Spaces:
Running
Running
from sympy import solve | |
from sympy import (cos, expand, Matrix, sin, symbols, tan, sqrt, S, | |
zeros, eye) | |
from sympy.simplify.simplify import simplify | |
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, | |
RigidBody, KanesMethod, inertia, Particle, | |
dot, find_dynamicsymbols) | |
from sympy.testing.pytest import raises | |
def test_invalid_coordinates(): | |
# Simple pendulum, but use symbols instead of dynamicsymbols | |
l, m, g = symbols('l m g') | |
q, u = symbols('q u') # Generalized coordinate | |
kd = [q.diff(dynamicsymbols._t) - u] | |
N, O = ReferenceFrame('N'), Point('O') | |
O.set_vel(N, 0) | |
P = Particle('P', Point('P'), m) | |
P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y)) | |
F = (P.point, -m * g * N.y) | |
raises(ValueError, lambda: KanesMethod(N, [q], [u], kd, bodies=[P], | |
forcelist=[F])) | |
def test_one_dof(): | |
# This is for a 1 dof spring-mass-damper case. | |
# It is described in more detail in the KanesMethod docstring. | |
q, u = dynamicsymbols('q u') | |
qd, ud = dynamicsymbols('q u', 1) | |
m, c, k = symbols('m c k') | |
N = ReferenceFrame('N') | |
P = Point('P') | |
P.set_vel(N, u * N.x) | |
kd = [qd - u] | |
FL = [(P, (-k * q - c * u) * N.x)] | |
pa = Particle('pa', P, m) | |
BL = [pa] | |
KM = KanesMethod(N, [q], [u], kd) | |
KM.kanes_equations(BL, FL) | |
assert KM.bodies == BL | |
assert KM.loads == FL | |
MM = KM.mass_matrix | |
forcing = KM.forcing | |
rhs = MM.inv() * forcing | |
assert expand(rhs[0]) == expand(-(q * k + u * c) / m) | |
assert simplify(KM.rhs() - | |
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) | |
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]])) | |
def test_two_dof(): | |
# This is for a 2 d.o.f., 2 particle spring-mass-damper. | |
# The first coordinate is the displacement of the first particle, and the | |
# second is the relative displacement between the first and second | |
# particles. Speeds are defined as the time derivatives of the particles. | |
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') | |
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) | |
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') | |
N = ReferenceFrame('N') | |
P1 = Point('P1') | |
P2 = Point('P2') | |
P1.set_vel(N, u1 * N.x) | |
P2.set_vel(N, (u1 + u2) * N.x) | |
# Note we multiply the kinematic equation by an arbitrary factor | |
# to test the implicit vs explicit kinematics attribute | |
kd = [q1d/2 - u1/2, 2*q2d - 2*u2] | |
# Now we create the list of forces, then assign properties to each | |
# particle, then create a list of all particles. | |
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * | |
q2 - c2 * u2) * N.x)] | |
pa1 = Particle('pa1', P1, m) | |
pa2 = Particle('pa2', P2, m) | |
BL = [pa1, pa2] | |
# Finally we create the KanesMethod object, specify the inertial frame, | |
# pass relevant information, and form Fr & Fr*. Then we calculate the mass | |
# matrix and forcing terms, and finally solve for the udots. | |
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) | |
KM.kanes_equations(BL, FL) | |
MM = KM.mass_matrix | |
forcing = KM.forcing | |
rhs = MM.inv() * forcing | |
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) | |
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * | |
c2 * u2) / m) | |
# Check that the explicit form is the default and kinematic mass matrix is identity | |
assert KM.explicit_kinematics | |
assert KM.mass_matrix_kin == eye(2) | |
# Check that for the implicit form the mass matrix is not identity | |
KM.explicit_kinematics = False | |
assert KM.mass_matrix_kin == Matrix([[S(1)/2, 0], [0, 2]]) | |
# Check that whether using implicit or explicit kinematics the RHS | |
# equations are consistent with the matrix form | |
for explicit_kinematics in [False, True]: | |
KM.explicit_kinematics = explicit_kinematics | |
assert simplify(KM.rhs() - | |
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1) | |
# Make sure an error is raised if nonlinear kinematic differential | |
# equations are supplied. | |
kd = [q1d - u1**2, sin(q2d) - cos(u2)] | |
raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2], | |
u_ind=[u1, u2], kd_eqs=kd)) | |
def test_pend(): | |
q, u = dynamicsymbols('q u') | |
qd, ud = dynamicsymbols('q u', 1) | |
m, l, g = symbols('m l g') | |
N = ReferenceFrame('N') | |
P = Point('P') | |
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y) | |
kd = [qd - u] | |
FL = [(P, m * g * N.x)] | |
pa = Particle('pa', P, m) | |
BL = [pa] | |
KM = KanesMethod(N, [q], [u], kd) | |
KM.kanes_equations(BL, FL) | |
MM = KM.mass_matrix | |
forcing = KM.forcing | |
rhs = MM.inv() * forcing | |
rhs.simplify() | |
assert expand(rhs[0]) == expand(-g / l * sin(q)) | |
assert simplify(KM.rhs() - | |
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) | |
def test_rolling_disc(): | |
# Rolling Disc Example | |
# Here the rolling disc is formed from the contact point up, removing the | |
# need to introduce generalized speeds. Only 3 configuration and three | |
# speed variables are need to describe this system, along with the disc's | |
# mass and radius, and the local gravity (note that mass will drop out). | |
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') | |
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) | |
r, m, g = symbols('r m g') | |
# The kinematics are formed by a series of simple rotations. Each simple | |
# rotation creates a new frame, and the next rotation is defined by the new | |
# frame's basis vectors. This example uses a 3-1-2 series of rotations, or | |
# Z, X, Y series of rotations. Angular velocity for this is defined using | |
# the second frame's basis (the lean frame). | |
N = ReferenceFrame('N') | |
Y = N.orientnew('Y', 'Axis', [q1, N.z]) | |
L = Y.orientnew('L', 'Axis', [q2, Y.x]) | |
R = L.orientnew('R', 'Axis', [q3, L.y]) | |
w_R_N_qd = R.ang_vel_in(N) | |
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) | |
# This is the translational kinematics. We create a point with no velocity | |
# in N; this is the contact point between the disc and ground. Next we form | |
# the position vector from the contact point to the disc's center of mass. | |
# Finally we form the velocity and acceleration of the disc. | |
C = Point('C') | |
C.set_vel(N, 0) | |
Dmc = C.locatenew('Dmc', r * L.z) | |
Dmc.v2pt_theory(C, N, R) | |
# This is a simple way to form the inertia dyadic. | |
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) | |
# Kinematic differential equations; how the generalized coordinate time | |
# derivatives relate to generalized speeds. | |
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] | |
# Creation of the force list; it is the gravitational force at the mass | |
# center of the disc. Then we create the disc by assigning a Point to the | |
# center of mass attribute, a ReferenceFrame to the frame attribute, and mass | |
# and inertia. Then we form the body list. | |
ForceList = [(Dmc, - m * g * Y.z)] | |
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) | |
BodyList = [BodyD] | |
# Finally we form the equations of motion, using the same steps we did | |
# before. Specify inertial frame, supply generalized speeds, supply | |
# kinematic differential equation dictionary, compute Fr from the force | |
# list and Fr* from the body list, compute the mass matrix and forcing | |
# terms, then solve for the u dots (time derivatives of the generalized | |
# speeds). | |
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd) | |
KM.kanes_equations(BodyList, ForceList) | |
MM = KM.mass_matrix | |
forcing = KM.forcing | |
rhs = MM.inv() * forcing | |
kdd = KM.kindiffdict() | |
rhs = rhs.subs(kdd) | |
rhs.simplify() | |
assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) + | |
4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand() | |
assert simplify(KM.rhs() - | |
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1) | |
# This code tests our output vs. benchmark values. When r=g=m=1, the | |
# critical speed (where all eigenvalues of the linearized equations are 0) | |
# is 1 / sqrt(3) for the upright case. | |
A = KM.linearize(A_and_B=True)[0] | |
A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0}) | |
import sympy | |
assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6} | |
def test_aux(): | |
# Same as above, except we have 2 auxiliary speeds for the ground contact | |
# point, which is known to be zero. In one case, we go through then | |
# substitute the aux. speeds in at the end (they are zero, as well as their | |
# derivative), in the other case, we use the built-in auxiliary speed part | |
# of KanesMethod. The equations from each should be the same. | |
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') | |
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) | |
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') | |
u4d, u5d = dynamicsymbols('u4, u5', 1) | |
r, m, g = symbols('r m g') | |
N = ReferenceFrame('N') | |
Y = N.orientnew('Y', 'Axis', [q1, N.z]) | |
L = Y.orientnew('L', 'Axis', [q2, Y.x]) | |
R = L.orientnew('R', 'Axis', [q3, L.y]) | |
w_R_N_qd = R.ang_vel_in(N) | |
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) | |
C = Point('C') | |
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) | |
Dmc = C.locatenew('Dmc', r * L.z) | |
Dmc.v2pt_theory(C, N, R) | |
Dmc.a2pt_theory(C, N, R) | |
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) | |
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] | |
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] | |
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) | |
BodyList = [BodyD] | |
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5], | |
kd_eqs=kd) | |
(fr, frstar) = KM.kanes_equations(BodyList, ForceList) | |
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) | |
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) | |
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd, | |
u_auxiliary=[u4, u5]) | |
(fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList) | |
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) | |
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) | |
frstar.simplify() | |
frstar2.simplify() | |
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0]) | |
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0]) | |
def test_parallel_axis(): | |
# This is for a 2 dof inverted pendulum on a cart. | |
# This tests the parallel axis code in KanesMethod. The inertia of the | |
# pendulum is defined about the hinge, not about the center of mass. | |
# Defining the constants and knowns of the system | |
gravity = symbols('g') | |
k, ls = symbols('k ls') | |
a, mA, mC = symbols('a mA mC') | |
F = dynamicsymbols('F') | |
Ix, Iy, Iz = symbols('Ix Iy Iz') | |
# Declaring the Generalized coordinates and speeds | |
q1, q2 = dynamicsymbols('q1 q2') | |
q1d, q2d = dynamicsymbols('q1 q2', 1) | |
u1, u2 = dynamicsymbols('u1 u2') | |
u1d, u2d = dynamicsymbols('u1 u2', 1) | |
# Creating reference frames | |
N = ReferenceFrame('N') | |
A = ReferenceFrame('A') | |
A.orient(N, 'Axis', [-q2, N.z]) | |
A.set_ang_vel(N, -u2 * N.z) | |
# Origin of Newtonian reference frame | |
O = Point('O') | |
# Creating and Locating the positions of the cart, C, and the | |
# center of mass of the pendulum, A | |
C = O.locatenew('C', q1 * N.x) | |
Ao = C.locatenew('Ao', a * A.y) | |
# Defining velocities of the points | |
O.set_vel(N, 0) | |
C.set_vel(N, u1 * N.x) | |
Ao.v2pt_theory(C, N, A) | |
Cart = Particle('Cart', C, mC) | |
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C)) | |
# kinematical differential equations | |
kindiffs = [q1d - u1, q2d - u2] | |
bodyList = [Cart, Pendulum] | |
forceList = [(Ao, -N.y * gravity * mA), | |
(C, -N.y * gravity * mC), | |
(C, -N.x * k * (q1 - ls)), | |
(C, N.x * F)] | |
km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs) | |
(fr, frstar) = km.kanes_equations(bodyList, forceList) | |
mm = km.mass_matrix_full | |
assert mm[3, 3] == Iz | |
def test_input_format(): | |
# 1 dof problem from test_one_dof | |
q, u = dynamicsymbols('q u') | |
qd, ud = dynamicsymbols('q u', 1) | |
m, c, k = symbols('m c k') | |
N = ReferenceFrame('N') | |
P = Point('P') | |
P.set_vel(N, u * N.x) | |
kd = [qd - u] | |
FL = [(P, (-k * q - c * u) * N.x)] | |
pa = Particle('pa', P, m) | |
BL = [pa] | |
KM = KanesMethod(N, [q], [u], kd) | |
# test for input format kane.kanes_equations((body1, body2, particle1)) | |
assert KM.kanes_equations(BL)[0] == Matrix([0]) | |
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2)) | |
assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0]) | |
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None) | |
assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0]) | |
# test for input format kane.kanes_equations(bodies=(body1, body 2)) | |
assert KM.kanes_equations(BL)[0] == Matrix([0]) | |
# test for input format kane.kanes_equations(bodies=(body1, body2), loads=[]) | |
assert KM.kanes_equations(BL, [])[0] == Matrix([0]) | |
# test for error raised when a wrong force list (in this case a string) is provided | |
raises(ValueError, lambda: KM._form_fr('bad input')) | |
# 1 dof problem from test_one_dof with FL & BL in instance | |
KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL) | |
assert KM.kanes_equations()[0] == Matrix([-c*u - k*q]) | |
# 2 dof problem from test_two_dof | |
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') | |
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) | |
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') | |
N = ReferenceFrame('N') | |
P1 = Point('P1') | |
P2 = Point('P2') | |
P1.set_vel(N, u1 * N.x) | |
P2.set_vel(N, (u1 + u2) * N.x) | |
kd = [q1d - u1, q2d - u2] | |
FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * | |
q2 - c2 * u2) * N.x)) | |
pa1 = Particle('pa1', P1, m) | |
pa2 = Particle('pa2', P2, m) | |
BL = (pa1, pa2) | |
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) | |
# test for input format | |
# kane.kanes_equations((body1, body2), (load1, load2)) | |
KM.kanes_equations(BL, FL) | |
MM = KM.mass_matrix | |
forcing = KM.forcing | |
rhs = MM.inv() * forcing | |
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) | |
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * | |
c2 * u2) / m) | |
def test_implicit_kinematics(): | |
# Test that implicit kinematics can handle complicated | |
# equations that explicit form struggles with | |
# See https://github.com/sympy/sympy/issues/22626 | |
# Inertial frame | |
NED = ReferenceFrame('NED') | |
NED_o = Point('NED_o') | |
NED_o.set_vel(NED, 0) | |
# body frame | |
q_att = dynamicsymbols('lambda_0:4', real=True) | |
B = NED.orientnew('B', 'Quaternion', q_att) | |
# Generalized coordinates | |
q_pos = dynamicsymbols('B_x:z') | |
B_cm = NED_o.locatenew('B_cm', q_pos[0]*B.x + q_pos[1]*B.y + q_pos[2]*B.z) | |
q_ind = q_att[1:] + q_pos | |
q_dep = [q_att[0]] | |
kinematic_eqs = [] | |
# Generalized velocities | |
B_ang_vel = B.ang_vel_in(NED) | |
P, Q, R = dynamicsymbols('P Q R') | |
B.set_ang_vel(NED, P*B.x + Q*B.y + R*B.z) | |
B_ang_vel_kd = (B.ang_vel_in(NED) - B_ang_vel).simplify() | |
# Equating the two gives us the kinematic equation | |
kinematic_eqs += [ | |
B_ang_vel_kd & B.x, | |
B_ang_vel_kd & B.y, | |
B_ang_vel_kd & B.z | |
] | |
B_cm_vel = B_cm.vel(NED) | |
U, V, W = dynamicsymbols('U V W') | |
B_cm.set_vel(NED, U*B.x + V*B.y + W*B.z) | |
# Compute the velocity of the point using the two methods | |
B_ref_vel_kd = (B_cm.vel(NED) - B_cm_vel) | |
# taking dot product with unit vectors to get kinematic equations | |
# relating body coordinates and velocities | |
# Note, there is a choice to dot with NED.xyz here. That makes | |
# the implicit form have some bigger terms but is still fine, the | |
# explicit form still struggles though | |
kinematic_eqs += [ | |
B_ref_vel_kd & B.x, | |
B_ref_vel_kd & B.y, | |
B_ref_vel_kd & B.z, | |
] | |
u_ind = [U, V, W, P, Q, R] | |
# constraints | |
q_att_vec = Matrix(q_att) | |
config_cons = [(q_att_vec.T*q_att_vec)[0] - 1] #unit norm | |
kinematic_eqs = kinematic_eqs + [(q_att_vec.T * q_att_vec.diff())[0]] | |
try: | |
KM = KanesMethod(NED, q_ind, u_ind, | |
q_dependent= q_dep, | |
kd_eqs = kinematic_eqs, | |
configuration_constraints = config_cons, | |
velocity_constraints= [], | |
u_dependent= [], #no dependent speeds | |
u_auxiliary = [], # No auxiliary speeds | |
explicit_kinematics = False # implicit kinematics | |
) | |
except Exception as e: | |
raise e | |
# mass and inertia dyadic relative to CM | |
M_B = symbols('M_B') | |
J_B = inertia(B, *[S(f'J_B_{ax}')*(1 if ax[0] == ax[1] else -1) | |
for ax in ['xx', 'yy', 'zz', 'xy', 'yz', 'xz']]) | |
J_B = J_B.subs({S('J_B_xy'): 0, S('J_B_yz'): 0}) | |
RB = RigidBody('RB', B_cm, B, M_B, (J_B, B_cm)) | |
rigid_bodies = [RB] | |
# Forces | |
force_list = [ | |
#gravity pointing down | |
(RB.masscenter, RB.mass*S('g')*NED.z), | |
#generic forces and torques in body frame(inputs) | |
(RB.frame, dynamicsymbols('T_z')*B.z), | |
(RB.masscenter, dynamicsymbols('F_z')*B.z) | |
] | |
KM.kanes_equations(rigid_bodies, force_list) | |
# Expecting implicit form to be less than 5% of the flops | |
n_ops_implicit = sum( | |
[x.count_ops() for x in KM.forcing_full] + | |
[x.count_ops() for x in KM.mass_matrix_full] | |
) | |
# Save implicit kinematic matrices to use later | |
mass_matrix_kin_implicit = KM.mass_matrix_kin | |
forcing_kin_implicit = KM.forcing_kin | |
KM.explicit_kinematics = True | |
n_ops_explicit = sum( | |
[x.count_ops() for x in KM.forcing_full] + | |
[x.count_ops() for x in KM.mass_matrix_full] | |
) | |
forcing_kin_explicit = KM.forcing_kin | |
assert n_ops_implicit / n_ops_explicit < .05 | |
# Ideally we would check that implicit and explicit equations give the same result as done in test_one_dof | |
# But the whole raison-d'etre of the implicit equations is to deal with problems such | |
# as this one where the explicit form is too complicated to handle, especially the angular part | |
# (i.e. tests would be too slow) | |
# Instead, we check that the kinematic equations are correct using more fundamental tests: | |
# | |
# (1) that we recover the kinematic equations we have provided | |
assert (mass_matrix_kin_implicit * KM.q.diff() - forcing_kin_implicit) == Matrix(kinematic_eqs) | |
# (2) that rate of quaternions matches what 'textbook' solutions give | |
# Note that we just use the explicit kinematics for the linear velocities | |
# as they are not as complicated as the angular ones | |
qdot_candidate = forcing_kin_explicit | |
quat_dot_textbook = Matrix([ | |
[0, -P, -Q, -R], | |
[P, 0, R, -Q], | |
[Q, -R, 0, P], | |
[R, Q, -P, 0], | |
]) * q_att_vec / 2 | |
# Again, if we don't use this "textbook" solution | |
# sympy will struggle to deal with the terms related to quaternion rates | |
# due to the number of operations involved | |
qdot_candidate[-1] = quat_dot_textbook[0] # lambda_0, note the [-1] as sympy's Kane puts the dependent coordinate last | |
qdot_candidate[0] = quat_dot_textbook[1] # lambda_1 | |
qdot_candidate[1] = quat_dot_textbook[2] # lambda_2 | |
qdot_candidate[2] = quat_dot_textbook[3] # lambda_3 | |
# sub the config constraint in the candidate solution and compare to the implicit rhs | |
lambda_0_sol = solve(config_cons[0], q_att_vec[0])[1] | |
lhs_candidate = simplify(mass_matrix_kin_implicit * qdot_candidate).subs({q_att_vec[0]: lambda_0_sol}) | |
assert lhs_candidate == forcing_kin_implicit | |
def test_issue_24887(): | |
# Spherical pendulum | |
g, l, m, c = symbols('g l m c') | |
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4 u1:4') | |
N = ReferenceFrame('N') | |
A = ReferenceFrame('A') | |
A.orient_body_fixed(N, (q1, q2, q3), 'zxy') | |
N_w_A = A.ang_vel_in(N) | |
# A.set_ang_vel(N, u1 * A.x + u2 * A.y + u3 * A.z) | |
kdes = [N_w_A.dot(A.x) - u1, N_w_A.dot(A.y) - u2, N_w_A.dot(A.z) - u3] | |
O = Point('O') | |
O.set_vel(N, 0) | |
Po = O.locatenew('Po', -l * A.y) | |
Po.set_vel(A, 0) | |
P = Particle('P', Po, m) | |
kane = KanesMethod(N, [q1, q2, q3], [u1, u2, u3], kdes, bodies=[P], | |
forcelist=[(Po, -m * g * N.y)]) | |
kane.kanes_equations() | |
expected_md = m * l ** 2 * Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 1]]) | |
expected_fd = Matrix([ | |
[l*m*(g*(sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)) - l*u2*u3)], | |
[0], [l*m*(-g*(sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)) + l*u1*u2)]]) | |
assert find_dynamicsymbols(kane.forcing).issubset({q1, q2, q3, u1, u2, u3}) | |
assert simplify(kane.mass_matrix - expected_md) == zeros(3, 3) | |
assert simplify(kane.forcing - expected_fd) == zeros(3, 1) | |