
assert qapply(u1*Qubit('0')) == a*Qubit('0') + c*Qubit('1') | |
assert qapply(u1*Qubit('1')) == b*Qubit('0') + d*Qubit('1') | |
# Test case where gate exists in a larger space | |
u2 = UGate((1,), uMat) | |
u2Rep = represent(u2, nqubits=2) | |
for i in range(4): | |
assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ | |
qubit_to_matrix(qapply(u2*IntQubit(i, 2))) | |
def test_cgate(): | |
"""Test the general CGate.""" | |
# Test single control functionality | |
CNOTMatrix = Matrix( | |
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) | |
assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix | |
# Test multiple control bit functionality | |
ToffoliGate = CGate((1, 2), XGate(0)) | |
assert represent(ToffoliGate, nqubits=3) == \ | |
Matrix( | |
[[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, | |
1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], | |
[0, 0, 0, 0, 0, 0, 1, 0]]) | |
ToffoliGate = CGate((3, 0), XGate(1)) | |
assert qapply(ToffoliGate*Qubit('1001')) == \ | |
matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4)) | |
assert qapply(ToffoliGate*Qubit('0000')) == \ | |
matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4)) | |
CYGate = CGate(1, YGate(0)) | |
CYGate_matrix = Matrix( | |
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) | |
# Test 2 qubit controlled-Y gate decompose method. | |
assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix | |
CZGate = CGate(0, ZGate(1)) | |
CZGate_matrix = Matrix( | |
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) | |
assert qapply(CZGate*Qubit('11')) == -Qubit('11') | |
assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \ | |
-Qubit('11') | |
# Test 2 qubit controlled-Z gate decompose method. | |
assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix | |
CPhaseGate = CGate(0, PhaseGate(1)) | |
assert qapply(CPhaseGate*Qubit('11')) == \ | |
I*Qubit('11') | |
assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \ | |
I*Qubit('11') | |
# Test that the dagger, inverse, and power of CGate is evaluated properly | |
assert Dagger(CZGate) == CZGate | |
assert pow(CZGate, 1) == Dagger(CZGate) | |
assert Dagger(CZGate) == CZGate.inverse() | |
assert Dagger(CPhaseGate) != CPhaseGate | |
assert Dagger(CPhaseGate) == CPhaseGate.inverse() | |
assert Dagger(CPhaseGate) == pow(CPhaseGate, -1) | |
assert pow(CPhaseGate, -1) == CPhaseGate.inverse() | |
def test_UGate_CGate_combo(): | |
a, b, c, d = symbols('a,b,c,d') | |
uMat = Matrix([[a, b], [c, d]]) | |
cMat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, a, b], [0, 0, c, d]]) | |
# Test basic case where gate exists in 1-qubit space. | |
u1 = UGate((0,), uMat) | |
cu1 = CGate(1, u1) | |
assert represent(cu1, nqubits=2) == cMat | |
assert qapply(cu1*Qubit('10')) == a*Qubit('10') + c*Qubit('11') | |
assert qapply(cu1*Qubit('11')) == b*Qubit('10') + d*Qubit('11') | |
assert qapply(cu1*Qubit('01')) == Qubit('01') | |
assert qapply(cu1*Qubit('00')) == Qubit('00') | |
# Test case where gate exists in a larger space. | |
u2 = UGate((1,), uMat) | |
u2Rep = represent(u2, nqubits=2) | |
for i in range(4): | |
assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ | |
qubit_to_matrix(qapply(u2*IntQubit(i, 2))) | |
def test_UGate_OneQubitGate_combo(): | |
v, w, f, g = symbols('v w f g') | |
uMat1 = ImmutableMatrix([[v, w], [f, g]]) | |
cMat1 = Matrix([[v, w + 1, 0, 0], [f + 1, g, 0, 0], [0, 0, v, w + 1], [0, 0, f + 1, g]]) | |
u1 = X(0) + UGate(0, uMat1) | |
assert represent(u1, nqubits=2) == cMat1 | |
uMat2 = ImmutableMatrix([[1/sqrt(2), 1/sqrt(2)], [I/sqrt(2), -I/sqrt(2)]]) | |
cMat2_1 = Matrix([[Rational(1, 2) + I/2, Rational(1, 2) - I/2], | |
[Rational(1, 2) - I/2, Rational(1, 2) + I/2]]) | |
cMat2_2 = Matrix([[1, 0], [0, I]]) | |
u2 = UGate(0, uMat2) | |
assert represent(H(0)*u2, nqubits=1) == cMat2_1 | |
assert represent(u2*H(0), nqubits=1) == cMat2_2 | |
def test_represent_hadamard(): | |
"""Test the representation of the hadamard gate.""" | |
circuit = HadamardGate(0)*Qubit('00') | |
answer = represent(circuit, nqubits=2) | |
# Check that the answers are same to within an epsilon. | |
assert answer == Matrix([sqrt2_inv, sqrt2_inv, 0, 0]) | |
def test_represent_xgate(): | |
"""Test the representation of the X gate.""" | |
circuit = XGate(0)*Qubit('00') | |
answer = represent(circuit, nqubits=2) | |
assert Matrix([0, 1, 0, 0]) == answer | |
def test_represent_ygate(): | |
"""Test the representation of the Y gate.""" | |
circuit = YGate(0)*Qubit('00') | |
answer = represent(circuit, nqubits=2) | |
assert answer[0] == 0 and answer[1] == I and \ | |
answer[2] == 0 and answer[3] == 0 | |
def test_represent_zgate(): | |
"""Test the representation of the Z gate.""" | |
circuit = ZGate(0)*Qubit('00') | |
answer = represent(circuit, nqubits=2) | |
assert Matrix([1, 0, 0, 0]) == answer | |
def test_represent_phasegate(): | |
"""Test the representation of the S gate.""" | |
circuit = PhaseGate(0)*Qubit('01') | |
answer = represent(circuit, nqubits=2) | |
assert Matrix([0, I, 0, 0]) == answer | |
def test_represent_tgate(): | |
"""Test the representation of the T gate.""" | |
circuit = TGate(0)*Qubit('01') | |
assert Matrix([0, exp(I*pi/4), 0, 0]) == represent(circuit, nqubits=2) | |
def test_compound_gates(): | |
"""Test a compound gate representation.""" | |
circuit = YGate(0)*ZGate(0)*XGate(0)*HadamardGate(0)*Qubit('00') | |
answer = represent(circuit, nqubits=2) | |
assert Matrix([I/sqrt(2), I/sqrt(2), 0, 0]) == answer | |
def test_cnot_gate(): | |
"""Test the CNOT gate.""" | |
circuit = CNotGate(1, 0) | |
assert represent(circuit, nqubits=2) == \ | |
Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) | |
circuit = circuit*Qubit('111') | |
assert matrix_to_qubit(represent(circuit, nqubits=3)) == \ | |
qapply(circuit) | |
circuit = CNotGate(1, 0) | |
assert Dagger(circuit) == circuit | |
assert Dagger(Dagger(circuit)) == circuit | |
assert circuit*circuit == 1 | |
def test_gate_sort(): | |
"""Test gate_sort.""" | |
for g in (X, Y, Z, H, S, T): | |
assert gate_sort(g(2)*g(1)*g(0)) == g(0)*g(1)*g(2) | |
e = gate_sort(X(1)*H(0)**2*CNOT(0, 1)*X(1)*X(0)) | |
assert e == H(0)**2*CNOT(0, 1)*X(0)*X(1)**2 | |
assert gate_sort(Z(0)*X(0)) == -X(0)*Z(0) | |
assert gate_sort(Z(0)*X(0)**2) == X(0)**2*Z(0) | |
assert gate_sort(Y(0)*H(0)) == -H(0)*Y(0) | |
assert gate_sort(Y(0)*X(0)) == -X(0)*Y(0) | |
assert gate_sort(Z(0)*Y(0)) == -Y(0)*Z(0) | |
assert gate_sort(T(0)*S(0)) == S(0)*T(0) | |
assert gate_sort(Z(0)*S(0)) == S(0)*Z(0) | |
assert gate_sort(Z(0)*T(0)) == T(0)*Z(0) | |
assert gate_sort(Z(0)*CNOT(0, 1)) == CNOT(0, 1)*Z(0) | |
assert gate_sort(S(0)*CNOT(0, 1)) == CNOT(0, 1)*S(0) | |
assert gate_sort(T(0)*CNOT(0, 1)) == CNOT(0, 1)*T(0) | |
assert gate_sort(X(1)*CNOT(0, 1)) == CNOT(0, 1)*X(1) | |
# This takes a long time and should only be uncommented once in a while. | |
# nqubits = 5 | |
# ngates = 10 | |
# trials = 10 | |
# for i in range(trials): | |
# c = random_circuit(ngates, nqubits) | |
# assert represent(c, nqubits=nqubits) == \ | |
# represent(gate_sort(c), nqubits=nqubits) | |
def test_gate_simp(): | |
"""Test gate_simp.""" | |
e = H(0)*X(1)*H(0)**2*CNOT(0, 1)*X(1)**3*X(0)*Z(3)**2*S(4)**3 | |
assert gate_simp(e) == H(0)*CNOT(0, 1)*S(4)*X(0)*Z(4) | |
assert gate_simp(X(0)*X(0)) == 1 | |
assert gate_simp(Y(0)*Y(0)) == 1 | |
assert gate_simp(Z(0)*Z(0)) == 1 | |
assert gate_simp(H(0)*H(0)) == 1 | |
assert gate_simp(T(0)*T(0)) == S(0) | |
assert gate_simp(S(0)*S(0)) == Z(0) | |
assert gate_simp(Integer(1)) == Integer(1) | |
assert gate_simp(X(0)**2 + Y(0)**2) == Integer(2) | |
def test_swap_gate(): | |
"""Test the SWAP gate.""" | |
swap_gate_matrix = Matrix( | |
((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1))) | |
assert represent(SwapGate(1, 0).decompose(), nqubits=2) == swap_gate_matrix | |
assert qapply(SwapGate(1, 3)*Qubit('0010')) == Qubit('1000') | |
nqubits = 4 | |
for i in range(nqubits): | |
for j in range(i): | |
assert represent(SwapGate(i, j), nqubits=nqubits) == \ | |
represent(SwapGate(i, j).decompose(), nqubits=nqubits) | |
def test_one_qubit_commutators(): | |
"""Test single qubit gate commutation relations.""" | |
for g1 in (IdentityGate, X, Y, Z, H, T, S): | |
for g2 in (IdentityGate, X, Y, Z, H, T, S): | |
e = Commutator(g1(0), g2(0)) | |
a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) | |
b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) | |
assert a == b | |
e = Commutator(g1(0), g2(1)) | |
assert e.doit() == 0 | |
def test_one_qubit_anticommutators(): | |
"""Test single qubit gate anticommutation relations.""" | |
for g1 in (IdentityGate, X, Y, Z, H): | |
for g2 in (IdentityGate, X, Y, Z, H): | |
e = AntiCommutator(g1(0), g2(0)) | |
a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) | |
b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) | |
assert a == b | |
e = AntiCommutator(g1(0), g2(1)) | |
a = matrix_to_zero(represent(e, nqubits=2, format='sympy')) | |
b = matrix_to_zero(represent(e.doit(), nqubits=2, format='sympy')) | |
assert a == b | |
def test_cnot_commutators(): | |
"""Test commutators of involving CNOT gates.""" | |
assert Commutator(CNOT(0, 1), Z(0)).doit() == 0 | |
assert Commutator(CNOT(0, 1), T(0)).doit() == 0 | |
assert Commutator(CNOT(0, 1), S(0)).doit() == 0 | |
assert Commutator(CNOT(0, 1), X(1)).doit() == 0 | |
assert Commutator(CNOT(0, 1), CNOT(0, 1)).doit() == 0 | |
assert Commutator(CNOT(0, 1), CNOT(0, 2)).doit() == 0 | |
assert Commutator(CNOT(0, 2), CNOT(0, 1)).doit() == 0 | |
assert Commutator(CNOT(1, 2), CNOT(1, 0)).doit() == 0 | |
def test_random_circuit(): | |
c = random_circuit(10, 3) | |
assert isinstance(c, Mul) | |
m = represent(c, nqubits=3) | |
assert m.shape == (8, 8) | |
assert isinstance(m, Matrix) | |
def test_hermitian_XGate(): | |
x = XGate(1, 2) | |
x_dagger = Dagger(x) | |
assert (x == x_dagger) | |
def test_hermitian_YGate(): | |
y = YGate(1, 2) | |
y_dagger = Dagger(y) | |
assert (y == y_dagger) | |
def test_hermitian_ZGate(): | |
z = ZGate(1, 2) | |
z_dagger = Dagger(z) | |
assert (z == z_dagger) | |
def test_unitary_XGate(): | |
x = XGate(1, 2) | |
x_dagger = Dagger(x) | |
assert (x*x_dagger == 1) | |
def test_unitary_YGate(): | |
y = YGate(1, 2) | |
y_dagger = Dagger(y) | |
assert (y*y_dagger == 1) | |
def test_unitary_ZGate(): | |
z = ZGate(1, 2) | |
z_dagger = Dagger(z) | |
assert (z*z_dagger == 1) | |