Spaces:
Running
Running
from sympy.core import symbols, S | |
from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix | |
from sympy.matrices.exceptions import NonInvertibleMatrixError, NonSquareMatrixError | |
from sympy.matrices import eye, Identity | |
from sympy.testing.pytest import raises | |
from sympy.assumptions.ask import Q | |
from sympy.assumptions.refine import refine | |
n, m, l = symbols('n m l', integer=True) | |
A = MatrixSymbol('A', n, m) | |
B = MatrixSymbol('B', m, l) | |
C = MatrixSymbol('C', n, n) | |
D = MatrixSymbol('D', n, n) | |
E = MatrixSymbol('E', m, n) | |
def test_inverse(): | |
assert Inverse(C).args == (C, S.NegativeOne) | |
assert Inverse(C).shape == (n, n) | |
assert Inverse(A*E).shape == (n, n) | |
assert Inverse(E*A).shape == (m, m) | |
assert Inverse(C).inverse() == C | |
assert Inverse(Inverse(C)).doit() == C | |
assert isinstance(Inverse(Inverse(C)), Inverse) | |
assert Inverse(*Inverse(E*A).args) == Inverse(E*A) | |
assert C.inverse().inverse() == C | |
assert C.inverse()*C == Identity(C.rows) | |
assert Identity(n).inverse() == Identity(n) | |
assert (3*Identity(n)).inverse() == Identity(n)/3 | |
# Simplifies Muls if possible (i.e. submatrices are square) | |
assert (C*D).inverse() == D.I*C.I | |
# But still works when not possible | |
assert isinstance((A*E).inverse(), Inverse) | |
assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D) | |
assert Inverse(eye(3)).doit() == eye(3) | |
assert Inverse(eye(3)).doit(deep=False) == eye(3) | |
assert OneMatrix(1, 1).I == Identity(1) | |
assert isinstance(OneMatrix(n, n).I, Inverse) | |
def test_inverse_non_invertible(): | |
raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I) | |
raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I) | |
def test_refine(): | |
assert refine(C.I, Q.orthogonal(C)) == C.T | |
def test_inverse_matpow_canonicalization(): | |
A = MatrixSymbol('A', 3, 3) | |
assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit() | |
def test_nonsquare_error(): | |
A = MatrixSymbol('A', 3, 4) | |
raises(NonSquareMatrixError, lambda: Inverse(A)) | |
def test_adjoint_trnaspose_conjugate(): | |
A = MatrixSymbol('A', n, n) | |
assert A.transpose().inverse() == A.inverse().transpose() | |
assert A.conjugate().inverse() == A.inverse().conjugate() | |
assert A.adjoint().inverse() == A.inverse().adjoint() | |