Spaces:
Running
Running
# | |
# Code for testing deprecated matrix classes. New test code should not be added | |
# here. Instead, add it to test_matrixbase.py. | |
# | |
# This entire test module and the corresponding sympy/matrices/common.py | |
# module will be removed in a future release. | |
# | |
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy | |
from sympy.assumptions import Q | |
from sympy.core.expr import Expr | |
from sympy.core.add import Add | |
from sympy.core.function import Function | |
from sympy.core.kind import NumberKind, UndefinedKind | |
from sympy.core.numbers import I, Integer, oo, pi, Rational | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol, symbols | |
from sympy.functions.elementary.complexes import Abs | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import cos, sin | |
from sympy.matrices.exceptions import ShapeError, NonSquareMatrixError | |
from sympy.matrices.kind import MatrixKind | |
from sympy.matrices.common import ( | |
_MinimalMatrix, _CastableMatrix, MatrixShaping, MatrixProperties, | |
MatrixOperations, MatrixArithmetic, MatrixSpecial) | |
from sympy.matrices.matrices import MatrixCalculus | |
from sympy.matrices import (Matrix, diag, eye, | |
matrix_multiply_elementwise, ones, zeros, SparseMatrix, banded, | |
MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix, | |
ImmutableSparseMatrix) | |
from sympy.polys.polytools import Poly | |
from sympy.utilities.iterables import flatten | |
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray as Array | |
from sympy.abc import x, y, z | |
def test_matrix_deprecated_isinstance(): | |
# Test that e.g. isinstance(M, MatrixCommon) still gives True when M is a | |
# Matrix for each of the deprecated matrix classes. | |
from sympy.matrices.common import ( | |
MatrixRequired, | |
MatrixShaping, | |
MatrixSpecial, | |
MatrixProperties, | |
MatrixOperations, | |
MatrixArithmetic, | |
MatrixCommon | |
) | |
from sympy.matrices.matrices import ( | |
MatrixDeterminant, | |
MatrixReductions, | |
MatrixSubspaces, | |
MatrixEigen, | |
MatrixCalculus, | |
MatrixDeprecated | |
) | |
from sympy import ( | |
Matrix, | |
ImmutableMatrix, | |
SparseMatrix, | |
ImmutableSparseMatrix | |
) | |
all_mixins = ( | |
MatrixRequired, | |
MatrixShaping, | |
MatrixSpecial, | |
MatrixProperties, | |
MatrixOperations, | |
MatrixArithmetic, | |
MatrixCommon, | |
MatrixDeterminant, | |
MatrixReductions, | |
MatrixSubspaces, | |
MatrixEigen, | |
MatrixCalculus, | |
MatrixDeprecated | |
) | |
all_matrices = ( | |
Matrix, | |
ImmutableMatrix, | |
SparseMatrix, | |
ImmutableSparseMatrix | |
) | |
Ms = [M([[1, 2], [3, 4]]) for M in all_matrices] | |
t = () | |
for mixin in all_mixins: | |
for M in Ms: | |
with warns_deprecated_sympy(): | |
assert isinstance(M, mixin) is True | |
with warns_deprecated_sympy(): | |
assert isinstance(t, mixin) is False | |
# classes to test the deprecated matrix classes. We use warns_deprecated_sympy | |
# to suppress the deprecation warnings because subclassing the deprecated | |
# classes causes a warning to be raised. | |
with warns_deprecated_sympy(): | |
class ShapingOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixShaping): | |
pass | |
def eye_Shaping(n): | |
return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j)) | |
def zeros_Shaping(n): | |
return ShapingOnlyMatrix(n, n, lambda i, j: 0) | |
with warns_deprecated_sympy(): | |
class PropertiesOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixProperties): | |
pass | |
def eye_Properties(n): | |
return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j)) | |
def zeros_Properties(n): | |
return PropertiesOnlyMatrix(n, n, lambda i, j: 0) | |
with warns_deprecated_sympy(): | |
class OperationsOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixOperations): | |
pass | |
def eye_Operations(n): | |
return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j)) | |
def zeros_Operations(n): | |
return OperationsOnlyMatrix(n, n, lambda i, j: 0) | |
with warns_deprecated_sympy(): | |
class ArithmeticOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixArithmetic): | |
pass | |
def eye_Arithmetic(n): | |
return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j)) | |
def zeros_Arithmetic(n): | |
return ArithmeticOnlyMatrix(n, n, lambda i, j: 0) | |
with warns_deprecated_sympy(): | |
class SpecialOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixSpecial): | |
pass | |
with warns_deprecated_sympy(): | |
class CalculusOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixCalculus): | |
pass | |
def test__MinimalMatrix(): | |
x = _MinimalMatrix(2, 3, [1, 2, 3, 4, 5, 6]) | |
assert x.rows == 2 | |
assert x.cols == 3 | |
assert x[2] == 3 | |
assert x[1, 1] == 5 | |
assert list(x) == [1, 2, 3, 4, 5, 6] | |
assert list(x[1, :]) == [4, 5, 6] | |
assert list(x[:, 1]) == [2, 5] | |
assert list(x[:, :]) == list(x) | |
assert x[:, :] == x | |
assert _MinimalMatrix(x) == x | |
assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x | |
assert _MinimalMatrix(([1, 2, 3], [4, 5, 6])) == x | |
assert _MinimalMatrix([(1, 2, 3), (4, 5, 6)]) == x | |
assert _MinimalMatrix(((1, 2, 3), (4, 5, 6))) == x | |
assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x) | |
def test_kind(): | |
assert Matrix([[1, 2], [3, 4]]).kind == MatrixKind(NumberKind) | |
assert Matrix([[0, 0], [0, 0]]).kind == MatrixKind(NumberKind) | |
assert Matrix(0, 0, []).kind == MatrixKind(NumberKind) | |
assert Matrix([[x]]).kind == MatrixKind(NumberKind) | |
assert Matrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind) | |
assert SparseMatrix([[1]]).kind == MatrixKind(NumberKind) | |
assert SparseMatrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind) | |
# ShapingOnlyMatrix tests | |
def test_vec(): | |
m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4]) | |
m_vec = m.vec() | |
assert m_vec.cols == 1 | |
for i in range(4): | |
assert m_vec[i] == i + 1 | |
def test_todok(): | |
a, b, c, d = symbols('a:d') | |
m1 = MutableDenseMatrix([[a, b], [c, d]]) | |
m2 = ImmutableDenseMatrix([[a, b], [c, d]]) | |
m3 = MutableSparseMatrix([[a, b], [c, d]]) | |
m4 = ImmutableSparseMatrix([[a, b], [c, d]]) | |
assert m1.todok() == m2.todok() == m3.todok() == m4.todok() == \ | |
{(0, 0): a, (0, 1): b, (1, 0): c, (1, 1): d} | |
def test_tolist(): | |
lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] | |
flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3] | |
m = ShapingOnlyMatrix(3, 4, flat_lst) | |
assert m.tolist() == lst | |
def test_todod(): | |
m = ShapingOnlyMatrix(3, 2, [[S.One, 0], [0, S.Half], [x, 0]]) | |
dict = {0: {0: S.One}, 1: {1: S.Half}, 2: {0: x}} | |
assert m.todod() == dict | |
def test_row_col_del(): | |
e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) | |
raises(IndexError, lambda: e.row_del(5)) | |
raises(IndexError, lambda: e.row_del(-5)) | |
raises(IndexError, lambda: e.col_del(5)) | |
raises(IndexError, lambda: e.col_del(-5)) | |
assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]]) | |
assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]]) | |
assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]]) | |
assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]]) | |
def test_get_diag_blocks1(): | |
a = Matrix([[1, 2], [2, 3]]) | |
b = Matrix([[3, x], [y, 3]]) | |
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) | |
assert a.get_diag_blocks() == [a] | |
assert b.get_diag_blocks() == [b] | |
assert c.get_diag_blocks() == [c] | |
def test_get_diag_blocks2(): | |
a = Matrix([[1, 2], [2, 3]]) | |
b = Matrix([[3, x], [y, 3]]) | |
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) | |
A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b) | |
A = ShapingOnlyMatrix(A.rows, A.cols, A) | |
B = ShapingOnlyMatrix(B.rows, B.cols, B) | |
C = ShapingOnlyMatrix(C.rows, C.cols, C) | |
D = ShapingOnlyMatrix(D.rows, D.cols, D) | |
assert A.get_diag_blocks() == [a, b, b] | |
assert B.get_diag_blocks() == [a, b, c] | |
assert C.get_diag_blocks() == [a, c, b] | |
assert D.get_diag_blocks() == [c, c, b] | |
def test_shape(): | |
m = ShapingOnlyMatrix(1, 2, [0, 0]) | |
assert m.shape == (1, 2) | |
def test_reshape(): | |
m0 = eye_Shaping(3) | |
assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) | |
m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j) | |
assert m1.reshape( | |
4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) | |
assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) | |
def test_row_col(): | |
m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) | |
assert m.row(0) == Matrix(1, 3, [1, 2, 3]) | |
assert m.col(0) == Matrix(3, 1, [1, 4, 7]) | |
def test_row_join(): | |
assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \ | |
Matrix([[1, 0, 0, 7], | |
[0, 1, 0, 7], | |
[0, 0, 1, 7]]) | |
def test_col_join(): | |
assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \ | |
Matrix([[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1], | |
[7, 7, 7]]) | |
def test_row_insert(): | |
r4 = Matrix([[4, 4, 4]]) | |
for i in range(-4, 5): | |
l = [1, 0, 0] | |
l.insert(i, 4) | |
assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l | |
def test_col_insert(): | |
c4 = Matrix([4, 4, 4]) | |
for i in range(-4, 5): | |
l = [0, 0, 0] | |
l.insert(i, 4) | |
assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l | |
# issue 13643 | |
assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \ | |
Matrix([[1, 0, 0, 2, 2, 0, 0, 0], | |
[0, 1, 0, 2, 2, 0, 0, 0], | |
[0, 0, 1, 2, 2, 0, 0, 0], | |
[0, 0, 0, 2, 2, 1, 0, 0], | |
[0, 0, 0, 2, 2, 0, 1, 0], | |
[0, 0, 0, 2, 2, 0, 0, 1]]) | |
def test_extract(): | |
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) | |
assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) | |
assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) | |
assert m.extract(range(4), range(3)) == m | |
raises(IndexError, lambda: m.extract([4], [0])) | |
raises(IndexError, lambda: m.extract([0], [3])) | |
def test_hstack(): | |
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) | |
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) | |
assert m == m.hstack(m) | |
assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([ | |
[0, 1, 2, 0, 1, 2, 0, 1, 2], | |
[3, 4, 5, 3, 4, 5, 3, 4, 5], | |
[6, 7, 8, 6, 7, 8, 6, 7, 8], | |
[9, 10, 11, 9, 10, 11, 9, 10, 11]]) | |
raises(ShapeError, lambda: m.hstack(m, m2)) | |
assert Matrix.hstack() == Matrix() | |
# test regression #12938 | |
M1 = Matrix.zeros(0, 0) | |
M2 = Matrix.zeros(0, 1) | |
M3 = Matrix.zeros(0, 2) | |
M4 = Matrix.zeros(0, 3) | |
m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4) | |
assert m.rows == 0 and m.cols == 6 | |
def test_vstack(): | |
m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) | |
m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) | |
assert m == m.vstack(m) | |
assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([ | |
[0, 1, 2], | |
[3, 4, 5], | |
[6, 7, 8], | |
[9, 10, 11], | |
[0, 1, 2], | |
[3, 4, 5], | |
[6, 7, 8], | |
[9, 10, 11], | |
[0, 1, 2], | |
[3, 4, 5], | |
[6, 7, 8], | |
[9, 10, 11]]) | |
raises(ShapeError, lambda: m.vstack(m, m2)) | |
assert Matrix.vstack() == Matrix() | |
# PropertiesOnlyMatrix tests | |
def test_atoms(): | |
m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x]) | |
assert m.atoms() == {S.One, S(2), S.NegativeOne, x} | |
assert m.atoms(Symbol) == {x} | |
def test_free_symbols(): | |
assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x} | |
def test_has(): | |
A = PropertiesOnlyMatrix(((x, y), (2, 3))) | |
assert A.has(x) | |
assert not A.has(z) | |
assert A.has(Symbol) | |
A = PropertiesOnlyMatrix(((2, y), (2, 3))) | |
assert not A.has(x) | |
def test_is_anti_symmetric(): | |
x = symbols('x') | |
assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False | |
m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) | |
assert m.is_anti_symmetric() is True | |
assert m.is_anti_symmetric(simplify=False) is False | |
assert m.is_anti_symmetric(simplify=lambda x: x) is False | |
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m]) | |
assert m.is_anti_symmetric(simplify=False) is True | |
m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]]) | |
assert m.is_anti_symmetric() is False | |
def test_diagonal_symmetrical(): | |
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) | |
assert not m.is_diagonal() | |
assert m.is_symmetric() | |
assert m.is_symmetric(simplify=False) | |
m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1]) | |
assert m.is_diagonal() | |
m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3)) | |
assert m.is_diagonal() | |
assert m.is_symmetric() | |
m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) | |
assert m == diag(1, 2, 3) | |
m = PropertiesOnlyMatrix(2, 3, zeros(2, 3)) | |
assert not m.is_symmetric() | |
assert m.is_diagonal() | |
m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0))) | |
assert m.is_diagonal() | |
m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0))) | |
assert m.is_diagonal() | |
m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) | |
assert m.is_symmetric() | |
assert not m.is_symmetric(simplify=False) | |
assert m.expand().is_symmetric(simplify=False) | |
def test_is_hermitian(): | |
a = PropertiesOnlyMatrix([[1, I], [-I, 1]]) | |
assert a.is_hermitian | |
a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]]) | |
assert a.is_hermitian is False | |
a = PropertiesOnlyMatrix([[x, I], [-I, 1]]) | |
assert a.is_hermitian is None | |
a = PropertiesOnlyMatrix([[x, 1], [-I, 1]]) | |
assert a.is_hermitian is False | |
def test_is_Identity(): | |
assert eye_Properties(3).is_Identity | |
assert not PropertiesOnlyMatrix(zeros(3)).is_Identity | |
assert not PropertiesOnlyMatrix(ones(3)).is_Identity | |
# issue 6242 | |
assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity | |
def test_is_symbolic(): | |
a = PropertiesOnlyMatrix([[x, x], [x, x]]) | |
assert a.is_symbolic() is True | |
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]]) | |
assert a.is_symbolic() is False | |
a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]]) | |
assert a.is_symbolic() is True | |
a = PropertiesOnlyMatrix([[1, x, 3]]) | |
assert a.is_symbolic() is True | |
a = PropertiesOnlyMatrix([[1, 2, 3]]) | |
assert a.is_symbolic() is False | |
a = PropertiesOnlyMatrix([[1], [x], [3]]) | |
assert a.is_symbolic() is True | |
a = PropertiesOnlyMatrix([[1], [2], [3]]) | |
assert a.is_symbolic() is False | |
def test_is_upper(): | |
a = PropertiesOnlyMatrix([[1, 2, 3]]) | |
assert a.is_upper is True | |
a = PropertiesOnlyMatrix([[1], [2], [3]]) | |
assert a.is_upper is False | |
def test_is_lower(): | |
a = PropertiesOnlyMatrix([[1, 2, 3]]) | |
assert a.is_lower is False | |
a = PropertiesOnlyMatrix([[1], [2], [3]]) | |
assert a.is_lower is True | |
def test_is_square(): | |
m = PropertiesOnlyMatrix([[1], [1]]) | |
m2 = PropertiesOnlyMatrix([[2, 2], [2, 2]]) | |
assert not m.is_square | |
assert m2.is_square | |
def test_is_symmetric(): | |
m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) | |
assert m.is_symmetric() | |
m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1]) | |
assert not m.is_symmetric() | |
def test_is_hessenberg(): | |
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) | |
assert A.is_upper_hessenberg | |
A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2]) | |
assert A.is_lower_hessenberg | |
A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2]) | |
assert A.is_lower_hessenberg is False | |
assert A.is_upper_hessenberg is False | |
A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) | |
assert not A.is_upper_hessenberg | |
def test_is_zero(): | |
assert PropertiesOnlyMatrix(0, 0, []).is_zero_matrix | |
assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero_matrix | |
assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero_matrix | |
assert not PropertiesOnlyMatrix(eye(3)).is_zero_matrix | |
assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero_matrix == None | |
assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero_matrix == False | |
a = Symbol('a', nonzero=True) | |
assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero_matrix == False | |
def test_values(): | |
assert set(PropertiesOnlyMatrix(2, 2, [0, 1, 2, 3] | |
).values()) == {1, 2, 3} | |
x = Symbol('x', real=True) | |
assert set(PropertiesOnlyMatrix(2, 2, [x, 0, 0, 1] | |
).values()) == {x, 1} | |
# OperationsOnlyMatrix tests | |
def test_applyfunc(): | |
m0 = OperationsOnlyMatrix(eye(3)) | |
assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 | |
assert m0.applyfunc(lambda x: 0) == zeros(3) | |
assert m0.applyfunc(lambda x: 1) == ones(3) | |
def test_adjoint(): | |
dat = [[0, I], [1, 0]] | |
ans = OperationsOnlyMatrix([[0, 1], [-I, 0]]) | |
assert ans.adjoint() == Matrix(dat) | |
def test_as_real_imag(): | |
m1 = OperationsOnlyMatrix(2, 2, [1, 2, 3, 4]) | |
m3 = OperationsOnlyMatrix(2, 2, | |
[1 + S.ImaginaryUnit, 2 + 2*S.ImaginaryUnit, | |
3 + 3*S.ImaginaryUnit, 4 + 4*S.ImaginaryUnit]) | |
a, b = m3.as_real_imag() | |
assert a == m1 | |
assert b == m1 | |
def test_conjugate(): | |
M = OperationsOnlyMatrix([[0, I, 5], | |
[1, 2, 0]]) | |
assert M.T == Matrix([[0, 1], | |
[I, 2], | |
[5, 0]]) | |
assert M.C == Matrix([[0, -I, 5], | |
[1, 2, 0]]) | |
assert M.C == M.conjugate() | |
assert M.H == M.T.C | |
assert M.H == Matrix([[ 0, 1], | |
[-I, 2], | |
[ 5, 0]]) | |
def test_doit(): | |
a = OperationsOnlyMatrix([[Add(x, x, evaluate=False)]]) | |
assert a[0] != 2*x | |
assert a.doit() == Matrix([[2*x]]) | |
def test_evalf(): | |
a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6]) | |
assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) | |
assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) | |
assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) | |
def test_expand(): | |
m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) | |
# Test if expand() returns a matrix | |
m1 = m0.expand() | |
assert m1 == Matrix( | |
[[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) | |
a = Symbol('a', real=True) | |
assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \ | |
Matrix([cos(a) + I*sin(a)]) | |
def test_refine(): | |
m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)], | |
[sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) | |
m1 = m0.refine(Q.real(x) & Q.real(y)) | |
assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) | |
m1 = m0.refine(Q.positive(x) & Q.positive(y)) | |
assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) | |
m1 = m0.refine(Q.negative(x) & Q.negative(y)) | |
assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) | |
def test_replace(): | |
F, G = symbols('F, G', cls=Function) | |
K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j)) | |
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) | |
N = M.replace(F, G) | |
assert N == K | |
def test_replace_map(): | |
F, G = symbols('F, G', cls=Function) | |
K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \ | |
: G(1)}), (G(2), {F(2): G(2)})]) | |
M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) | |
N = M.replace(F, G, True) | |
assert N == K | |
def test_rot90(): | |
A = Matrix([[1, 2], [3, 4]]) | |
assert A == A.rot90(0) == A.rot90(4) | |
assert A.rot90(2) == A.rot90(-2) == A.rot90(6) == Matrix(((4, 3), (2, 1))) | |
assert A.rot90(3) == A.rot90(-1) == A.rot90(7) == Matrix(((2, 4), (1, 3))) | |
assert A.rot90() == A.rot90(-7) == A.rot90(-3) == Matrix(((3, 1), (4, 2))) | |
def test_simplify(): | |
n = Symbol('n') | |
f = Function('f') | |
M = OperationsOnlyMatrix([[ 1/x + 1/y, (x + x*y) / x ], | |
[ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) | |
assert M.simplify() == Matrix([[ (x + y)/(x * y), 1 + y ], | |
[ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) | |
eq = (1 + x)**2 | |
M = OperationsOnlyMatrix([[eq]]) | |
assert M.simplify() == Matrix([[eq]]) | |
assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]]) | |
# https://github.com/sympy/sympy/issues/19353 | |
m = Matrix([[30, 2], [3, 4]]) | |
assert (1/(m.trace())).simplify() == Rational(1, 34) | |
def test_subs(): | |
assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) | |
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ | |
Matrix([[-1, 2], [-3, 4]]) | |
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ | |
Matrix([[-1, 2], [-3, 4]]) | |
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ | |
Matrix([[-1, 2], [-3, 4]]) | |
assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ | |
Matrix([[(x - 1)*(y - 1)]]) | |
def test_trace(): | |
M = OperationsOnlyMatrix([[1, 0, 0], | |
[0, 5, 0], | |
[0, 0, 8]]) | |
assert M.trace() == 14 | |
def test_xreplace(): | |
assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ | |
Matrix([[1, 5], [5, 4]]) | |
assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ | |
Matrix([[-1, 2], [-3, 4]]) | |
def test_permute(): | |
a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) | |
raises(IndexError, lambda: a.permute([[0, 5]])) | |
raises(ValueError, lambda: a.permute(Symbol('x'))) | |
b = a.permute_rows([[0, 2], [0, 1]]) | |
assert a.permute([[0, 2], [0, 1]]) == b == Matrix([ | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[1, 2, 3, 4]]) | |
b = a.permute_cols([[0, 2], [0, 1]]) | |
assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\ | |
Matrix([ | |
[ 2, 3, 1, 4], | |
[ 6, 7, 5, 8], | |
[10, 11, 9, 12]]) | |
b = a.permute_cols([[0, 2], [0, 1]], direction='backward') | |
assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\ | |
Matrix([ | |
[ 3, 1, 2, 4], | |
[ 7, 5, 6, 8], | |
[11, 9, 10, 12]]) | |
assert a.permute([1, 2, 0, 3]) == Matrix([ | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[1, 2, 3, 4]]) | |
from sympy.combinatorics import Permutation | |
assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([ | |
[5, 6, 7, 8], | |
[9, 10, 11, 12], | |
[1, 2, 3, 4]]) | |
def test_upper_triangular(): | |
A = OperationsOnlyMatrix([ | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1] | |
]) | |
R = A.upper_triangular(2) | |
assert R == OperationsOnlyMatrix([ | |
[0, 0, 1, 1], | |
[0, 0, 0, 1], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0] | |
]) | |
R = A.upper_triangular(-2) | |
assert R == OperationsOnlyMatrix([ | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[0, 1, 1, 1] | |
]) | |
R = A.upper_triangular() | |
assert R == OperationsOnlyMatrix([ | |
[1, 1, 1, 1], | |
[0, 1, 1, 1], | |
[0, 0, 1, 1], | |
[0, 0, 0, 1] | |
]) | |
def test_lower_triangular(): | |
A = OperationsOnlyMatrix([ | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1] | |
]) | |
L = A.lower_triangular() | |
assert L == ArithmeticOnlyMatrix([ | |
[1, 0, 0, 0], | |
[1, 1, 0, 0], | |
[1, 1, 1, 0], | |
[1, 1, 1, 1]]) | |
L = A.lower_triangular(2) | |
assert L == ArithmeticOnlyMatrix([ | |
[1, 1, 1, 0], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1] | |
]) | |
L = A.lower_triangular(-2) | |
assert L == ArithmeticOnlyMatrix([ | |
[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[1, 0, 0, 0], | |
[1, 1, 0, 0] | |
]) | |
# ArithmeticOnlyMatrix tests | |
def test_abs(): | |
m = ArithmeticOnlyMatrix([[1, -2], [x, y]]) | |
assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]]) | |
def test_add(): | |
m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) | |
assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) | |
n = ArithmeticOnlyMatrix(1, 2, [1, 2]) | |
raises(ShapeError, lambda: m + n) | |
def test_multiplication(): | |
a = ArithmeticOnlyMatrix(( | |
(1, 2), | |
(3, 1), | |
(0, 6), | |
)) | |
b = ArithmeticOnlyMatrix(( | |
(1, 2), | |
(3, 0), | |
)) | |
raises(ShapeError, lambda: b*a) | |
raises(TypeError, lambda: a*{}) | |
c = a*b | |
assert c[0, 0] == 7 | |
assert c[0, 1] == 2 | |
assert c[1, 0] == 6 | |
assert c[1, 1] == 6 | |
assert c[2, 0] == 18 | |
assert c[2, 1] == 0 | |
try: | |
eval('c = a @ b') | |
except SyntaxError: | |
pass | |
else: | |
assert c[0, 0] == 7 | |
assert c[0, 1] == 2 | |
assert c[1, 0] == 6 | |
assert c[1, 1] == 6 | |
assert c[2, 0] == 18 | |
assert c[2, 1] == 0 | |
h = a.multiply_elementwise(c) | |
assert h == matrix_multiply_elementwise(a, c) | |
assert h[0, 0] == 7 | |
assert h[0, 1] == 4 | |
assert h[1, 0] == 18 | |
assert h[1, 1] == 6 | |
assert h[2, 0] == 0 | |
assert h[2, 1] == 0 | |
raises(ShapeError, lambda: a.multiply_elementwise(b)) | |
c = b * Symbol("x") | |
assert isinstance(c, ArithmeticOnlyMatrix) | |
assert c[0, 0] == x | |
assert c[0, 1] == 2*x | |
assert c[1, 0] == 3*x | |
assert c[1, 1] == 0 | |
c2 = x * b | |
assert c == c2 | |
c = 5 * b | |
assert isinstance(c, ArithmeticOnlyMatrix) | |
assert c[0, 0] == 5 | |
assert c[0, 1] == 2*5 | |
assert c[1, 0] == 3*5 | |
assert c[1, 1] == 0 | |
try: | |
eval('c = 5 @ b') | |
except SyntaxError: | |
pass | |
else: | |
assert isinstance(c, ArithmeticOnlyMatrix) | |
assert c[0, 0] == 5 | |
assert c[0, 1] == 2*5 | |
assert c[1, 0] == 3*5 | |
assert c[1, 1] == 0 | |
# https://github.com/sympy/sympy/issues/22353 | |
A = Matrix(ones(3, 1)) | |
_h = -Rational(1, 2) | |
B = Matrix([_h, _h, _h]) | |
assert A.multiply_elementwise(B) == Matrix([ | |
[_h], | |
[_h], | |
[_h]]) | |
def test_matmul(): | |
a = Matrix([[1, 2], [3, 4]]) | |
assert a.__matmul__(2) == NotImplemented | |
assert a.__rmatmul__(2) == NotImplemented | |
#This is done this way because @ is only supported in Python 3.5+ | |
#To check 2@a case | |
try: | |
eval('2 @ a') | |
except SyntaxError: | |
pass | |
except TypeError: #TypeError is raised in case of NotImplemented is returned | |
pass | |
#Check a@2 case | |
try: | |
eval('a @ 2') | |
except SyntaxError: | |
pass | |
except TypeError: #TypeError is raised in case of NotImplemented is returned | |
pass | |
def test_non_matmul(): | |
""" | |
Test that if explicitly specified as non-matrix, mul reverts | |
to scalar multiplication. | |
""" | |
class foo(Expr): | |
is_Matrix=False | |
is_MatrixLike=False | |
shape = (1, 1) | |
A = Matrix([[1, 2], [3, 4]]) | |
b = foo() | |
assert b*A == Matrix([[b, 2*b], [3*b, 4*b]]) | |
assert A*b == Matrix([[b, 2*b], [3*b, 4*b]]) | |
def test_power(): | |
raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) | |
A = ArithmeticOnlyMatrix([[2, 3], [4, 5]]) | |
assert (A**5)[:] == (6140, 8097, 10796, 14237) | |
A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) | |
assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433) | |
assert A**0 == eye(3) | |
assert A**1 == A | |
assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100 | |
assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]]) | |
A = Matrix([[1,2],[4,5]]) | |
assert A.pow(20, method='cayley') == A.pow(20, method='multiply') | |
def test_neg(): | |
n = ArithmeticOnlyMatrix(1, 2, [1, 2]) | |
assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2]) | |
def test_sub(): | |
n = ArithmeticOnlyMatrix(1, 2, [1, 2]) | |
assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0]) | |
def test_div(): | |
n = ArithmeticOnlyMatrix(1, 2, [1, 2]) | |
assert n/2 == ArithmeticOnlyMatrix(1, 2, [S.Half, S(2)/2]) | |
# SpecialOnlyMatrix tests | |
def test_eye(): | |
assert list(SpecialOnlyMatrix.eye(2, 2)) == [1, 0, 0, 1] | |
assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1] | |
assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix | |
assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix | |
def test_ones(): | |
assert list(SpecialOnlyMatrix.ones(2, 2)) == [1, 1, 1, 1] | |
assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1] | |
assert SpecialOnlyMatrix.ones(2, 3) == Matrix([[1, 1, 1], [1, 1, 1]]) | |
assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix | |
assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix | |
def test_zeros(): | |
assert list(SpecialOnlyMatrix.zeros(2, 2)) == [0, 0, 0, 0] | |
assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0] | |
assert SpecialOnlyMatrix.zeros(2, 3) == Matrix([[0, 0, 0], [0, 0, 0]]) | |
assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix | |
assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix | |
def test_diag_make(): | |
diag = SpecialOnlyMatrix.diag | |
a = Matrix([[1, 2], [2, 3]]) | |
b = Matrix([[3, x], [y, 3]]) | |
c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) | |
assert diag(a, b, b) == Matrix([ | |
[1, 2, 0, 0, 0, 0], | |
[2, 3, 0, 0, 0, 0], | |
[0, 0, 3, x, 0, 0], | |
[0, 0, y, 3, 0, 0], | |
[0, 0, 0, 0, 3, x], | |
[0, 0, 0, 0, y, 3], | |
]) | |
assert diag(a, b, c) == Matrix([ | |
[1, 2, 0, 0, 0, 0, 0], | |
[2, 3, 0, 0, 0, 0, 0], | |
[0, 0, 3, x, 0, 0, 0], | |
[0, 0, y, 3, 0, 0, 0], | |
[0, 0, 0, 0, 3, x, 3], | |
[0, 0, 0, 0, y, 3, z], | |
[0, 0, 0, 0, x, y, z], | |
]) | |
assert diag(a, c, b) == Matrix([ | |
[1, 2, 0, 0, 0, 0, 0], | |
[2, 3, 0, 0, 0, 0, 0], | |
[0, 0, 3, x, 3, 0, 0], | |
[0, 0, y, 3, z, 0, 0], | |
[0, 0, x, y, z, 0, 0], | |
[0, 0, 0, 0, 0, 3, x], | |
[0, 0, 0, 0, 0, y, 3], | |
]) | |
a = Matrix([x, y, z]) | |
b = Matrix([[1, 2], [3, 4]]) | |
c = Matrix([[5, 6]]) | |
# this "wandering diagonal" is what makes this | |
# a block diagonal where each block is independent | |
# of the others | |
assert diag(a, 7, b, c) == Matrix([ | |
[x, 0, 0, 0, 0, 0], | |
[y, 0, 0, 0, 0, 0], | |
[z, 0, 0, 0, 0, 0], | |
[0, 7, 0, 0, 0, 0], | |
[0, 0, 1, 2, 0, 0], | |
[0, 0, 3, 4, 0, 0], | |
[0, 0, 0, 0, 5, 6]]) | |
raises(ValueError, lambda: diag(a, 7, b, c, rows=5)) | |
assert diag(1) == Matrix([[1]]) | |
assert diag(1, rows=2) == Matrix([[1, 0], [0, 0]]) | |
assert diag(1, cols=2) == Matrix([[1, 0], [0, 0]]) | |
assert diag(1, rows=3, cols=2) == Matrix([[1, 0], [0, 0], [0, 0]]) | |
assert diag(*[2, 3]) == Matrix([ | |
[2, 0], | |
[0, 3]]) | |
assert diag(Matrix([2, 3])) == Matrix([ | |
[2], | |
[3]]) | |
assert diag([1, [2, 3], 4], unpack=False) == \ | |
diag([[1], [2, 3], [4]], unpack=False) == Matrix([ | |
[1, 0], | |
[2, 3], | |
[4, 0]]) | |
assert type(diag(1)) == SpecialOnlyMatrix | |
assert type(diag(1, cls=Matrix)) == Matrix | |
assert Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) | |
assert Matrix.diag([1, 2, 3], unpack=False).shape == (3, 1) | |
assert Matrix.diag([[1, 2, 3]]).shape == (3, 1) | |
assert Matrix.diag([[1, 2, 3]], unpack=False).shape == (1, 3) | |
assert Matrix.diag([[[1, 2, 3]]]).shape == (1, 3) | |
# kerning can be used to move the starting point | |
assert Matrix.diag(ones(0, 2), 1, 2) == Matrix([ | |
[0, 0, 1, 0], | |
[0, 0, 0, 2]]) | |
assert Matrix.diag(ones(2, 0), 1, 2) == Matrix([ | |
[0, 0], | |
[0, 0], | |
[1, 0], | |
[0, 2]]) | |
def test_diagonal(): | |
m = Matrix(3, 3, range(9)) | |
d = m.diagonal() | |
assert d == m.diagonal(0) | |
assert tuple(d) == (0, 4, 8) | |
assert tuple(m.diagonal(1)) == (1, 5) | |
assert tuple(m.diagonal(-1)) == (3, 7) | |
assert tuple(m.diagonal(2)) == (2,) | |
assert type(m.diagonal()) == type(m) | |
s = SparseMatrix(3, 3, {(1, 1): 1}) | |
assert type(s.diagonal()) == type(s) | |
assert type(m) != type(s) | |
raises(ValueError, lambda: m.diagonal(3)) | |
raises(ValueError, lambda: m.diagonal(-3)) | |
raises(ValueError, lambda: m.diagonal(pi)) | |
M = ones(2, 3) | |
assert banded({i: list(M.diagonal(i)) | |
for i in range(1-M.rows, M.cols)}) == M | |
def test_jordan_block(): | |
assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \ | |
== SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \ | |
== SpecialOnlyMatrix.jordan_block(3, 2, band='upper') \ | |
== SpecialOnlyMatrix.jordan_block( | |
size=3, eigenval=2, eigenvalue=2) \ | |
== Matrix([ | |
[2, 1, 0], | |
[0, 2, 1], | |
[0, 0, 2]]) | |
assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([ | |
[2, 0, 0], | |
[1, 2, 0], | |
[0, 1, 2]]) | |
# missing eigenvalue | |
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2)) | |
# non-integral size | |
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2)) | |
# size not specified | |
raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(eigenvalue=2)) | |
# inconsistent eigenvalue | |
raises(ValueError, | |
lambda: SpecialOnlyMatrix.jordan_block( | |
eigenvalue=2, eigenval=4)) | |
# Using alias keyword | |
assert SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) == \ | |
SpecialOnlyMatrix.jordan_block(size=3, eigenval=2) | |
def test_orthogonalize(): | |
m = Matrix([[1, 2], [3, 4]]) | |
assert m.orthogonalize(Matrix([[2], [1]])) == [Matrix([[2], [1]])] | |
assert m.orthogonalize(Matrix([[2], [1]]), normalize=True) == \ | |
[Matrix([[2*sqrt(5)/5], [sqrt(5)/5]])] | |
assert m.orthogonalize(Matrix([[1], [2]]), Matrix([[-1], [4]])) == \ | |
[Matrix([[1], [2]]), Matrix([[Rational(-12, 5)], [Rational(6, 5)]])] | |
assert m.orthogonalize(Matrix([[0], [0]]), Matrix([[-1], [4]])) == \ | |
[Matrix([[-1], [4]])] | |
assert m.orthogonalize(Matrix([[0], [0]])) == [] | |
n = Matrix([[9, 1, 9], [3, 6, 10], [8, 5, 2]]) | |
vecs = [Matrix([[-5], [1]]), Matrix([[-5], [2]]), Matrix([[-5], [-2]])] | |
assert n.orthogonalize(*vecs) == \ | |
[Matrix([[-5], [1]]), Matrix([[Rational(5, 26)], [Rational(25, 26)]])] | |
vecs = [Matrix([0, 0, 0]), Matrix([1, 2, 3]), Matrix([1, 4, 5])] | |
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True)) | |
vecs = [Matrix([1, 2, 3]), Matrix([4, 5, 6]), Matrix([7, 8, 9])] | |
raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True)) | |
def test_wilkinson(): | |
wminus, wplus = Matrix.wilkinson(1) | |
assert wminus == Matrix([ | |
[-1, 1, 0], | |
[1, 0, 1], | |
[0, 1, 1]]) | |
assert wplus == Matrix([ | |
[1, 1, 0], | |
[1, 0, 1], | |
[0, 1, 1]]) | |
wminus, wplus = Matrix.wilkinson(3) | |
assert wminus == Matrix([ | |
[-3, 1, 0, 0, 0, 0, 0], | |
[1, -2, 1, 0, 0, 0, 0], | |
[0, 1, -1, 1, 0, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0], | |
[0, 0, 0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 1, 2, 1], | |
[0, 0, 0, 0, 0, 1, 3]]) | |
assert wplus == Matrix([ | |
[3, 1, 0, 0, 0, 0, 0], | |
[1, 2, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0], | |
[0, 0, 0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 1, 2, 1], | |
[0, 0, 0, 0, 0, 1, 3]]) | |
# CalculusOnlyMatrix tests | |
def test_diff(): | |
x, y = symbols('x y') | |
m = CalculusOnlyMatrix(2, 1, [x, y]) | |
# TODO: currently not working as ``_MinimalMatrix`` cannot be sympified: | |
assert m.diff(x) == Matrix(2, 1, [1, 0]) | |
def test_integrate(): | |
x, y = symbols('x y') | |
m = CalculusOnlyMatrix(2, 1, [x, y]) | |
assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x]) | |
def test_jacobian2(): | |
rho, phi = symbols("rho,phi") | |
X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2]) | |
Y = CalculusOnlyMatrix(2, 1, [rho, phi]) | |
J = Matrix([ | |
[cos(phi), -rho*sin(phi)], | |
[sin(phi), rho*cos(phi)], | |
[ 2*rho, 0], | |
]) | |
assert X.jacobian(Y) == J | |
m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4]) | |
m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4]) | |
raises(TypeError, lambda: m.jacobian(Matrix([1, 2]))) | |
raises(TypeError, lambda: m2.jacobian(m)) | |
def test_limit(): | |
x, y = symbols('x y') | |
m = CalculusOnlyMatrix(2, 1, [1/x, y]) | |
assert m.limit(x, 5) == Matrix(2, 1, [Rational(1, 5), y]) | |
def test_issue_13774(): | |
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
v = [1, 1, 1] | |
raises(TypeError, lambda: M*v) | |
raises(TypeError, lambda: v*M) | |
def test_companion(): | |
x = Symbol('x') | |
y = Symbol('y') | |
raises(ValueError, lambda: Matrix.companion(1)) | |
raises(ValueError, lambda: Matrix.companion(Poly([1], x))) | |
raises(ValueError, lambda: Matrix.companion(Poly([2, 1], x))) | |
raises(ValueError, lambda: Matrix.companion(Poly(x*y, [x, y]))) | |
c0, c1, c2 = symbols('c0:3') | |
assert Matrix.companion(Poly([1, c0], x)) == Matrix([-c0]) | |
assert Matrix.companion(Poly([1, c1, c0], x)) == \ | |
Matrix([[0, -c0], [1, -c1]]) | |
assert Matrix.companion(Poly([1, c2, c1, c0], x)) == \ | |
Matrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]]) | |
def test_issue_10589(): | |
x, y, z = symbols("x, y z") | |
M1 = Matrix([x, y, z]) | |
M1 = M1.subs(zip([x, y, z], [1, 2, 3])) | |
assert M1 == Matrix([[1], [2], [3]]) | |
M2 = Matrix([[x, x, x, x, x], [x, x, x, x, x], [x, x, x, x, x]]) | |
M2 = M2.subs(zip([x], [1])) | |
assert M2 == Matrix([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]) | |
def test_rmul_pr19860(): | |
class Foo(ImmutableDenseMatrix): | |
_op_priority = MutableDenseMatrix._op_priority + 0.01 | |
a = Matrix(2, 2, [1, 2, 3, 4]) | |
b = Foo(2, 2, [1, 2, 3, 4]) | |
# This would throw a RecursionError: maximum recursion depth | |
# since b always has higher priority even after a.as_mutable() | |
c = a*b | |
assert isinstance(c, Foo) | |
assert c == Matrix([[7, 10], [15, 22]]) | |
def test_issue_18956(): | |
A = Array([[1, 2], [3, 4]]) | |
B = Matrix([[1,2],[3,4]]) | |
raises(TypeError, lambda: B + A) | |
raises(TypeError, lambda: A + B) | |
def test__eq__(): | |
class My(object): | |
def __iter__(self): | |
yield 1 | |
yield 2 | |
return | |
def __getitem__(self, i): | |
return list(self)[i] | |
a = Matrix(2, 1, [1, 2]) | |
assert a != My() | |
class My_sympy(My): | |
def _sympy_(self): | |
return Matrix(self) | |
assert a == My_sympy() | |