Spaces:
Running
Running
from sympy.core.expr import Expr | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.core.numbers import I, pi | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy | |
from sympy.functions import assoc_legendre | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.functions.elementary.complexes import Abs, conjugate | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import sin, cos, cot | |
_x = Dummy("x") | |
class Ynm(Function): | |
r""" | |
Spherical harmonics defined as | |
.. math:: | |
Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} | |
\exp(i m \varphi) | |
\mathrm{P}_n^m\left(\cos(\theta)\right) | |
Explanation | |
=========== | |
``Ynm()`` gives the spherical harmonic function of order $n$ and $m$ | |
in $\theta$ and $\varphi$, $Y_n^m(\theta, \varphi)$. The four | |
parameters are as follows: $n \geq 0$ an integer and $m$ an integer | |
such that $-n \leq m \leq n$ holds. The two angles are real-valued | |
with $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. | |
Examples | |
======== | |
>>> from sympy import Ynm, Symbol, simplify | |
>>> from sympy.abc import n,m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> Ynm(n, m, theta, phi) | |
Ynm(n, m, theta, phi) | |
Several symmetries are known, for the order: | |
>>> Ynm(n, -m, theta, phi) | |
(-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) | |
As well as for the angles: | |
>>> Ynm(n, m, -theta, phi) | |
Ynm(n, m, theta, phi) | |
>>> Ynm(n, m, theta, -phi) | |
exp(-2*I*m*phi)*Ynm(n, m, theta, phi) | |
For specific integers $n$ and $m$ we can evaluate the harmonics | |
to more useful expressions: | |
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) | |
1/(2*sqrt(pi)) | |
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) | |
sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi)) | |
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) | |
sqrt(3)*cos(theta)/(2*sqrt(pi)) | |
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) | |
-sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi)) | |
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) | |
sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi)) | |
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) | |
sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi)) | |
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) | |
sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi)) | |
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) | |
-sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi)) | |
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) | |
sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi)) | |
We can differentiate the functions with respect | |
to both angles: | |
>>> from sympy import Ynm, Symbol, diff | |
>>> from sympy.abc import n,m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> diff(Ynm(n, m, theta, phi), theta) | |
m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi) | |
>>> diff(Ynm(n, m, theta, phi), phi) | |
I*m*Ynm(n, m, theta, phi) | |
Further we can compute the complex conjugation: | |
>>> from sympy import Ynm, Symbol, conjugate | |
>>> from sympy.abc import n,m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> conjugate(Ynm(n, m, theta, phi)) | |
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) | |
To get back the well known expressions in spherical | |
coordinates, we use full expansion: | |
>>> from sympy import Ynm, Symbol, expand_func | |
>>> from sympy.abc import n,m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> expand_func(Ynm(n, m, theta, phi)) | |
sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi)) | |
See Also | |
======== | |
Ynm_c, Znm | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics | |
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html | |
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/ | |
.. [4] https://dlmf.nist.gov/14.30 | |
""" | |
def eval(cls, n, m, theta, phi): | |
# Handle negative index m and arguments theta, phi | |
if m.could_extract_minus_sign(): | |
m = -m | |
return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi) | |
if theta.could_extract_minus_sign(): | |
theta = -theta | |
return Ynm(n, m, theta, phi) | |
if phi.could_extract_minus_sign(): | |
phi = -phi | |
return exp(-2*I*m*phi) * Ynm(n, m, theta, phi) | |
# TODO Add more simplififcation here | |
def _eval_expand_func(self, **hints): | |
n, m, theta, phi = self.args | |
rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * | |
exp(I*m*phi) * assoc_legendre(n, m, cos(theta))) | |
# We can do this because of the range of theta | |
return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta)) | |
def fdiff(self, argindex=4): | |
if argindex == 1: | |
# Diff wrt n | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 2: | |
# Diff wrt m | |
raise ArgumentIndexError(self, argindex) | |
elif argindex == 3: | |
# Diff wrt theta | |
n, m, theta, phi = self.args | |
return (m * cot(theta) * Ynm(n, m, theta, phi) + | |
sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi)) | |
elif argindex == 4: | |
# Diff wrt phi | |
n, m, theta, phi = self.args | |
return I * m * Ynm(n, m, theta, phi) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs): | |
# TODO: Make sure n \in N | |
# TODO: Assert |m| <= n ortherwise we should return 0 | |
return self.expand(func=True) | |
def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs): | |
return self.rewrite(cos) | |
def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs): | |
# This method can be expensive due to extensive use of simplification! | |
from sympy.simplify import simplify, trigsimp | |
# TODO: Make sure n \in N | |
# TODO: Assert |m| <= n ortherwise we should return 0 | |
term = simplify(self.expand(func=True)) | |
# We can do this because of the range of theta | |
term = term.xreplace({Abs(sin(theta)):sin(theta)}) | |
return simplify(trigsimp(term)) | |
def _eval_conjugate(self): | |
# TODO: Make sure theta \in R and phi \in R | |
n, m, theta, phi = self.args | |
return S.NegativeOne**m * self.func(n, -m, theta, phi) | |
def as_real_imag(self, deep=True, **hints): | |
# TODO: Handle deep and hints | |
n, m, theta, phi = self.args | |
re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * | |
cos(m*phi) * assoc_legendre(n, m, cos(theta))) | |
im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * | |
sin(m*phi) * assoc_legendre(n, m, cos(theta))) | |
return (re, im) | |
def _eval_evalf(self, prec): | |
# Note: works without this function by just calling | |
# mpmath for Legendre polynomials. But using | |
# the dedicated function directly is cleaner. | |
from mpmath import mp, workprec | |
n = self.args[0]._to_mpmath(prec) | |
m = self.args[1]._to_mpmath(prec) | |
theta = self.args[2]._to_mpmath(prec) | |
phi = self.args[3]._to_mpmath(prec) | |
with workprec(prec): | |
res = mp.spherharm(n, m, theta, phi) | |
return Expr._from_mpmath(res, prec) | |
def Ynm_c(n, m, theta, phi): | |
r""" | |
Conjugate spherical harmonics defined as | |
.. math:: | |
\overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi). | |
Examples | |
======== | |
>>> from sympy import Ynm_c, Symbol, simplify | |
>>> from sympy.abc import n,m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> Ynm_c(n, m, theta, phi) | |
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) | |
>>> Ynm_c(n, m, -theta, phi) | |
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) | |
For specific integers $n$ and $m$ we can evaluate the harmonics | |
to more useful expressions: | |
>>> simplify(Ynm_c(0, 0, theta, phi).expand(func=True)) | |
1/(2*sqrt(pi)) | |
>>> simplify(Ynm_c(1, -1, theta, phi).expand(func=True)) | |
sqrt(6)*exp(I*(-phi + 2*conjugate(phi)))*sin(theta)/(4*sqrt(pi)) | |
See Also | |
======== | |
Ynm, Znm | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics | |
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html | |
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/ | |
""" | |
return conjugate(Ynm(n, m, theta, phi)) | |
class Znm(Function): | |
r""" | |
Real spherical harmonics defined as | |
.. math:: | |
Z_n^m(\theta, \varphi) := | |
\begin{cases} | |
\frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ | |
Y_n^m(\theta, \varphi) &\quad m = 0 \\ | |
\frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ | |
\end{cases} | |
which gives in simplified form | |
.. math:: | |
Z_n^m(\theta, \varphi) = | |
\begin{cases} | |
\frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ | |
Y_n^m(\theta, \varphi) &\quad m = 0 \\ | |
\frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ | |
\end{cases} | |
Examples | |
======== | |
>>> from sympy import Znm, Symbol, simplify | |
>>> from sympy.abc import n, m | |
>>> theta = Symbol("theta") | |
>>> phi = Symbol("phi") | |
>>> Znm(n, m, theta, phi) | |
Znm(n, m, theta, phi) | |
For specific integers n and m we can evaluate the harmonics | |
to more useful expressions: | |
>>> simplify(Znm(0, 0, theta, phi).expand(func=True)) | |
1/(2*sqrt(pi)) | |
>>> simplify(Znm(1, 1, theta, phi).expand(func=True)) | |
-sqrt(3)*sin(theta)*cos(phi)/(2*sqrt(pi)) | |
>>> simplify(Znm(2, 1, theta, phi).expand(func=True)) | |
-sqrt(15)*sin(2*theta)*cos(phi)/(4*sqrt(pi)) | |
See Also | |
======== | |
Ynm, Ynm_c | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics | |
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html | |
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/ | |
""" | |
def eval(cls, n, m, theta, phi): | |
if m.is_positive: | |
zz = (Ynm(n, m, theta, phi) + Ynm_c(n, m, theta, phi)) / sqrt(2) | |
return zz | |
elif m.is_zero: | |
return Ynm(n, m, theta, phi) | |
elif m.is_negative: | |
zz = (Ynm(n, m, theta, phi) - Ynm_c(n, m, theta, phi)) / (sqrt(2)*I) | |
return zz | |