Spaces:
Running
Running
from sympy.core.add import Add | |
from sympy.core.function import Function | |
from sympy.core.mul import Mul | |
from sympy.core.numbers import (I, pi, Rational, oo) | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import atan | |
from sympy.matrices.dense import eye | |
from sympy.polys.polytools import factor | |
from sympy.polys.rootoftools import CRootOf | |
from sympy.simplify.simplify import simplify | |
from sympy.core.containers import Tuple | |
from sympy.matrices import ImmutableMatrix, Matrix, ShapeError | |
from sympy.physics.control import (TransferFunction, Series, Parallel, | |
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback, | |
StateSpace, gbt, bilinear, forward_diff, backward_diff, phase_margin, gain_margin) | |
from sympy.testing.pytest import raises | |
a, x, b, c, s, g, d, p, k, tau, zeta, wn, T = symbols('a, x, b, c, s, g, d, p, k,\ | |
tau, zeta, wn, T') | |
a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3 = symbols('a0:4,\ | |
b0:4, c0:4, d0:4') | |
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
TF2 = TransferFunction(k, 1, s) | |
TF3 = TransferFunction(a2*p - s, a2*s + p, s) | |
def test_TransferFunction_construction(): | |
tf = TransferFunction(s + 1, s**2 + s + 1, s) | |
assert tf.num == (s + 1) | |
assert tf.den == (s**2 + s + 1) | |
assert tf.args == (s + 1, s**2 + s + 1, s) | |
tf1 = TransferFunction(s + 4, s - 5, s) | |
assert tf1.num == (s + 4) | |
assert tf1.den == (s - 5) | |
assert tf1.args == (s + 4, s - 5, s) | |
# using different polynomial variables. | |
tf2 = TransferFunction(p + 3, p**2 - 9, p) | |
assert tf2.num == (p + 3) | |
assert tf2.den == (p**2 - 9) | |
assert tf2.args == (p + 3, p**2 - 9, p) | |
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) | |
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) | |
# no pole-zero cancellation on its own. | |
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s) | |
assert tf4.den == (s - 1)*(s + 5) | |
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s) | |
tf4_ = TransferFunction(p + 2, p + 2, p) | |
assert tf4_.args == (p + 2, p + 2, p) | |
tf5 = TransferFunction(s - 1, 4 - p, s) | |
assert tf5.args == (s - 1, 4 - p, s) | |
tf5_ = TransferFunction(s - 1, s - 1, s) | |
assert tf5_.args == (s - 1, s - 1, s) | |
tf6 = TransferFunction(5, 6, s) | |
assert tf6.num == 5 | |
assert tf6.den == 6 | |
assert tf6.args == (5, 6, s) | |
tf6_ = TransferFunction(1/2, 4, s) | |
assert tf6_.num == 0.5 | |
assert tf6_.den == 4 | |
assert tf6_.args == (0.500000000000000, 4, s) | |
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s) | |
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p) | |
assert not tf7 == tf8 | |
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) | |
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) | |
assert tf7_ == tf8_ | |
assert -(-tf7_) == tf7_ == -(-(-(-tf7_))) | |
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s) | |
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s) | |
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) | |
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) | |
assert tf10.args == (d + p**3, a + d*s + g*s**2, p) | |
assert tf10_ == tf10 | |
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s) | |
assert tf11.num == (a0 + a1*s) | |
assert tf11.den == (b0 + b1*s + b2*s**2) | |
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s) | |
# when just the numerator is 0, leave the denominator alone. | |
tf12 = TransferFunction(0, p**2 - p + 1, p) | |
assert tf12.args == (0, p**2 - p + 1, p) | |
tf13 = TransferFunction(0, 1, s) | |
assert tf13.args == (0, 1, s) | |
# float exponents | |
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s) | |
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s) | |
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p) | |
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p) | |
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i') | |
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s) | |
assert tf18.num == k_i/s + k_o*s + k_p | |
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s) | |
# ValueError when denominator is zero. | |
raises(ValueError, lambda: TransferFunction(4, 0, s)) | |
raises(ValueError, lambda: TransferFunction(s, 0, s)) | |
raises(ValueError, lambda: TransferFunction(0, 0, s)) | |
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s)) | |
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3)) | |
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4)) | |
raises(TypeError, lambda: TransferFunction(3, 4, 8)) | |
def test_TransferFunction_functions(): | |
# classmethod from_rational_expression | |
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False) | |
expr_2 = s/0 | |
expr_3 = (p*s**2 + 5*s)/(s + 1)**3 | |
expr_4 = 6 | |
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2)) | |
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9)) | |
tf = TransferFunction(s + 1, s**2 + 2, s) | |
delay = exp(-s/tau) | |
expr_7 = delay*tf.to_expr() | |
H1 = TransferFunction.from_rational_expression(expr_7, s) | |
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s) | |
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False) | |
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s) | |
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2)) | |
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3)) | |
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s) | |
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p) | |
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4)) | |
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s) | |
assert TransferFunction.from_rational_expression(expr_5, s) == \ | |
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s) | |
assert TransferFunction.from_rational_expression(expr_6, s) == \ | |
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s) | |
assert H1 == H2 | |
assert TransferFunction.from_rational_expression(expr_8, s) == \ | |
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s) | |
# classmethod from_coeff_lists | |
tf1 = TransferFunction.from_coeff_lists([1, 2], [3, 4, 5], s) | |
num2 = [p**2, 2*p] | |
den2 = [p**3, p + 1, 4] | |
tf2 = TransferFunction.from_coeff_lists(num2, den2, s) | |
num3 = [1, 2, 3] | |
den3 = [0, 0] | |
assert tf1 == TransferFunction(s + 2, 3*s**2 + 4*s + 5, s) | |
assert tf2 == TransferFunction(p**2*s + 2*p, p**3*s**2 + s*(p + 1) + 4, s) | |
raises(ZeroDivisionError, lambda: TransferFunction.from_coeff_lists(num3, den3, s)) | |
# classmethod from_zpk | |
zeros = [4] | |
poles = [-1+2j, -1-2j] | |
gain = 3 | |
tf1 = TransferFunction.from_zpk(zeros, poles, gain, s) | |
assert tf1 == TransferFunction(3*s - 12, (s + 1.0 - 2.0*I)*(s + 1.0 + 2.0*I), s) | |
# explicitly cancel poles and zeros. | |
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s) | |
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s) | |
assert tf0.simplify() == simplify(tf0) == a | |
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) | |
b = TransferFunction(p + 3, p + 5, p) | |
assert tf1.simplify() == simplify(tf1) == b | |
# expand the numerator and the denominator. | |
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) | |
G2 = TransferFunction(1, -3, p) | |
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p) | |
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p) | |
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p) | |
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s | |
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s | |
G3 = TransferFunction(c, d, s) | |
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p) | |
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s) | |
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p) | |
assert G2.expand() == G2 | |
assert G3.expand() == TransferFunction(e, f, s) | |
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p) | |
# purely symbolic polynomials. | |
p1 = a1*s + a0 | |
p2 = b2*s**2 + b1*s + b0 | |
SP1 = TransferFunction(p1, p2, s) | |
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s) | |
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s) | |
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_ | |
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1 | |
assert expect1_.evalf() == expect1 | |
c1, d0, d1, d2 = symbols('c1, d0:3') | |
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0 | |
SP2 = TransferFunction(p3, p4, p) | |
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p) | |
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p) | |
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_ | |
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2 | |
assert expect2_.evalf() == expect2 | |
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s) | |
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s) | |
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s) | |
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_ | |
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3 | |
assert expect3_.evalf() == expect3 | |
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p) | |
expect4 = TransferFunction(7.0*p**3 + s, p - s, p) | |
expect4_ = TransferFunction(7*p**3 + s, p - s, p) | |
assert SP4.subs({a0: -1, a1: -7}) == expect4_ | |
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4 | |
assert expect4_.evalf() == expect4 | |
# evaluate the transfer function at particular frequencies. | |
assert tf1.eval_frequency(wn) == wn**2/(wn**2 + 4*wn - 5) + 2*wn/(wn**2 + 4*wn - 5) - 3/(wn**2 + 4*wn - 5) | |
assert G1.eval_frequency(1 + I) == S(3)/25 + S(4)*I/25 | |
assert G4.eval_frequency(S(5)/3) == \ | |
a0*s**s/(a1*a2*s**(S(8)/3) + S(5)*a1*s/3 + 5*a2*b1*s**(S(8)/3)/3 + S(25)*b1*s/9) - 5*3**(S(1)/3)*5**(S(2)/3)*b0/(9*a1*a2*s**(S(8)/3) + 15*a1*s + 15*a2*b1*s**(S(8)/3) + 25*b1*s) | |
# Low-frequency (or DC) gain. | |
assert tf0.dc_gain() == 1 | |
assert tf1.dc_gain() == Rational(3, 5) | |
assert SP2.dc_gain() == 0 | |
assert expect4.dc_gain() == -1 | |
assert expect2_.dc_gain() == 0 | |
assert TransferFunction(1, s, s).dc_gain() == oo | |
# Poles of a transfer function. | |
tf_ = TransferFunction(x**3 - k, k, x) | |
_tf = TransferFunction(k, x**4 - k, x) | |
TF_ = TransferFunction(x**2, x**10 + x + x**2, x) | |
_TF = TransferFunction(x**10 + x + x**2, x**2, x) | |
assert G1.poles() == [I, I, -I, -I] | |
assert G2.poles() == [] | |
assert tf1.poles() == [-5, 1] | |
assert expect4_.poles() == [s] | |
assert SP4.poles() == [-a0*s] | |
assert expect3.poles() == [-0.25*p] | |
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I]) | |
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I]) | |
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))] | |
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), | |
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), | |
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] | |
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles()) | |
# Stability of a transfer function. | |
q, r = symbols('q, r', negative=True) | |
t = symbols('t', positive=True) | |
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s) | |
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s) | |
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s) | |
assert G1.is_stable() is False | |
assert G2.is_stable() is True | |
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve. | |
assert expect2.is_stable() is False | |
assert expect1.is_stable() is True | |
assert stable_tf.is_stable() is True | |
assert stable_tf_.is_stable() is True | |
assert TF_.is_stable() is False | |
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'. | |
assert SP4.is_stable() is None | |
# Zeros of a transfer function. | |
assert G1.zeros() == [1, 1] | |
assert G2.zeros() == [] | |
assert tf1.zeros() == [-3, 1] | |
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 - | |
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14] | |
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2, | |
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2] | |
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0), | |
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125]) | |
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2, | |
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2] | |
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), | |
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), | |
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] | |
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros()) | |
# negation of TF. | |
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s) | |
tf3 = TransferFunction(-3*p + 3, 1 - p, p) | |
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s) | |
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p) | |
# taking power of a TF. | |
tf4 = TransferFunction(p + 4, p - 3, p) | |
tf5 = TransferFunction(s**2 + 1, 1 - s, s) | |
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s) | |
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p) | |
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1 | |
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2 | |
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s) | |
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p) | |
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s) | |
raises(ValueError, lambda: tf4**(s**2 + s - 1)) | |
raises(ValueError, lambda: tf5**s) | |
raises(ValueError, lambda: tf4**tf5) | |
# SymPy's own functions. | |
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s) | |
tf6 = TransferFunction(s + p, p**2 - 5, s) | |
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s) | |
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1 | |
# subs & xreplace | |
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s) | |
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s) | |
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s) | |
raises(TypeError, lambda: tf3.xreplace({p: exp(2)})) | |
assert tf3.subs(p, exp(2)) == tf3 | |
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) | |
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k) | |
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) | |
# Conversion to Expr with to_expr() | |
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s) | |
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s) | |
tf10 = TransferFunction(0, 1, s) | |
tf11 = TransferFunction(1, 1, s) | |
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False) | |
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False) | |
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False) | |
assert tf11.to_expr() == Pow(1, -1, evaluate=False) | |
def test_TransferFunction_addition_and_subtraction(): | |
tf1 = TransferFunction(s + 6, s - 5, s) | |
tf2 = TransferFunction(s + 3, s + 1, s) | |
tf3 = TransferFunction(s + 1, s**2 + s + 1, s) | |
tf4 = TransferFunction(p, 2 - p, p) | |
# addition | |
assert tf1 + tf2 == Parallel(tf1, tf2) | |
assert tf3 + tf1 == Parallel(tf3, tf1) | |
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3) | |
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3) | |
c = symbols("c", commutative=False) | |
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3])) | |
raises(ValueError, lambda: tf2 + c) | |
raises(ValueError, lambda: tf3 + tf4) | |
raises(ValueError, lambda: tf1 + (s - 1)) | |
raises(ValueError, lambda: tf1 + 8) | |
raises(ValueError, lambda: (1 - p**3) + tf1) | |
# subtraction | |
assert tf1 - tf2 == Parallel(tf1, -tf2) | |
assert tf3 - tf2 == Parallel(tf3, -tf2) | |
assert -tf1 - tf3 == Parallel(-tf1, -tf3) | |
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3) | |
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3])) | |
raises(ValueError, lambda: tf3 - tf4) | |
raises(ValueError, lambda: tf1 - (s - 1)) | |
raises(ValueError, lambda: tf1 - 8) | |
raises(ValueError, lambda: (s + 5) - tf2) | |
raises(ValueError, lambda: (1 + p**4) - tf1) | |
def test_TransferFunction_multiplication_and_division(): | |
G1 = TransferFunction(s + 3, -s**3 + 9, s) | |
G2 = TransferFunction(s + 1, s - 5, s) | |
G3 = TransferFunction(p, p**4 - 6, p) | |
G4 = TransferFunction(p + 4, p - 5, p) | |
G5 = TransferFunction(s + 6, s - 5, s) | |
G6 = TransferFunction(s + 3, s + 1, s) | |
G7 = TransferFunction(1, 1, s) | |
# multiplication | |
assert G1*G2 == Series(G1, G2) | |
assert -G1*G5 == Series(-G1, G5) | |
assert -G2*G5*-G6 == Series(-G2, G5, -G6) | |
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6) | |
assert G3*G4 == Series(G3, G4) | |
assert (G1*G2)*-(G5*G6) == \ | |
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6)) | |
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6)) | |
# division - See ``test_Feedback_functions()`` for division by Parallel objects. | |
assert G5/G6 == Series(G5, pow(G6, -1)) | |
assert -G3/G4 == Series(-G3, pow(G4, -1)) | |
assert (G5*G6)/G7 == Series(G5, G6, pow(G7, -1)) | |
c = symbols("c", commutative=False) | |
raises(ValueError, lambda: G3 * Matrix([1, 2, 3])) | |
raises(ValueError, lambda: G1 * c) | |
raises(ValueError, lambda: G3 * G5) | |
raises(ValueError, lambda: G5 * (s - 1)) | |
raises(ValueError, lambda: 9 * G5) | |
raises(ValueError, lambda: G3 / Matrix([1, 2, 3])) | |
raises(ValueError, lambda: G6 / 0) | |
raises(ValueError, lambda: G3 / G5) | |
raises(ValueError, lambda: G5 / 2) | |
raises(ValueError, lambda: G5 / s**2) | |
raises(ValueError, lambda: (s - 4*s**2) / G2) | |
raises(ValueError, lambda: 0 / G4) | |
raises(ValueError, lambda: G7 / (1 + G6)) | |
raises(ValueError, lambda: G7 / (G5 * G6)) | |
raises(ValueError, lambda: G7 / (G7 + (G5 + G6))) | |
def test_TransferFunction_is_proper(): | |
omega_o, zeta, tau = symbols('omega_o, zeta, tau') | |
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) | |
G2 = TransferFunction(tau - s**3, tau + p**4, tau) | |
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) | |
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
assert G1.is_proper | |
assert G2.is_proper | |
assert G3.is_proper | |
assert not G4.is_proper | |
def test_TransferFunction_is_strictly_proper(): | |
omega_o, zeta, tau = symbols('omega_o, zeta, tau') | |
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) | |
tf2 = TransferFunction(tau - s**3, tau + p**4, tau) | |
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) | |
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
assert not tf1.is_strictly_proper | |
assert not tf2.is_strictly_proper | |
assert tf3.is_strictly_proper | |
assert not tf4.is_strictly_proper | |
def test_TransferFunction_is_biproper(): | |
tau, omega_o, zeta = symbols('tau, omega_o, zeta') | |
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) | |
tf2 = TransferFunction(tau - s**3, tau + p**4, tau) | |
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) | |
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
assert tf1.is_biproper | |
assert tf2.is_biproper | |
assert not tf3.is_biproper | |
assert not tf4.is_biproper | |
def test_Series_construction(): | |
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) | |
tf2 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf3 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
inp = Function('X_d')(s) | |
out = Function('X')(s) | |
s0 = Series(tf, tf2) | |
assert s0.args == (tf, tf2) | |
assert s0.var == s | |
s1 = Series(Parallel(tf, -tf2), tf2) | |
assert s1.args == (Parallel(tf, -tf2), tf2) | |
assert s1.var == s | |
tf3_ = TransferFunction(inp, 1, s) | |
tf4_ = TransferFunction(-out, 1, s) | |
s2 = Series(tf, Parallel(tf3_, tf4_), tf2) | |
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2) | |
s3 = Series(tf, tf2, tf4) | |
assert s3.args == (tf, tf2, tf4) | |
s4 = Series(tf3_, tf4_) | |
assert s4.args == (tf3_, tf4_) | |
assert s4.var == s | |
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4) | |
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4) | |
s7 = Series(tf, tf2) | |
assert s0 == s7 | |
assert not s0 == s2 | |
raises(ValueError, lambda: Series(tf, tf3)) | |
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4)) | |
raises(ValueError, lambda: Series(-tf3, tf2)) | |
raises(TypeError, lambda: Series(2, tf, tf4)) | |
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2)) | |
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4]))) | |
def test_MIMOSeries_construction(): | |
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) | |
tf_2 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]]) | |
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]]) | |
tfm_3 = TransferFunctionMatrix([[-tf_3]]) | |
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]]) | |
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p) | |
s8 = MIMOSeries(tfm_2, tfm_1) | |
assert s8.args == (tfm_2, tfm_1) | |
assert s8.var == s | |
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1) | |
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1) | |
assert s9.args == (tfm_3, tfm_2, tfm_1) | |
assert s9.var == s | |
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1) | |
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) | |
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) | |
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1) | |
# arg cannot be empty tuple. | |
raises(ValueError, lambda: MIMOSeries()) | |
# arg cannot contain SISO as well as MIMO systems. | |
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1)) | |
# for all the adjacent transfer function matrices: | |
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM. | |
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1)) | |
# all the TFMs must use the same complex variable. | |
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5)) | |
# Number or expression not allowed in the arguments. | |
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3)) | |
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3)) | |
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3)) | |
def test_Series_functions(): | |
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
tf2 = TransferFunction(k, 1, s) | |
tf3 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \ | |
== Series(tf1, Series(tf2, tf3)) | |
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3)) | |
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5) | |
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5) | |
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5) | |
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5) | |
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5) | |
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5)) | |
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5))) | |
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3) | |
assert -tf1*tf2 == Series(-tf1, tf2) | |
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2)) | |
raises(ValueError, lambda: tf1*tf2*tf4) | |
raises(ValueError, lambda: tf1*(tf2 - tf4)) | |
raises(ValueError, lambda: tf3*Matrix([1, 2, 3])) | |
# evaluate=True -> doit() | |
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \ | |
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) | |
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \ | |
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s) | |
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \ | |
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit() | |
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \ | |
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Series(-tf1, -tf2, -tf3).doit() == \ | |
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert -Series(tf1, tf2, tf3).doit() == \ | |
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \ | |
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) | |
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \ | |
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)) | |
assert S1.is_proper | |
assert not S1.is_strictly_proper | |
assert S1.is_biproper | |
S2 = Series(tf1, tf2, tf3) | |
assert S2.is_proper | |
assert S2.is_strictly_proper | |
assert not S2.is_biproper | |
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3)) | |
assert S3.is_proper | |
assert S3.is_strictly_proper | |
assert not S3.is_biproper | |
def test_MIMOSeries_functions(): | |
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]]) | |
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]]) | |
tfm3 = TransferFunctionMatrix([[-TF1]]) | |
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]]) | |
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]]) | |
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]]) | |
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]]) | |
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6) | |
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6) | |
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7) | |
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5) | |
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4)) | |
raises(ValueError, lambda: tfm1*tfm2 + TF1) | |
raises(TypeError, lambda: tfm1*tfm2 + a0) | |
raises(TypeError, lambda: tfm4*tfm6 - (s - 1)) | |
raises(TypeError, lambda: tfm4*-tfm6 - 8) | |
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2) | |
# Shape criteria. | |
raises(TypeError, lambda: -tfm1*tfm2 + tfm4) | |
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5) | |
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5) | |
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1) | |
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1) | |
# Multiplication of a Series object with a SISO TF not allowed. | |
raises(ValueError, lambda: tfm4*tfm5*TF1) | |
raises(TypeError, lambda: tfm4*tfm5*a1) | |
raises(TypeError, lambda: tfm4*-tfm5*(s - 2)) | |
raises(TypeError, lambda: tfm5*tfm4*9) | |
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4) | |
# Transfer function matrix in the arguments. | |
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit() | |
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2, | |
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),), | |
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), | |
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),)))) | |
# doit() should not cancel poles and zeros. | |
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]]) | |
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]]) | |
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s) | |
assert (MIMOSeries(tm_2, tm_1).doit() | |
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),))) | |
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),)) | |
# calling doit() will expand the internal Series and Parallel objects. | |
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True) | |
== MIMOSeries(-tfm3, -tfm2, tfm1).doit() | |
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2, | |
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),), | |
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), | |
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),)))) | |
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True) | |
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit() | |
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \ | |
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \ | |
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix)) | |
def test_Parallel_construction(): | |
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) | |
tf2 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf3 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
inp = Function('X_d')(s) | |
out = Function('X')(s) | |
p0 = Parallel(tf, tf2) | |
assert p0.args == (tf, tf2) | |
assert p0.var == s | |
p1 = Parallel(Series(tf, -tf2), tf2) | |
assert p1.args == (Series(tf, -tf2), tf2) | |
assert p1.var == s | |
tf3_ = TransferFunction(inp, 1, s) | |
tf4_ = TransferFunction(-out, 1, s) | |
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2) | |
assert p2.args == (tf, Series(tf3_, -tf4_), tf2) | |
p3 = Parallel(tf, tf2, tf4) | |
assert p3.args == (tf, tf2, tf4) | |
p4 = Parallel(tf3_, tf4_) | |
assert p4.args == (tf3_, tf4_) | |
assert p4.var == s | |
p5 = Parallel(tf, tf2) | |
assert p0 == p5 | |
assert not p0 == p1 | |
p6 = Parallel(tf2, tf4, Series(tf2, -tf4)) | |
assert p6.args == (tf2, tf4, Series(tf2, -tf4)) | |
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4) | |
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4) | |
raises(ValueError, lambda: Parallel(tf, tf3)) | |
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4)) | |
raises(ValueError, lambda: Parallel(-tf3, tf4)) | |
raises(TypeError, lambda: Parallel(2, tf, tf4)) | |
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2)) | |
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4]))) | |
def test_MIMOParallel_construction(): | |
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) | |
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]]) | |
tfm3 = TransferFunctionMatrix([[TF1]]) | |
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]]) | |
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]]) | |
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]]) | |
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p) | |
p8 = MIMOParallel(tfm1, tfm2) | |
assert p8.args == (tfm1, tfm2) | |
assert p8.var == s | |
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1) | |
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2) | |
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2) | |
assert p9.var == s | |
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1) | |
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2) | |
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2) | |
assert p10.var == s | |
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1) | |
p11 = MIMOParallel(tfm2, tfm1, tfm4) | |
assert p11.args == (tfm2, tfm1, tfm4) | |
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1) | |
p12 = MIMOParallel(tfm6, tfm5) | |
assert p12.args == (tfm6, tfm5) | |
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2) | |
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) | |
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) | |
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1) | |
# arg cannot be empty tuple. | |
raises(TypeError, lambda: MIMOParallel(())) | |
# arg cannot contain SISO as well as MIMO systems. | |
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1)) | |
# all TFMs must have same shapes. | |
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4)) | |
# all TFMs must be using the same complex variable. | |
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7)) | |
# Number or expression not allowed in the arguments. | |
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4)) | |
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2)) | |
def test_Parallel_functions(): | |
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
tf2 = TransferFunction(k, 1, s) | |
tf3 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3) | |
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5) | |
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5) | |
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3)) | |
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3)) | |
assert -tf1 - tf2 == Parallel(-tf1, -tf2) | |
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2)) | |
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1) | |
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5) | |
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5) | |
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5) | |
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3) | |
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5)) | |
raises(ValueError, lambda: tf1 + tf2 + tf4) | |
raises(ValueError, lambda: tf1 - tf2*tf4) | |
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3])) | |
# evaluate=True -> doit() | |
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \ | |
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) | |
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \ | |
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \ | |
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \ | |
2*s*wn*zeta + wn**2)**2, s) | |
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \ | |
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \ | |
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit() | |
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \ | |
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Parallel(-tf1, -tf2, -tf3).doit() == \ | |
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \ | |
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert -Parallel(tf1, tf2, tf3).doit() == \ | |
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \ | |
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \ | |
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \ | |
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \ | |
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) | |
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \ | |
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \ | |
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3) | |
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) | |
assert P1.is_proper | |
assert not P1.is_strictly_proper | |
assert P1.is_biproper | |
P2 = Parallel(tf1, -tf2, -tf3) | |
assert P2.is_proper | |
assert not P2.is_strictly_proper | |
assert P2.is_biproper | |
P3 = Parallel(tf1, -tf2, Series(tf1, tf3)) | |
assert P3.is_proper | |
assert not P3.is_strictly_proper | |
assert P3.is_biproper | |
def test_MIMOParallel_functions(): | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) | |
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]]) | |
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]]) | |
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]]) | |
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]]) | |
tfm6 = TransferFunctionMatrix([[-TF2]]) | |
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]]) | |
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3) | |
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3) | |
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1)) | |
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1)) | |
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2) | |
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1) | |
raises(ValueError, lambda: tfm1 + tfm2 + TF2) | |
raises(TypeError, lambda: tfm1 - tfm2 - a1) | |
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1)) | |
raises(TypeError, lambda: -tfm3 - tfm2 - 9) | |
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2) | |
# All TFMs must use the same complex var. tfm7 uses 'p'. | |
raises(ValueError, lambda: tfm3 - tfm2 - tfm7) | |
raises(ValueError, lambda: tfm2 - tfm1 + tfm7) | |
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape. | |
raises(TypeError, lambda: tfm1 + tfm2 + tfm4) | |
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4) | |
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2)) | |
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3)) | |
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3)) | |
raises(ValueError, lambda: (tfm4 + tfm5)*TF1) | |
raises(TypeError, lambda: (tfm2 - tfm3)*a2) | |
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6)) | |
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0) | |
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3)) | |
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape. | |
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5) | |
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape. | |
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5) | |
# TFM in the arguments. | |
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit() | |
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix) | |
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \ | |
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \ | |
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),)))) | |
def test_Feedback_construction(): | |
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
tf2 = TransferFunction(k, 1, s) | |
tf3 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
tf6 = TransferFunction(s - p, p + s, p) | |
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3) | |
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1) | |
assert f1.sys1 == TransferFunction(1, 1, s) | |
assert f1.sys2 == Series(tf1, tf2, tf3) | |
assert f1.var == s | |
f2 = Feedback(tf1, tf2*tf3) | |
assert f2.args == (tf1, Series(tf2, tf3), -1) | |
assert f2.sys1 == tf1 | |
assert f2.sys2 == Series(tf2, tf3) | |
assert f2.var == s | |
f3 = Feedback(tf1*tf2, tf5) | |
assert f3.args == (Series(tf1, tf2), tf5, -1) | |
assert f3.sys1 == Series(tf1, tf2) | |
f4 = Feedback(tf4, tf6) | |
assert f4.args == (tf4, tf6, -1) | |
assert f4.sys1 == tf4 | |
assert f4.var == p | |
f5 = Feedback(tf5, TransferFunction(1, 1, s)) | |
assert f5.args == (tf5, TransferFunction(1, 1, s), -1) | |
assert f5.var == s | |
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf. | |
f6 = Feedback(TransferFunction(1, 1, p), tf4) | |
assert f6.args == (TransferFunction(1, 1, p), tf4, -1) | |
assert f6.var == p | |
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p)) | |
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1) | |
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6)) | |
# denominator can't be a Parallel instance | |
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3)) | |
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3]))) | |
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1)) | |
raises(TypeError, lambda: Feedback(1, 1)) | |
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s))) | |
raises(ValueError, lambda: Feedback(tf2, tf4*tf5)) | |
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1 | |
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero | |
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var` | |
def test_Feedback_functions(): | |
tf = TransferFunction(1, 1, s) | |
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) | |
tf2 = TransferFunction(k, 1, s) | |
tf3 = TransferFunction(a2*p - s, a2*s + p, s) | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
tf6 = TransferFunction(s - p, p + s, p) | |
assert (tf1*tf2*tf3 / tf3*tf5) == Series(tf1, tf2, tf3, pow(tf3, -1), tf5) | |
assert (tf1*tf2*tf3) / (tf3*tf5) == Series((tf1*tf2*tf3).doit(), pow((tf3*tf5).doit(),-1)) | |
assert tf / (tf + tf1) == Feedback(tf, tf1) | |
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3) | |
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3) | |
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf) | |
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5) | |
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5)) | |
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6) | |
assert tf5 / (tf + tf5) == Feedback(tf5, tf) | |
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3)) | |
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4)) | |
assert Feedback(tf, tf1*tf2*tf3).doit() == \ | |
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \ | |
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \ | |
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) | |
assert Feedback(tf1, tf2*tf3).doit() == \ | |
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \ | |
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Feedback(tf1, tf2*tf3).sensitivity == \ | |
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) | |
assert Feedback(tf1*tf2, tf5).doit() == \ | |
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ | |
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \ | |
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) | |
assert Feedback(tf4, tf6).doit() == \ | |
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) | |
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \ | |
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) | |
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s) | |
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \ | |
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ | |
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) | |
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \ | |
TransferFunction(p, a0*p + p + p**a1 - s, p) | |
def test_Feedback_as_TransferFunction(): | |
# Solves issue https://github.com/sympy/sympy/issues/26161 | |
tf1 = TransferFunction(s+1, 1, s) | |
tf2 = TransferFunction(s+2, 1, s) | |
fd1 = Feedback(tf1, tf2, -1) # Negative Feedback system | |
fd2 = Feedback(tf1, tf2, 1) # Positive Feedback system | |
unit = TransferFunction(1, 1, s) | |
# Checking the type | |
assert isinstance(fd1, TransferFunction) | |
assert isinstance(fd1, Feedback) | |
# Testing the numerator and denominator | |
assert fd1.num == tf1 | |
assert fd2.num == tf1 | |
assert fd1.den == Parallel(unit, Series(tf2, tf1)) | |
assert fd2.den == Parallel(unit, -Series(tf2, tf1)) | |
# Testing the Series and Parallel Combination with Feedback and TransferFunction | |
s1 = Series(tf1, fd1) | |
p1 = Parallel(tf1, fd1) | |
assert tf1 * fd1 == s1 | |
assert tf1 + fd1 == p1 | |
assert s1.doit() == TransferFunction((s + 1)**2, (s + 1)*(s + 2) + 1, s) | |
assert p1.doit() == TransferFunction(s + (s + 1)*((s + 1)*(s + 2) + 1) + 1, (s + 1)*(s + 2) + 1, s) | |
# Testing the use of Feedback and TransferFunction with Feedback | |
fd3 = Feedback(tf1*fd1, tf2, -1) | |
assert fd3 == Feedback(Series(tf1, fd1), tf2) | |
assert fd3.num == tf1 * fd1 | |
assert fd3.den == Parallel(unit, Series(tf2, Series(tf1, fd1))) | |
# Testing the use of Feedback and TransferFunction with TransferFunction | |
tf3 = TransferFunction(tf1*fd1, tf2, s) | |
assert tf3 == TransferFunction(Series(tf1, fd1), tf2, s) | |
assert tf3.num == tf1*fd1 | |
def test_issue_26161(): | |
# Issue https://github.com/sympy/sympy/issues/26161 | |
Ib, Is, m, h, l2, l1 = symbols('I_b, I_s, m, h, l2, l1', | |
real=True, nonnegative=True) | |
KD, KP, v = symbols('K_D, K_P, v', real=True) | |
tau1_sq = (Ib + m * h ** 2) / m / g / h | |
tau2 = l2 / v | |
tau3 = v / (l1 + l2) | |
K = v ** 2 / g / (l1 + l2) | |
Gtheta = TransferFunction(-K * (tau2 * s + 1), tau1_sq * s ** 2 - 1, s) | |
Gdelta = TransferFunction(1, Is * s ** 2 + c * s, s) | |
Gpsi = TransferFunction(1, tau3 * s, s) | |
Dcont = TransferFunction(KD * s, 1, s) | |
PIcont = TransferFunction(KP, s, s) | |
Gunity = TransferFunction(1, 1, s) | |
Ginner = Feedback(Dcont * Gdelta, Gtheta) | |
Gouter = Feedback(PIcont * Ginner * Gpsi, Gunity) | |
assert Gouter == Feedback(Series(PIcont, Series(Ginner, Gpsi)), Gunity) | |
assert Gouter.num == Series(PIcont, Series(Ginner, Gpsi)) | |
assert Gouter.den == Parallel(Gunity, Series(Gunity, Series(PIcont, Series(Ginner, Gpsi)))) | |
expr = (KD*KP*g*s**3*v**2*(l1 + l2)*(Is*s**2 + c*s)**2*(-g*h*m + s**2*(Ib + h**2*m))*(-KD*g*h*m*s*v**2*(l2*s + v) + \ | |
g*v*(l1 + l2)*(Is*s**2 + c*s)*(-g*h*m + s**2*(Ib + h**2*m))))/((s**2*v*(Is*s**2 + c*s)*(-KD*g*h*m*s*v**2* \ | |
(l2*s + v) + g*v*(l1 + l2)*(Is*s**2 + c*s)*(-g*h*m + s**2*(Ib + h**2*m)))*(KD*KP*g*s*v*(l1 + l2)**2* \ | |
(Is*s**2 + c*s)*(-g*h*m + s**2*(Ib + h**2*m)) + s**2*v*(Is*s**2 + c*s)*(-KD*g*h*m*s*v**2*(l2*s + v) + \ | |
g*v*(l1 + l2)*(Is*s**2 + c*s)*(-g*h*m + s**2*(Ib + h**2*m))))/(l1 + l2))) | |
assert (Gouter.to_expr() - expr).simplify() == 0 | |
def test_MIMOFeedback_construction(): | |
tf1 = TransferFunction(1, s, s) | |
tf2 = TransferFunction(s, s**3 - 1, s) | |
tf3 = TransferFunction(s, s + 1, s) | |
tf4 = TransferFunction(s, s**2 + 1, s) | |
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) | |
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) | |
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]]) | |
f1 = MIMOFeedback(tfm_1, tfm_2) | |
assert f1.args == (tfm_1, tfm_2, -1) | |
assert f1.sys1 == tfm_1 | |
assert f1.sys2 == tfm_2 | |
assert f1.var == s | |
assert f1.sign == -1 | |
assert -(-f1) == f1 | |
f2 = MIMOFeedback(tfm_2, tfm_1, 1) | |
assert f2.args == (tfm_2, tfm_1, 1) | |
assert f2.sys1 == tfm_2 | |
assert f2.sys2 == tfm_1 | |
assert f2.var == s | |
assert f2.sign == 1 | |
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2)) | |
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1) | |
assert f3.sys1 == tfm_1 | |
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2) | |
assert f3.var == s | |
assert f3.sign == -1 | |
mat = Matrix([[1, 1/s], [0, 1]]) | |
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s) | |
f4 = MIMOFeedback(sys1, controller) | |
assert f4.args == (sys1, controller, -1) | |
assert f4.sys1 == f4.sys2 == sys1 | |
def test_MIMOFeedback_errors(): | |
tf1 = TransferFunction(1, s, s) | |
tf2 = TransferFunction(s, s**3 - 1, s) | |
tf3 = TransferFunction(s, s - 1, s) | |
tf4 = TransferFunction(s, s**2 + 1, s) | |
tf5 = TransferFunction(1, 1, s) | |
tf6 = TransferFunction(-1, s - 1, s) | |
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) | |
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) | |
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) | |
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]]) | |
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]]) | |
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I | |
tfm_6 = TransferFunctionMatrix([[-tf3]]) | |
tfm_7 = TransferFunctionMatrix([[tf3, tf4]]) | |
# Unsupported Types | |
raises(TypeError, lambda: MIMOFeedback(tf1, tf2)) | |
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3)) | |
# Shape Errors | |
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1)) | |
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7)) | |
# sign not 1/-1 | |
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2)) | |
# Non-Invertible Systems | |
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1)) | |
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5)) | |
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1)) | |
# Variable not same in both the systems | |
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p) | |
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1)) | |
def test_MIMOFeedback_functions(): | |
tf1 = TransferFunction(1, s, s) | |
tf2 = TransferFunction(s, s - 1, s) | |
tf3 = TransferFunction(1, 1, s) | |
tf4 = TransferFunction(-1, s - 1, s) | |
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) | |
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]]) | |
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]]) | |
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]]) | |
# sensitivity, doit(), rewrite() | |
F_1 = MIMOFeedback(tfm_2, tfm_3) | |
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1) | |
assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]]) | |
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1), | |
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]]) | |
assert F_1.doit() == \ | |
TransferFunctionMatrix(((TransferFunction(1, 2*s, s), | |
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s), | |
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix) | |
assert F_2.doit(cancel=False, expand=True) == \ | |
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s), | |
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) | |
assert F_2.doit(cancel=False) == \ | |
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \ | |
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), | |
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) | |
assert F_2.doit() == \ | |
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s), | |
TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s)))) | |
assert F_2.doit(expand=True) == \ | |
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), | |
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) | |
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating. | |
def test_TransferFunctionMatrix_construction(): | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
tf4 = TransferFunction(a0*p + p**a1 - s, p, p) | |
tfm3_ = TransferFunctionMatrix([[-TF3]]) | |
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1) | |
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3))) | |
assert tfm3_.var == s | |
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]]) | |
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2) | |
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5))) | |
assert tfm5.var == s | |
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]]) | |
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2) | |
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2))) | |
assert tfm7.var == s | |
# all transfer functions will use the same complex variable. tf4 uses 'p'. | |
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]])) | |
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]])) | |
# length of all the lists in the TFM should be equal. | |
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]])) | |
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]])) | |
# lists should only support transfer functions in them. | |
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]])) | |
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]])) | |
# `arg` should strictly be nested list of TransferFunction | |
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5])) | |
raises(ValueError, lambda: TransferFunctionMatrix([TF1])) | |
def test_TransferFunctionMatrix_functions(): | |
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) | |
# Classmethod (from_matrix) | |
mat_1 = ImmutableMatrix([ | |
[s*(s + 1)*(s - 3)/(s**4 + 1), 2], | |
[p, p*(s + 1)/(s*(s**1 + 1))] | |
]) | |
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]]) | |
mat_3 = ImmutableMatrix([[1, 2], [3, 4]]) | |
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \ | |
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], | |
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]]) | |
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \ | |
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]]) | |
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \ | |
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)], | |
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]]) | |
# Negating a TFM | |
tfm1 = TransferFunctionMatrix([[TF1], [TF2]]) | |
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]]) | |
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]]) | |
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]]) | |
# subs() | |
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s) | |
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]]) | |
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) | |
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) | |
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var` | |
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]]) | |
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]]) | |
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]]) | |
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]]) | |
# eval_frequency() | |
assert H_2.eval_frequency(S(1)/2 + I) == Matrix([[2*a*p/(5*k) - 4*I*a*p/(5*k), I*p/(-a*k - 3*k/4 + I*k) + p/(-2*a*k - 3*k/2 + 2*I*k)]]) | |
# transpose() | |
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]]) | |
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]]) | |
assert H_1.transpose().transpose() == H_1 | |
assert H_2.transpose().transpose() == H_2 | |
# elem_poles() | |
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []], | |
[[], [0]]] | |
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]] | |
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]], | |
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]] | |
# elem_zeros() | |
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]] | |
assert H_2.elem_zeros() == [[[0], [0]]] | |
assert tfm2.elem_zeros() == [[[], [], [a2*p]], | |
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]] | |
# doit() | |
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]]) | |
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]]) | |
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]]) | |
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]]) | |
# _flat() | |
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)] | |
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)] | |
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))] | |
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))] | |
# evalf() | |
assert H_1.evalf() == \ | |
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s)))) | |
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \ | |
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s), | |
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),)) | |
# simplify() | |
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s), | |
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]]) | |
assert H_5.simplify() == simplify(H_5) == \ | |
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),)) | |
# expand() | |
assert (H_1.expand() | |
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)), | |
(TransferFunction(p, 1, s), TransferFunction(p, s, s))))) | |
assert H_5.expand() == \ | |
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),)) | |
def test_TransferFunction_gbt(): | |
# simple transfer function, e.g. ohms law | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = gbt(tf, T, 0.5) | |
# discretized transfer function with coefs from tf.gbt() | |
tf_test_bilinear = TransferFunction(s * numZ[0] + numZ[1], s * denZ[0] + denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(s * T/(2*(a + b*T/2)) + T/(2*(a + b*T/2)), s + (-a + b*T/2)/(a + b*T/2), s) | |
assert S.Zero == (tf_test_bilinear.simplify()-tf_test_manual.simplify()).simplify().num | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = gbt(tf, T, 0) | |
# discretized transfer function with coefs from tf.gbt() | |
tf_test_forward = TransferFunction(numZ[0], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(T/a, s + (-a + b*T)/a, s) | |
assert S.Zero == (tf_test_forward.simplify()-tf_test_manual.simplify()).simplify().num | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = gbt(tf, T, 1) | |
# discretized transfer function with coefs from tf.gbt() | |
tf_test_backward = TransferFunction(s*numZ[0], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(s * T/(a + b*T), s - a/(a + b*T), s) | |
assert S.Zero == (tf_test_backward.simplify()-tf_test_manual.simplify()).simplify().num | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = gbt(tf, T, 0.3) | |
# discretized transfer function with coefs from tf.gbt() | |
tf_test_gbt = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(s*3*T/(10*(a + 3*b*T/10)) + 7*T/(10*(a + 3*b*T/10)), s + (-a + 7*b*T/10)/(a + 3*b*T/10), s) | |
assert S.Zero == (tf_test_gbt.simplify()-tf_test_manual.simplify()).simplify().num | |
def test_TransferFunction_bilinear(): | |
# simple transfer function, e.g. ohms law | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = bilinear(tf, T) | |
# discretized transfer function with coefs from tf.bilinear() | |
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(s * T/(2*(a + b*T/2)) + T/(2*(a + b*T/2)), s + (-a + b*T/2)/(a + b*T/2), s) | |
assert S.Zero == (tf_test_bilinear.simplify()-tf_test_manual.simplify()).simplify().num | |
def test_TransferFunction_forward_diff(): | |
# simple transfer function, e.g. ohms law | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = forward_diff(tf, T) | |
# discretized transfer function with coefs from tf.forward_diff() | |
tf_test_forward = TransferFunction(numZ[0], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(T/a, s + (-a + b*T)/a, s) | |
assert S.Zero == (tf_test_forward.simplify()-tf_test_manual.simplify()).simplify().num | |
def test_TransferFunction_backward_diff(): | |
# simple transfer function, e.g. ohms law | |
tf = TransferFunction(1, a*s+b, s) | |
numZ, denZ = backward_diff(tf, T) | |
# discretized transfer function with coefs from tf.backward_diff() | |
tf_test_backward = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s) | |
# corresponding tf with manually calculated coefs | |
tf_test_manual = TransferFunction(s * T/(a + b*T), s - a/(a + b*T), s) | |
assert S.Zero == (tf_test_backward.simplify()-tf_test_manual.simplify()).simplify().num | |
def test_TransferFunction_phase_margin(): | |
# Test for phase margin | |
tf1 = TransferFunction(10, p**3 + 1, p) | |
tf2 = TransferFunction(s**2, 10, s) | |
tf3 = TransferFunction(1, a*s+b, s) | |
tf4 = TransferFunction((s + 1)*exp(s/tau), s**2 + 2, s) | |
tf_m = TransferFunctionMatrix([[tf2],[tf3]]) | |
assert phase_margin(tf1) == -180 + 180*atan(3*sqrt(11))/pi | |
assert phase_margin(tf2) == 0 | |
raises(NotImplementedError, lambda: phase_margin(tf4)) | |
raises(ValueError, lambda: phase_margin(tf3)) | |
raises(ValueError, lambda: phase_margin(MIMOSeries(tf_m))) | |
def test_TransferFunction_gain_margin(): | |
# Test for gain margin | |
tf1 = TransferFunction(s**2, 5*(s+1)*(s-5)*(s-10), s) | |
tf2 = TransferFunction(s**2 + 2*s + 1, 1, s) | |
tf3 = TransferFunction(1, a*s+b, s) | |
tf4 = TransferFunction((s + 1)*exp(s/tau), s**2 + 2, s) | |
tf_m = TransferFunctionMatrix([[tf2],[tf3]]) | |
assert gain_margin(tf1) == -20*log(S(7)/540)/log(10) | |
assert gain_margin(tf2) == oo | |
raises(NotImplementedError, lambda: gain_margin(tf4)) | |
raises(ValueError, lambda: gain_margin(tf3)) | |
raises(ValueError, lambda: gain_margin(MIMOSeries(tf_m))) | |
def test_StateSpace_construction(): | |
# using different numbers for a SISO system. | |
A1 = Matrix([[0, 1], [1, 0]]) | |
B1 = Matrix([1, 0]) | |
C1 = Matrix([[0, 1]]) | |
D1 = Matrix([0]) | |
ss1 = StateSpace(A1, B1, C1, D1) | |
assert ss1.state_matrix == Matrix([[0, 1], [1, 0]]) | |
assert ss1.input_matrix == Matrix([1, 0]) | |
assert ss1.output_matrix == Matrix([[0, 1]]) | |
assert ss1.feedforward_matrix == Matrix([0]) | |
assert ss1.args == (Matrix([[0, 1], [1, 0]]), Matrix([[1], [0]]), Matrix([[0, 1]]), Matrix([[0]])) | |
# using different symbols for a SISO system. | |
ss2 = StateSpace(Matrix([a0]), Matrix([a1]), | |
Matrix([a2]), Matrix([a3])) | |
assert ss2.state_matrix == Matrix([[a0]]) | |
assert ss2.input_matrix == Matrix([[a1]]) | |
assert ss2.output_matrix == Matrix([[a2]]) | |
assert ss2.feedforward_matrix == Matrix([[a3]]) | |
assert ss2.args == (Matrix([[a0]]), Matrix([[a1]]), Matrix([[a2]]), Matrix([[a3]])) | |
# using different numbers for a MIMO system. | |
ss3 = StateSpace(Matrix([[-1.5, -2], [1, 0]]), | |
Matrix([[0.5, 0], [0, 1]]), | |
Matrix([[0, 1], [0, 2]]), | |
Matrix([[2, 2], [1, 1]])) | |
assert ss3.state_matrix == Matrix([[-1.5, -2], [1, 0]]) | |
assert ss3.input_matrix == Matrix([[0.5, 0], [0, 1]]) | |
assert ss3.output_matrix == Matrix([[0, 1], [0, 2]]) | |
assert ss3.feedforward_matrix == Matrix([[2, 2], [1, 1]]) | |
assert ss3.args == (Matrix([[-1.5, -2], | |
[1, 0]]), | |
Matrix([[0.5, 0], | |
[0, 1]]), | |
Matrix([[0, 1], | |
[0, 2]]), | |
Matrix([[2, 2], | |
[1, 1]])) | |
# using different symbols for a MIMO system. | |
A4 = Matrix([[a0, a1], [a2, a3]]) | |
B4 = Matrix([[b0, b1], [b2, b3]]) | |
C4 = Matrix([[c0, c1], [c2, c3]]) | |
D4 = Matrix([[d0, d1], [d2, d3]]) | |
ss4 = StateSpace(A4, B4, C4, D4) | |
assert ss4.state_matrix == Matrix([[a0, a1], [a2, a3]]) | |
assert ss4.input_matrix == Matrix([[b0, b1], [b2, b3]]) | |
assert ss4.output_matrix == Matrix([[c0, c1], [c2, c3]]) | |
assert ss4.feedforward_matrix == Matrix([[d0, d1], [d2, d3]]) | |
assert ss4.args == (Matrix([[a0, a1], | |
[a2, a3]]), | |
Matrix([[b0, b1], | |
[b2, b3]]), | |
Matrix([[c0, c1], | |
[c2, c3]]), | |
Matrix([[d0, d1], | |
[d2, d3]])) | |
# using less matrices. Rest will be filled with a minimum of zeros. | |
ss5 = StateSpace() | |
assert ss5.args == (Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[0]])) | |
A6 = Matrix([[0, 1], [1, 0]]) | |
B6 = Matrix([1, 1]) | |
ss6 = StateSpace(A6, B6) | |
assert ss6.state_matrix == Matrix([[0, 1], [1, 0]]) | |
assert ss6.input_matrix == Matrix([1, 1]) | |
assert ss6.output_matrix == Matrix([[0, 0]]) | |
assert ss6.feedforward_matrix == Matrix([[0]]) | |
assert ss6.args == (Matrix([[0, 1], | |
[1, 0]]), | |
Matrix([[1], | |
[1]]), | |
Matrix([[0, 0]]), | |
Matrix([[0]])) | |
# Check if the system is SISO or MIMO. | |
# If system is not SISO, then it is definitely MIMO. | |
assert ss1.is_SISO == True | |
assert ss2.is_SISO == True | |
assert ss3.is_SISO == False | |
assert ss4.is_SISO == False | |
assert ss5.is_SISO == True | |
assert ss6.is_SISO == True | |
# ShapeError if matrices do not fit. | |
raises(ShapeError, lambda: StateSpace(Matrix([s, (s+1)**2]), Matrix([s+1]), | |
Matrix([s**2 - 1]), Matrix([2*s]))) | |
raises(ShapeError, lambda: StateSpace(Matrix([s]), Matrix([s+1, s**3 + 1]), | |
Matrix([s**2 - 1]), Matrix([2*s]))) | |
raises(ShapeError, lambda: StateSpace(Matrix([s]), Matrix([s+1]), | |
Matrix([[s**2 - 1], [s**2 + 2*s + 1]]), Matrix([2*s]))) | |
raises(ShapeError, lambda: StateSpace(Matrix([[-s, -s], [s, 0]]), | |
Matrix([[s/2, 0], [0, s]]), | |
Matrix([[0, s]]), | |
Matrix([[2*s, 2*s], [s, s]]))) | |
# TypeError if arguments are not sympy matrices. | |
raises(TypeError, lambda: StateSpace(s**2, s+1, 2*s, 1)) | |
raises(TypeError, lambda: StateSpace(Matrix([2, 0.5]), Matrix([-1]), | |
Matrix([1]), 0)) | |
def test_StateSpace_add(): | |
A1 = Matrix([[4, 1],[2, -3]]) | |
B1 = Matrix([[5, 2],[-3, -3]]) | |
C1 = Matrix([[2, -4],[0, 1]]) | |
D1 = Matrix([[3, 2],[1, -1]]) | |
ss1 = StateSpace(A1, B1, C1, D1) | |
A2 = Matrix([[-3, 4, 2],[-1, -3, 0],[2, 5, 3]]) | |
B2 = Matrix([[1, 4],[-3, -3],[-2, 1]]) | |
C2 = Matrix([[4, 2, -3],[1, 4, 3]]) | |
D2 = Matrix([[-2, 4],[0, 1]]) | |
ss2 = StateSpace(A2, B2, C2, D2) | |
ss3 = StateSpace() | |
ss4 = StateSpace(Matrix([1]), Matrix([2]), Matrix([3]), Matrix([4])) | |
expected_add = \ | |
StateSpace( | |
Matrix([ | |
[4, 1, 0, 0, 0], | |
[2, -3, 0, 0, 0], | |
[0, 0, -3, 4, 2], | |
[0, 0, -1, -3, 0], | |
[0, 0, 2, 5, 3]]), | |
Matrix([ | |
[ 5, 2], | |
[-3, -3], | |
[ 1, 4], | |
[-3, -3], | |
[-2, 1]]), | |
Matrix([ | |
[2, -4, 4, 2, -3], | |
[0, 1, 1, 4, 3]]), | |
Matrix([ | |
[1, 6], | |
[1, 0]])) | |
expected_mul = \ | |
StateSpace( | |
Matrix([ | |
[ -3, 4, 2, 0, 0], | |
[ -1, -3, 0, 0, 0], | |
[ 2, 5, 3, 0, 0], | |
[ 22, 18, -9, 4, 1], | |
[-15, -18, 0, 2, -3]]), | |
Matrix([ | |
[ 1, 4], | |
[ -3, -3], | |
[ -2, 1], | |
[-10, 22], | |
[ 6, -15]]), | |
Matrix([ | |
[14, 14, -3, 2, -4], | |
[ 3, -2, -6, 0, 1]]), | |
Matrix([ | |
[-6, 14], | |
[-2, 3]])) | |
assert ss1 + ss2 == expected_add | |
assert ss1*ss2 == expected_mul | |
assert ss3 + 1/2 == StateSpace(Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[0.5]])) | |
assert ss4*1.5 == StateSpace(Matrix([[1]]), Matrix([[2]]), Matrix([[4.5]]), Matrix([[6.0]])) | |
assert 1.5*ss4 == StateSpace(Matrix([[1]]), Matrix([[3.0]]), Matrix([[3]]), Matrix([[6.0]])) | |
raises(ShapeError, lambda: ss1 + ss3) | |
raises(ShapeError, lambda: ss2*ss4) | |
def test_StateSpace_negation(): | |
A = Matrix([[a0, a1], [a2, a3]]) | |
B = Matrix([[b0, b1], [b2, b3]]) | |
C = Matrix([[c0, c1], [c1, c2], [c2, c3]]) | |
D = Matrix([[d0, d1], [d1, d2], [d2, d3]]) | |
SS = StateSpace(A, B, C, D) | |
SS_neg = -SS | |
state_mat = Matrix([[-1, 1], [1, -1]]) | |
input_mat = Matrix([1, -1]) | |
output_mat = Matrix([[-1, 1]]) | |
feedforward_mat = Matrix([1]) | |
system = StateSpace(state_mat, input_mat, output_mat, feedforward_mat) | |
assert SS_neg == \ | |
StateSpace(Matrix([[a0, a1], | |
[a2, a3]]), | |
Matrix([[b0, b1], | |
[b2, b3]]), | |
Matrix([[-c0, -c1], | |
[-c1, -c2], | |
[-c2, -c3]]), | |
Matrix([[-d0, -d1], | |
[-d1, -d2], | |
[-d2, -d3]])) | |
assert -system == \ | |
StateSpace(Matrix([[-1, 1], | |
[ 1, -1]]), | |
Matrix([[ 1],[-1]]), | |
Matrix([[1, -1]]), | |
Matrix([[-1]])) | |
assert -SS_neg == SS | |
assert -(-(-(-system))) == system | |
def test_SymPy_substitution_functions(): | |
# subs | |
ss1 = StateSpace(Matrix([s]), Matrix([(s + 1)**2]), Matrix([s**2 - 1]), Matrix([2*s])) | |
ss2 = StateSpace(Matrix([s + p]), Matrix([(s + 1)*(p - 1)]), Matrix([p**3 - s**3]), Matrix([s - p])) | |
assert ss1.subs({s:5}) == StateSpace(Matrix([[5]]), Matrix([[36]]), Matrix([[24]]), Matrix([[10]])) | |
assert ss2.subs({p:1}) == StateSpace(Matrix([[s + 1]]), Matrix([[0]]), Matrix([[1 - s**3]]), Matrix([[s - 1]])) | |
# xreplace | |
assert ss1.xreplace({s:p}) == \ | |
StateSpace(Matrix([[p]]), Matrix([[(p + 1)**2]]), Matrix([[p**2 - 1]]), Matrix([[2*p]])) | |
assert ss2.xreplace({s:a, p:b}) == \ | |
StateSpace(Matrix([[a + b]]), Matrix([[(a + 1)*(b - 1)]]), Matrix([[-a**3 + b**3]]), Matrix([[a - b]])) | |
# evalf | |
p1 = a1*s + a0 | |
p2 = b2*s**2 + b1*s + b0 | |
G = StateSpace(Matrix([p1]), Matrix([p2])) | |
expect = StateSpace(Matrix([[2*s + 1]]), Matrix([[5*s**2 + 4*s + 3]]), Matrix([[0]]), Matrix([[0]])) | |
expect_ = StateSpace(Matrix([[2.0*s + 1.0]]), Matrix([[5.0*s**2 + 4.0*s + 3.0]]), Matrix([[0]]), Matrix([[0]])) | |
assert G.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect | |
assert G.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect_ | |
assert expect.evalf() == expect_ | |
def test_conversion(): | |
# StateSpace to TransferFunction for SISO | |
A1 = Matrix([[-5, -1], [3, -1]]) | |
B1 = Matrix([2, 5]) | |
C1 = Matrix([[1, 2]]) | |
D1 = Matrix([0]) | |
H1 = StateSpace(A1, B1, C1, D1) | |
tm1 = H1.rewrite(TransferFunction) | |
tm2 = (-H1).rewrite(TransferFunction) | |
tf1 = tm1[0][0] | |
tf2 = tm2[0][0] | |
assert tf1 == TransferFunction(12*s + 59, s**2 + 6*s + 8, s) | |
assert tf2.num == -tf1.num | |
assert tf2.den == tf1.den | |
# StateSpace to TransferFunction for MIMO | |
A2 = Matrix([[-1.5, -2, 3], [1, 0, 1], [2, 1, 1]]) | |
B2 = Matrix([[0.5, 0, 1], [0, 1, 2], [2, 2, 3]]) | |
C2 = Matrix([[0, 1, 0], [0, 2, 1], [1, 0, 2]]) | |
D2 = Matrix([[2, 2, 0], [1, 1, 1], [3, 2, 1]]) | |
H2 = StateSpace(A2, B2, C2, D2) | |
tm3 = H2.rewrite(TransferFunction) | |
# outputs for input i obtained at Index i-1. Consider input 1 | |
assert tm3[0][0] == TransferFunction(2.0*s**3 + 1.0*s**2 - 10.5*s + 4.5, 1.0*s**3 + 0.5*s**2 - 6.5*s - 2.5, s) | |
assert tm3[0][1] == TransferFunction(2.0*s**3 + 2.0*s**2 - 10.5*s - 3.5, 1.0*s**3 + 0.5*s**2 - 6.5*s - 2.5, s) | |
assert tm3[0][2] == TransferFunction(2.0*s**2 + 5.0*s - 0.5, 1.0*s**3 + 0.5*s**2 - 6.5*s - 2.5, s) | |
# TransferFunction to StateSpace | |
SS = TF1.rewrite(StateSpace) | |
assert SS == \ | |
StateSpace(Matrix([[ 0, 1], | |
[-wn**2, -2*wn*zeta]]), | |
Matrix([[0], | |
[1]]), | |
Matrix([[1, 0]]), | |
Matrix([[0]])) | |
assert SS.rewrite(TransferFunction)[0][0] == TF1 | |
# Transfer function has to be proper | |
raises(ValueError, lambda: TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s).rewrite(StateSpace)) | |
def test_StateSpace_functions(): | |
# https://in.mathworks.com/help/control/ref/statespacemodel.obsv.html | |
A_mat = Matrix([[-1.5, -2], [1, 0]]) | |
B_mat = Matrix([0.5, 0]) | |
C_mat = Matrix([[0, 1]]) | |
D_mat = Matrix([1]) | |
SS1 = StateSpace(A_mat, B_mat, C_mat, D_mat) | |
SS2 = StateSpace(Matrix([[1, 1], [4, -2]]),Matrix([[0, 1], [0, 2]]),Matrix([[-1, 1], [1, -1]])) | |
SS3 = StateSpace(Matrix([[1, 1], [4, -2]]),Matrix([[1, -1], [1, -1]])) | |
# Observability | |
assert SS1.is_observable() == True | |
assert SS2.is_observable() == False | |
assert SS1.observability_matrix() == Matrix([[0, 1], [1, 0]]) | |
assert SS2.observability_matrix() == Matrix([[-1, 1], [ 1, -1], [ 3, -3], [-3, 3]]) | |
assert SS1.observable_subspace() == [Matrix([[0], [1]]), Matrix([[1], [0]])] | |
assert SS2.observable_subspace() == [Matrix([[-1], [ 1], [ 3], [-3]])] | |
# Controllability | |
assert SS1.is_controllable() == True | |
assert SS3.is_controllable() == False | |
assert SS1.controllability_matrix() == Matrix([[0.5, -0.75], [ 0, 0.5]]) | |
assert SS3.controllability_matrix() == Matrix([[1, -1, 2, -2], [1, -1, 2, -2]]) | |
assert SS1.controllable_subspace() == [Matrix([[0.5], [ 0]]), Matrix([[-0.75], [ 0.5]])] | |
assert SS3.controllable_subspace() == [Matrix([[1], [1]])] | |
# Append | |
A1 = Matrix([[0, 1], [1, 0]]) | |
B1 = Matrix([[0], [1]]) | |
C1 = Matrix([[0, 1]]) | |
D1 = Matrix([[0]]) | |
ss1 = StateSpace(A1, B1, C1, D1) | |
ss2 = StateSpace(Matrix([[1, 0], [0, 1]]), Matrix([[1], [0]]), Matrix([[1, 0]]), Matrix([[1]])) | |
ss3 = ss1.append(ss2) | |
assert ss3.num_states == ss1.num_states + ss2.num_states | |
assert ss3.num_inputs == ss1.num_inputs + ss2.num_inputs | |
assert ss3.num_outputs == ss1.num_outputs + ss2.num_outputs | |
assert ss3.state_matrix == Matrix([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) | |
assert ss3.input_matrix == Matrix([[0, 0], [1, 0], [0, 1], [0, 0]]) | |
assert ss3.output_matrix == Matrix([[0, 1, 0, 0], [0, 0, 1, 0]]) | |
assert ss3.feedforward_matrix == Matrix([[0, 0], [0, 1]]) | |