Spaces:
Running
Running
from sympy import symbols | |
from sympy.physics.mechanics import dynamicsymbols | |
from sympy.physics.mechanics import ReferenceFrame, Point, Particle | |
from sympy.physics.mechanics import LagrangesMethod, Lagrangian | |
### This test asserts that a system with more than one external forces | |
### is acurately formed with Lagrange method (see issue #8626) | |
def test_lagrange_2forces(): | |
### Equations for two damped springs in serie with two forces | |
### generalized coordinates | |
q1, q2 = dynamicsymbols('q1, q2') | |
### generalized speeds | |
q1d, q2d = dynamicsymbols('q1, q2', 1) | |
### Mass, spring strength, friction coefficient | |
m, k, nu = symbols('m, k, nu') | |
N = ReferenceFrame('N') | |
O = Point('O') | |
### Two points | |
P1 = O.locatenew('P1', q1 * N.x) | |
P1.set_vel(N, q1d * N.x) | |
P2 = O.locatenew('P1', q2 * N.x) | |
P2.set_vel(N, q2d * N.x) | |
pP1 = Particle('pP1', P1, m) | |
pP1.potential_energy = k * q1**2 / 2 | |
pP2 = Particle('pP2', P2, m) | |
pP2.potential_energy = k * (q1 - q2)**2 / 2 | |
#### Friction forces | |
forcelist = [(P1, - nu * q1d * N.x), | |
(P2, - nu * q2d * N.x)] | |
lag = Lagrangian(N, pP1, pP2) | |
l_method = LagrangesMethod(lag, (q1, q2), forcelist=forcelist, frame=N) | |
l_method.form_lagranges_equations() | |
eq1 = l_method.eom[0] | |
assert eq1.diff(q1d) == nu | |
eq2 = l_method.eom[1] | |
assert eq2.diff(q2d) == nu | |