Spaces:
Running
Running
""" This module contains the Mathieu functions. | |
""" | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import sin, cos | |
class MathieuBase(Function): | |
""" | |
Abstract base class for Mathieu functions. | |
This class is meant to reduce code duplication. | |
""" | |
unbranched = True | |
def _eval_conjugate(self): | |
a, q, z = self.args | |
return self.func(a.conjugate(), q.conjugate(), z.conjugate()) | |
class mathieus(MathieuBase): | |
r""" | |
The Mathieu Sine function $S(a,q,z)$. | |
Explanation | |
=========== | |
This function is one solution of the Mathieu differential equation: | |
.. math :: | |
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 | |
The other solution is the Mathieu Cosine function. | |
Examples | |
======== | |
>>> from sympy import diff, mathieus | |
>>> from sympy.abc import a, q, z | |
>>> mathieus(a, q, z) | |
mathieus(a, q, z) | |
>>> mathieus(a, 0, z) | |
sin(sqrt(a)*z) | |
>>> diff(mathieus(a, q, z), z) | |
mathieusprime(a, q, z) | |
See Also | |
======== | |
mathieuc: Mathieu cosine function. | |
mathieusprime: Derivative of Mathieu sine function. | |
mathieucprime: Derivative of Mathieu cosine function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Mathieu_function | |
.. [2] https://dlmf.nist.gov/28 | |
.. [3] https://mathworld.wolfram.com/MathieuFunction.html | |
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 3: | |
a, q, z = self.args | |
return mathieusprime(a, q, z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, a, q, z): | |
if q.is_Number and q.is_zero: | |
return sin(sqrt(a)*z) | |
# Try to pull out factors of -1 | |
if z.could_extract_minus_sign(): | |
return -cls(a, q, -z) | |
class mathieuc(MathieuBase): | |
r""" | |
The Mathieu Cosine function $C(a,q,z)$. | |
Explanation | |
=========== | |
This function is one solution of the Mathieu differential equation: | |
.. math :: | |
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 | |
The other solution is the Mathieu Sine function. | |
Examples | |
======== | |
>>> from sympy import diff, mathieuc | |
>>> from sympy.abc import a, q, z | |
>>> mathieuc(a, q, z) | |
mathieuc(a, q, z) | |
>>> mathieuc(a, 0, z) | |
cos(sqrt(a)*z) | |
>>> diff(mathieuc(a, q, z), z) | |
mathieucprime(a, q, z) | |
See Also | |
======== | |
mathieus: Mathieu sine function | |
mathieusprime: Derivative of Mathieu sine function | |
mathieucprime: Derivative of Mathieu cosine function | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Mathieu_function | |
.. [2] https://dlmf.nist.gov/28 | |
.. [3] https://mathworld.wolfram.com/MathieuFunction.html | |
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 3: | |
a, q, z = self.args | |
return mathieucprime(a, q, z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, a, q, z): | |
if q.is_Number and q.is_zero: | |
return cos(sqrt(a)*z) | |
# Try to pull out factors of -1 | |
if z.could_extract_minus_sign(): | |
return cls(a, q, -z) | |
class mathieusprime(MathieuBase): | |
r""" | |
The derivative $S^{\prime}(a,q,z)$ of the Mathieu Sine function. | |
Explanation | |
=========== | |
This function is one solution of the Mathieu differential equation: | |
.. math :: | |
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 | |
The other solution is the Mathieu Cosine function. | |
Examples | |
======== | |
>>> from sympy import diff, mathieusprime | |
>>> from sympy.abc import a, q, z | |
>>> mathieusprime(a, q, z) | |
mathieusprime(a, q, z) | |
>>> mathieusprime(a, 0, z) | |
sqrt(a)*cos(sqrt(a)*z) | |
>>> diff(mathieusprime(a, q, z), z) | |
(-a + 2*q*cos(2*z))*mathieus(a, q, z) | |
See Also | |
======== | |
mathieus: Mathieu sine function | |
mathieuc: Mathieu cosine function | |
mathieucprime: Derivative of Mathieu cosine function | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Mathieu_function | |
.. [2] https://dlmf.nist.gov/28 | |
.. [3] https://mathworld.wolfram.com/MathieuFunction.html | |
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 3: | |
a, q, z = self.args | |
return (2*q*cos(2*z) - a)*mathieus(a, q, z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, a, q, z): | |
if q.is_Number and q.is_zero: | |
return sqrt(a)*cos(sqrt(a)*z) | |
# Try to pull out factors of -1 | |
if z.could_extract_minus_sign(): | |
return cls(a, q, -z) | |
class mathieucprime(MathieuBase): | |
r""" | |
The derivative $C^{\prime}(a,q,z)$ of the Mathieu Cosine function. | |
Explanation | |
=========== | |
This function is one solution of the Mathieu differential equation: | |
.. math :: | |
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 | |
The other solution is the Mathieu Sine function. | |
Examples | |
======== | |
>>> from sympy import diff, mathieucprime | |
>>> from sympy.abc import a, q, z | |
>>> mathieucprime(a, q, z) | |
mathieucprime(a, q, z) | |
>>> mathieucprime(a, 0, z) | |
-sqrt(a)*sin(sqrt(a)*z) | |
>>> diff(mathieucprime(a, q, z), z) | |
(-a + 2*q*cos(2*z))*mathieuc(a, q, z) | |
See Also | |
======== | |
mathieus: Mathieu sine function | |
mathieuc: Mathieu cosine function | |
mathieusprime: Derivative of Mathieu sine function | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Mathieu_function | |
.. [2] https://dlmf.nist.gov/28 | |
.. [3] https://mathworld.wolfram.com/MathieuFunction.html | |
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/ | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 3: | |
a, q, z = self.args | |
return (2*q*cos(2*z) - a)*mathieuc(a, q, z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, a, q, z): | |
if q.is_Number and q.is_zero: | |
return -sqrt(a)*sin(sqrt(a)*z) | |
# Try to pull out factors of -1 | |
if z.could_extract_minus_sign(): | |
return -cls(a, q, -z) | |