Spaces:
Running
Running
""" This module contains various functions that are special cases | |
of incomplete gamma functions. It should probably be renamed. """ | |
from sympy.core import EulerGamma # Must be imported from core, not core.numbers | |
from sympy.core.add import Add | |
from sympy.core.cache import cacheit | |
from sympy.core.function import Function, ArgumentIndexError, expand_mul | |
from sympy.core.numbers import I, pi, Rational | |
from sympy.core.relational import is_eq | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy, uniquely_named_symbol | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import factorial, factorial2, RisingFactorial | |
from sympy.functions.elementary.complexes import polar_lift, re, unpolarify | |
from sympy.functions.elementary.integers import ceiling, floor | |
from sympy.functions.elementary.miscellaneous import sqrt, root | |
from sympy.functions.elementary.exponential import exp, log, exp_polar | |
from sympy.functions.elementary.hyperbolic import cosh, sinh | |
from sympy.functions.elementary.trigonometric import cos, sin, sinc | |
from sympy.functions.special.hyper import hyper, meijerg | |
# TODO series expansions | |
# TODO see the "Note:" in Ei | |
# Helper function | |
def real_to_real_as_real_imag(self, deep=True, **hints): | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.expand(deep, **hints), S.Zero) | |
else: | |
return (self, S.Zero) | |
if deep: | |
x, y = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
x, y = self.args[0].as_real_imag() | |
re = (self.func(x + I*y) + self.func(x - I*y))/2 | |
im = (self.func(x + I*y) - self.func(x - I*y))/(2*I) | |
return (re, im) | |
############################################################################### | |
################################ ERROR FUNCTION ############################### | |
############################################################################### | |
class erf(Function): | |
r""" | |
The Gauss error function. | |
Explanation | |
=========== | |
This function is defined as: | |
.. math :: | |
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t. | |
Examples | |
======== | |
>>> from sympy import I, oo, erf | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> erf(0) | |
0 | |
>>> erf(oo) | |
1 | |
>>> erf(-oo) | |
-1 | |
>>> erf(I*oo) | |
oo*I | |
>>> erf(-I*oo) | |
-oo*I | |
In general one can pull out factors of -1 and $I$ from the argument: | |
>>> erf(-z) | |
-erf(z) | |
The error function obeys the mirror symmetry: | |
>>> from sympy import conjugate | |
>>> conjugate(erf(z)) | |
erf(conjugate(z)) | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(erf(z), z) | |
2*exp(-z**2)/sqrt(pi) | |
We can numerically evaluate the error function to arbitrary precision | |
on the whole complex plane: | |
>>> erf(4).evalf(30) | |
0.999999984582742099719981147840 | |
>>> erf(-4*I).evalf(30) | |
-1296959.73071763923152794095062*I | |
See Also | |
======== | |
erfc: Complementary error function. | |
erfi: Imaginary error function. | |
erf2: Two-argument error function. | |
erfinv: Inverse error function. | |
erfcinv: Inverse Complementary error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Error_function | |
.. [2] https://dlmf.nist.gov/7 | |
.. [3] https://mathworld.wolfram.com/Erf.html | |
.. [4] https://functions.wolfram.com/GammaBetaErf/Erf | |
""" | |
unbranched = True | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 2*exp(-self.args[0]**2)/sqrt(pi) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return erfinv | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.One | |
elif arg is S.NegativeInfinity: | |
return S.NegativeOne | |
elif arg.is_zero: | |
return S.Zero | |
if isinstance(arg, erfinv): | |
return arg.args[0] | |
if isinstance(arg, erfcinv): | |
return S.One - arg.args[0] | |
if arg.is_zero: | |
return S.Zero | |
# Only happens with unevaluated erf2inv | |
if isinstance(arg, erf2inv) and arg.args[0].is_zero: | |
return arg.args[1] | |
# Try to pull out factors of I | |
t = arg.extract_multiplicatively(I) | |
if t in (S.Infinity, S.NegativeInfinity): | |
return arg | |
# Try to pull out factors of -1 | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
k = floor((n - 1)/S(2)) | |
if len(previous_terms) > 2: | |
return -previous_terms[-2] * x**2 * (n - 2)/(n*k) | |
else: | |
return 2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi)) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def _eval_is_real(self): | |
return self.args[0].is_extended_real | |
def _eval_is_finite(self): | |
if self.args[0].is_finite: | |
return True | |
else: | |
return self.args[0].is_extended_real | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi)) | |
def _eval_rewrite_as_fresnels(self, z, **kwargs): | |
arg = (S.One - I)*z/sqrt(pi) | |
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_fresnelc(self, z, **kwargs): | |
arg = (S.One - I)*z/sqrt(pi) | |
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(pi) | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
from sympy.series.limits import limit | |
if limitvar: | |
lim = limit(z, limitvar, S.Infinity) | |
if lim is S.NegativeInfinity: | |
return S.NegativeOne + _erfs(-z)*exp(-z**2) | |
return S.One - _erfs(z)*exp(-z**2) | |
def _eval_rewrite_as_erfc(self, z, **kwargs): | |
return S.One - erfc(z) | |
def _eval_rewrite_as_erfi(self, z, **kwargs): | |
return -I*erfi(I*z) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.ComplexInfinity: | |
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+') | |
if x in arg.free_symbols and arg0.is_zero: | |
return 2*arg/sqrt(pi) | |
else: | |
return self.func(arg0) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
if point in [S.Infinity, S.NegativeInfinity]: | |
z = self.args[0] | |
try: | |
_, ex = z.leadterm(x) | |
except (ValueError, NotImplementedError): | |
return self | |
ex = -ex # as x->1/x for aseries | |
if ex.is_positive: | |
newn = ceiling(n/ex) | |
s = [S.NegativeOne**k * factorial2(2*k - 1) / (z**(2*k + 1) * 2**k) | |
for k in range(newn)] + [Order(1/z**newn, x)] | |
return S.One - (exp(-z**2)/sqrt(pi)) * Add(*s) | |
return super(erf, self)._eval_aseries(n, args0, x, logx) | |
as_real_imag = real_to_real_as_real_imag | |
class erfc(Function): | |
r""" | |
Complementary Error Function. | |
Explanation | |
=========== | |
The function is defined as: | |
.. math :: | |
\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t | |
Examples | |
======== | |
>>> from sympy import I, oo, erfc | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> erfc(0) | |
1 | |
>>> erfc(oo) | |
0 | |
>>> erfc(-oo) | |
2 | |
>>> erfc(I*oo) | |
-oo*I | |
>>> erfc(-I*oo) | |
oo*I | |
The error function obeys the mirror symmetry: | |
>>> from sympy import conjugate | |
>>> conjugate(erfc(z)) | |
erfc(conjugate(z)) | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(erfc(z), z) | |
-2*exp(-z**2)/sqrt(pi) | |
It also follows | |
>>> erfc(-z) | |
2 - erfc(z) | |
We can numerically evaluate the complementary error function to arbitrary | |
precision on the whole complex plane: | |
>>> erfc(4).evalf(30) | |
0.0000000154172579002800188521596734869 | |
>>> erfc(4*I).evalf(30) | |
1.0 - 1296959.73071763923152794095062*I | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfi: Imaginary error function. | |
erf2: Two-argument error function. | |
erfinv: Inverse error function. | |
erfcinv: Inverse Complementary error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Error_function | |
.. [2] https://dlmf.nist.gov/7 | |
.. [3] https://mathworld.wolfram.com/Erfc.html | |
.. [4] https://functions.wolfram.com/GammaBetaErf/Erfc | |
""" | |
unbranched = True | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -2*exp(-self.args[0]**2)/sqrt(pi) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return erfcinv | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Zero | |
elif arg.is_zero: | |
return S.One | |
if isinstance(arg, erfinv): | |
return S.One - arg.args[0] | |
if isinstance(arg, erfcinv): | |
return arg.args[0] | |
if arg.is_zero: | |
return S.One | |
# Try to pull out factors of I | |
t = arg.extract_multiplicatively(I) | |
if t in (S.Infinity, S.NegativeInfinity): | |
return -arg | |
# Try to pull out factors of -1 | |
if arg.could_extract_minus_sign(): | |
return 2 - cls(-arg) | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return S.One | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
k = floor((n - 1)/S(2)) | |
if len(previous_terms) > 2: | |
return -previous_terms[-2] * x**2 * (n - 2)/(n*k) | |
else: | |
return -2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi)) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def _eval_is_real(self): | |
return self.args[0].is_extended_real | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar) | |
def _eval_rewrite_as_erf(self, z, **kwargs): | |
return S.One - erf(z) | |
def _eval_rewrite_as_erfi(self, z, **kwargs): | |
return S.One + I*erfi(I*z) | |
def _eval_rewrite_as_fresnels(self, z, **kwargs): | |
arg = (S.One - I)*z/sqrt(pi) | |
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_fresnelc(self, z, **kwargs): | |
arg = (S.One-I)*z/sqrt(pi) | |
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi)) | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(pi) | |
def _eval_expand_func(self, **hints): | |
return self.rewrite(erf) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.ComplexInfinity: | |
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+') | |
if arg0.is_zero: | |
return S.One | |
else: | |
return self.func(arg0) | |
as_real_imag = real_to_real_as_real_imag | |
def _eval_aseries(self, n, args0, x, logx): | |
return S.One - erf(*self.args)._eval_aseries(n, args0, x, logx) | |
class erfi(Function): | |
r""" | |
Imaginary error function. | |
Explanation | |
=========== | |
The function erfi is defined as: | |
.. math :: | |
\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t | |
Examples | |
======== | |
>>> from sympy import I, oo, erfi | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> erfi(0) | |
0 | |
>>> erfi(oo) | |
oo | |
>>> erfi(-oo) | |
-oo | |
>>> erfi(I*oo) | |
I | |
>>> erfi(-I*oo) | |
-I | |
In general one can pull out factors of -1 and $I$ from the argument: | |
>>> erfi(-z) | |
-erfi(z) | |
>>> from sympy import conjugate | |
>>> conjugate(erfi(z)) | |
erfi(conjugate(z)) | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(erfi(z), z) | |
2*exp(z**2)/sqrt(pi) | |
We can numerically evaluate the imaginary error function to arbitrary | |
precision on the whole complex plane: | |
>>> erfi(2).evalf(30) | |
18.5648024145755525987042919132 | |
>>> erfi(-2*I).evalf(30) | |
-0.995322265018952734162069256367*I | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfc: Complementary error function. | |
erf2: Two-argument error function. | |
erfinv: Inverse error function. | |
erfcinv: Inverse Complementary error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Error_function | |
.. [2] https://mathworld.wolfram.com/Erfi.html | |
.. [3] https://functions.wolfram.com/GammaBetaErf/Erfi | |
""" | |
unbranched = True | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 2*exp(self.args[0]**2)/sqrt(pi) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, z): | |
if z.is_Number: | |
if z is S.NaN: | |
return S.NaN | |
elif z.is_zero: | |
return S.Zero | |
elif z is S.Infinity: | |
return S.Infinity | |
if z.is_zero: | |
return S.Zero | |
# Try to pull out factors of -1 | |
if z.could_extract_minus_sign(): | |
return -cls(-z) | |
# Try to pull out factors of I | |
nz = z.extract_multiplicatively(I) | |
if nz is not None: | |
if nz is S.Infinity: | |
return I | |
if isinstance(nz, erfinv): | |
return I*nz.args[0] | |
if isinstance(nz, erfcinv): | |
return I*(S.One - nz.args[0]) | |
# Only happens with unevaluated erf2inv | |
if isinstance(nz, erf2inv) and nz.args[0].is_zero: | |
return I*nz.args[1] | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
k = floor((n - 1)/S(2)) | |
if len(previous_terms) > 2: | |
return previous_terms[-2] * x**2 * (n - 2)/(n*k) | |
else: | |
return 2 * x**n/(n*factorial(k)*sqrt(pi)) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar) | |
def _eval_rewrite_as_erf(self, z, **kwargs): | |
return -I*erf(I*z) | |
def _eval_rewrite_as_erfc(self, z, **kwargs): | |
return I*erfc(I*z) - I | |
def _eval_rewrite_as_fresnels(self, z, **kwargs): | |
arg = (S.One + I)*z/sqrt(pi) | |
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_fresnelc(self, z, **kwargs): | |
arg = (S.One + I)*z/sqrt(pi) | |
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg)) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2) | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2) | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(pi) - S.One) | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(pi) | |
def _eval_expand_func(self, **hints): | |
return self.rewrite(erf) | |
as_real_imag = real_to_real_as_real_imag | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if x in arg.free_symbols and arg0.is_zero: | |
return 2*arg/sqrt(pi) | |
elif arg0.is_finite: | |
return self.func(arg0) | |
return self.func(arg) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
if point is S.Infinity: | |
z = self.args[0] | |
s = [factorial2(2*k - 1) / (2**k * z**(2*k + 1)) | |
for k in range(n)] + [Order(1/z**n, x)] | |
return -I + (exp(z**2)/sqrt(pi)) * Add(*s) | |
return super(erfi, self)._eval_aseries(n, args0, x, logx) | |
class erf2(Function): | |
r""" | |
Two-argument error function. | |
Explanation | |
=========== | |
This function is defined as: | |
.. math :: | |
\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t | |
Examples | |
======== | |
>>> from sympy import oo, erf2 | |
>>> from sympy.abc import x, y | |
Several special values are known: | |
>>> erf2(0, 0) | |
0 | |
>>> erf2(x, x) | |
0 | |
>>> erf2(x, oo) | |
1 - erf(x) | |
>>> erf2(x, -oo) | |
-erf(x) - 1 | |
>>> erf2(oo, y) | |
erf(y) - 1 | |
>>> erf2(-oo, y) | |
erf(y) + 1 | |
In general one can pull out factors of -1: | |
>>> erf2(-x, -y) | |
-erf2(x, y) | |
The error function obeys the mirror symmetry: | |
>>> from sympy import conjugate | |
>>> conjugate(erf2(x, y)) | |
erf2(conjugate(x), conjugate(y)) | |
Differentiation with respect to $x$, $y$ is supported: | |
>>> from sympy import diff | |
>>> diff(erf2(x, y), x) | |
-2*exp(-x**2)/sqrt(pi) | |
>>> diff(erf2(x, y), y) | |
2*exp(-y**2)/sqrt(pi) | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfc: Complementary error function. | |
erfi: Imaginary error function. | |
erfinv: Inverse error function. | |
erfcinv: Inverse Complementary error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://functions.wolfram.com/GammaBetaErf/Erf2/ | |
""" | |
def fdiff(self, argindex): | |
x, y = self.args | |
if argindex == 1: | |
return -2*exp(-x**2)/sqrt(pi) | |
elif argindex == 2: | |
return 2*exp(-y**2)/sqrt(pi) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, x, y): | |
chk = (S.Infinity, S.NegativeInfinity, S.Zero) | |
if x is S.NaN or y is S.NaN: | |
return S.NaN | |
elif x == y: | |
return S.Zero | |
elif x in chk or y in chk: | |
return erf(y) - erf(x) | |
if isinstance(y, erf2inv) and y.args[0] == x: | |
return y.args[1] | |
if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \ | |
y.is_extended_real and y.is_infinite: | |
return erf(y) - erf(x) | |
#Try to pull out -1 factor | |
sign_x = x.could_extract_minus_sign() | |
sign_y = y.could_extract_minus_sign() | |
if (sign_x and sign_y): | |
return -cls(-x, -y) | |
elif (sign_x or sign_y): | |
return erf(y)-erf(x) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate(), self.args[1].conjugate()) | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real and self.args[1].is_extended_real | |
def _eval_rewrite_as_erf(self, x, y, **kwargs): | |
return erf(y) - erf(x) | |
def _eval_rewrite_as_erfc(self, x, y, **kwargs): | |
return erfc(x) - erfc(y) | |
def _eval_rewrite_as_erfi(self, x, y, **kwargs): | |
return I*(erfi(I*x)-erfi(I*y)) | |
def _eval_rewrite_as_fresnels(self, x, y, **kwargs): | |
return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels) | |
def _eval_rewrite_as_fresnelc(self, x, y, **kwargs): | |
return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc) | |
def _eval_rewrite_as_meijerg(self, x, y, **kwargs): | |
return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg) | |
def _eval_rewrite_as_hyper(self, x, y, **kwargs): | |
return erf(y).rewrite(hyper) - erf(x).rewrite(hyper) | |
def _eval_rewrite_as_uppergamma(self, x, y, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(pi)) - | |
sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(pi))) | |
def _eval_rewrite_as_expint(self, x, y, **kwargs): | |
return erf(y).rewrite(expint) - erf(x).rewrite(expint) | |
def _eval_expand_func(self, **hints): | |
return self.rewrite(erf) | |
def _eval_is_zero(self): | |
return is_eq(*self.args) | |
class erfinv(Function): | |
r""" | |
Inverse Error Function. The erfinv function is defined as: | |
.. math :: | |
\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x | |
Examples | |
======== | |
>>> from sympy import erfinv | |
>>> from sympy.abc import x | |
Several special values are known: | |
>>> erfinv(0) | |
0 | |
>>> erfinv(1) | |
oo | |
Differentiation with respect to $x$ is supported: | |
>>> from sympy import diff | |
>>> diff(erfinv(x), x) | |
sqrt(pi)*exp(erfinv(x)**2)/2 | |
We can numerically evaluate the inverse error function to arbitrary | |
precision on [-1, 1]: | |
>>> erfinv(0.2).evalf(30) | |
0.179143454621291692285822705344 | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfc: Complementary error function. | |
erfi: Imaginary error function. | |
erf2: Two-argument error function. | |
erfcinv: Inverse Complementary error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions | |
.. [2] https://functions.wolfram.com/GammaBetaErf/InverseErf/ | |
""" | |
def fdiff(self, argindex =1): | |
if argindex == 1: | |
return sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half | |
else : | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return erf | |
def eval(cls, z): | |
if z is S.NaN: | |
return S.NaN | |
elif z is S.NegativeOne: | |
return S.NegativeInfinity | |
elif z.is_zero: | |
return S.Zero | |
elif z is S.One: | |
return S.Infinity | |
if isinstance(z, erf) and z.args[0].is_extended_real: | |
return z.args[0] | |
if z.is_zero: | |
return S.Zero | |
# Try to pull out factors of -1 | |
nz = z.extract_multiplicatively(-1) | |
if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real): | |
return -nz.args[0] | |
def _eval_rewrite_as_erfcinv(self, z, **kwargs): | |
return erfcinv(1-z) | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
class erfcinv (Function): | |
r""" | |
Inverse Complementary Error Function. The erfcinv function is defined as: | |
.. math :: | |
\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x | |
Examples | |
======== | |
>>> from sympy import erfcinv | |
>>> from sympy.abc import x | |
Several special values are known: | |
>>> erfcinv(1) | |
0 | |
>>> erfcinv(0) | |
oo | |
Differentiation with respect to $x$ is supported: | |
>>> from sympy import diff | |
>>> diff(erfcinv(x), x) | |
-sqrt(pi)*exp(erfcinv(x)**2)/2 | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfc: Complementary error function. | |
erfi: Imaginary error function. | |
erf2: Two-argument error function. | |
erfinv: Inverse error function. | |
erf2inv: Inverse two-argument error function. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions | |
.. [2] https://functions.wolfram.com/GammaBetaErf/InverseErfc/ | |
""" | |
def fdiff(self, argindex =1): | |
if argindex == 1: | |
return -sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return erfc | |
def eval(cls, z): | |
if z is S.NaN: | |
return S.NaN | |
elif z.is_zero: | |
return S.Infinity | |
elif z is S.One: | |
return S.Zero | |
elif z == 2: | |
return S.NegativeInfinity | |
if z.is_zero: | |
return S.Infinity | |
def _eval_rewrite_as_erfinv(self, z, **kwargs): | |
return erfinv(1-z) | |
def _eval_is_zero(self): | |
return (self.args[0] - 1).is_zero | |
def _eval_is_infinite(self): | |
return self.args[0].is_zero | |
class erf2inv(Function): | |
r""" | |
Two-argument Inverse error function. The erf2inv function is defined as: | |
.. math :: | |
\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w | |
Examples | |
======== | |
>>> from sympy import erf2inv, oo | |
>>> from sympy.abc import x, y | |
Several special values are known: | |
>>> erf2inv(0, 0) | |
0 | |
>>> erf2inv(1, 0) | |
1 | |
>>> erf2inv(0, 1) | |
oo | |
>>> erf2inv(0, y) | |
erfinv(y) | |
>>> erf2inv(oo, y) | |
erfcinv(-y) | |
Differentiation with respect to $x$ and $y$ is supported: | |
>>> from sympy import diff | |
>>> diff(erf2inv(x, y), x) | |
exp(-x**2 + erf2inv(x, y)**2) | |
>>> diff(erf2inv(x, y), y) | |
sqrt(pi)*exp(erf2inv(x, y)**2)/2 | |
See Also | |
======== | |
erf: Gaussian error function. | |
erfc: Complementary error function. | |
erfi: Imaginary error function. | |
erf2: Two-argument error function. | |
erfinv: Inverse error function. | |
erfcinv: Inverse complementary error function. | |
References | |
========== | |
.. [1] https://functions.wolfram.com/GammaBetaErf/InverseErf2/ | |
""" | |
def fdiff(self, argindex): | |
x, y = self.args | |
if argindex == 1: | |
return exp(self.func(x,y)**2-x**2) | |
elif argindex == 2: | |
return sqrt(pi)*S.Half*exp(self.func(x,y)**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, x, y): | |
if x is S.NaN or y is S.NaN: | |
return S.NaN | |
elif x.is_zero and y.is_zero: | |
return S.Zero | |
elif x.is_zero and y is S.One: | |
return S.Infinity | |
elif x is S.One and y.is_zero: | |
return S.One | |
elif x.is_zero: | |
return erfinv(y) | |
elif x is S.Infinity: | |
return erfcinv(-y) | |
elif y.is_zero: | |
return x | |
elif y is S.Infinity: | |
return erfinv(x) | |
if x.is_zero: | |
if y.is_zero: | |
return S.Zero | |
else: | |
return erfinv(y) | |
if y.is_zero: | |
return x | |
def _eval_is_zero(self): | |
x, y = self.args | |
if x.is_zero and y.is_zero: | |
return True | |
############################################################################### | |
#################### EXPONENTIAL INTEGRALS #################################### | |
############################################################################### | |
class Ei(Function): | |
r""" | |
The classical exponential integral. | |
Explanation | |
=========== | |
For use in SymPy, this function is defined as | |
.. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} | |
+ \log(x) + \gamma, | |
where $\gamma$ is the Euler-Mascheroni constant. | |
If $x$ is a polar number, this defines an analytic function on the | |
Riemann surface of the logarithm. Otherwise this defines an analytic | |
function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$. | |
**Background** | |
The name exponential integral comes from the following statement: | |
.. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t | |
If the integral is interpreted as a Cauchy principal value, this statement | |
holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above. | |
Examples | |
======== | |
>>> from sympy import Ei, polar_lift, exp_polar, I, pi | |
>>> from sympy.abc import x | |
>>> Ei(-1) | |
Ei(-1) | |
This yields a real value: | |
>>> Ei(-1).n(chop=True) | |
-0.219383934395520 | |
On the other hand the analytic continuation is not real: | |
>>> Ei(polar_lift(-1)).n(chop=True) | |
-0.21938393439552 + 3.14159265358979*I | |
The exponential integral has a logarithmic branch point at the origin: | |
>>> Ei(x*exp_polar(2*I*pi)) | |
Ei(x) + 2*I*pi | |
Differentiation is supported: | |
>>> Ei(x).diff(x) | |
exp(x)/x | |
The exponential integral is related to many other special functions. | |
For example: | |
>>> from sympy import expint, Shi | |
>>> Ei(x).rewrite(expint) | |
-expint(1, x*exp_polar(I*pi)) - I*pi | |
>>> Ei(x).rewrite(Shi) | |
Chi(x) + Shi(x) | |
See Also | |
======== | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
uppergamma: Upper incomplete gamma function. | |
References | |
========== | |
.. [1] https://dlmf.nist.gov/6.6 | |
.. [2] https://en.wikipedia.org/wiki/Exponential_integral | |
.. [3] Abramowitz & Stegun, section 5: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm | |
""" | |
def eval(cls, z): | |
if z.is_zero: | |
return S.NegativeInfinity | |
elif z is S.Infinity: | |
return S.Infinity | |
elif z is S.NegativeInfinity: | |
return S.Zero | |
if z.is_zero: | |
return S.NegativeInfinity | |
nz, n = z.extract_branch_factor() | |
if n: | |
return Ei(nz) + 2*I*pi*n | |
def fdiff(self, argindex=1): | |
arg = unpolarify(self.args[0]) | |
if argindex == 1: | |
return exp(arg)/arg | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_evalf(self, prec): | |
if (self.args[0]/polar_lift(-1)).is_positive: | |
return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec) | |
return Function._eval_evalf(self, prec) | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
# XXX this does not currently work usefully because uppergamma | |
# immediately turns into expint | |
return -uppergamma(0, polar_lift(-1)*z) - I*pi | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return -expint(1, polar_lift(-1)*z) - I*pi | |
def _eval_rewrite_as_li(self, z, **kwargs): | |
if isinstance(z, log): | |
return li(z.args[0]) | |
# TODO: | |
# Actually it only holds that: | |
# Ei(z) = li(exp(z)) | |
# for -pi < imag(z) <= pi | |
return li(exp(z)) | |
def _eval_rewrite_as_Si(self, z, **kwargs): | |
if z.is_negative: | |
return Shi(z) + Chi(z) - I*pi | |
else: | |
return Shi(z) + Chi(z) | |
_eval_rewrite_as_Ci = _eval_rewrite_as_Si | |
_eval_rewrite_as_Chi = _eval_rewrite_as_Si | |
_eval_rewrite_as_Shi = _eval_rewrite_as_Si | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
return exp(z) * _eis(z) | |
def _eval_rewrite_as_Integral(self, z, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', [z]).name) | |
return Integral(S.Exp1**t/t, (t, S.NegativeInfinity, z)) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy import re | |
x0 = self.args[0].limit(x, 0) | |
arg = self.args[0].as_leading_term(x, cdir=cdir) | |
cdir = arg.dir(x, cdir) | |
if x0.is_zero: | |
c, e = arg.as_coeff_exponent(x) | |
logx = log(x) if logx is None else logx | |
return log(c) + e*logx + EulerGamma - ( | |
I*pi if re(cdir).is_negative else S.Zero) | |
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
x0 = self.args[0].limit(x, 0) | |
if x0.is_zero: | |
f = self._eval_rewrite_as_Si(*self.args) | |
return f._eval_nseries(x, n, logx) | |
return super()._eval_nseries(x, n, logx) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
if point is S.Infinity: | |
z = self.args[0] | |
s = [factorial(k) / (z)**k for k in range(n)] + \ | |
[Order(1/z**n, x)] | |
return (exp(z)/z) * Add(*s) | |
return super(Ei, self)._eval_aseries(n, args0, x, logx) | |
class expint(Function): | |
r""" | |
Generalized exponential integral. | |
Explanation | |
=========== | |
This function is defined as | |
.. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z), | |
where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function | |
(``uppergamma``). | |
Hence for $z$ with positive real part we have | |
.. math:: \operatorname{E}_\nu(z) | |
= \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t, | |
which explains the name. | |
The representation as an incomplete gamma function provides an analytic | |
continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a | |
non-positive integer, the exponential integral is thus an unbranched | |
function of $z$, otherwise there is a branch point at the origin. | |
Refer to the incomplete gamma function documentation for details of the | |
branching behavior. | |
Examples | |
======== | |
>>> from sympy import expint, S | |
>>> from sympy.abc import nu, z | |
Differentiation is supported. Differentiation with respect to $z$ further | |
explains the name: for integral orders, the exponential integral is an | |
iterated integral of the exponential function. | |
>>> expint(nu, z).diff(z) | |
-expint(nu - 1, z) | |
Differentiation with respect to $\nu$ has no classical expression: | |
>>> expint(nu, z).diff(nu) | |
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z) | |
At non-postive integer orders, the exponential integral reduces to the | |
exponential function: | |
>>> expint(0, z) | |
exp(-z)/z | |
>>> expint(-1, z) | |
exp(-z)/z + exp(-z)/z**2 | |
At half-integers it reduces to error functions: | |
>>> expint(S(1)/2, z) | |
sqrt(pi)*erfc(sqrt(z))/sqrt(z) | |
At positive integer orders it can be rewritten in terms of exponentials | |
and ``expint(1, z)``. Use ``expand_func()`` to do this: | |
>>> from sympy import expand_func | |
>>> expand_func(expint(5, z)) | |
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24 | |
The generalised exponential integral is essentially equivalent to the | |
incomplete gamma function: | |
>>> from sympy import uppergamma | |
>>> expint(nu, z).rewrite(uppergamma) | |
z**(nu - 1)*uppergamma(1 - nu, z) | |
As such it is branched at the origin: | |
>>> from sympy import exp_polar, pi, I | |
>>> expint(4, z*exp_polar(2*pi*I)) | |
I*pi*z**3/3 + expint(4, z) | |
>>> expint(nu, z*exp_polar(2*pi*I)) | |
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z) | |
See Also | |
======== | |
Ei: Another related function called exponential integral. | |
E1: The classical case, returns expint(1, z). | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
uppergamma | |
References | |
========== | |
.. [1] https://dlmf.nist.gov/8.19 | |
.. [2] https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/ | |
.. [3] https://en.wikipedia.org/wiki/Exponential_integral | |
""" | |
def eval(cls, nu, z): | |
from sympy.functions.special.gamma_functions import (gamma, uppergamma) | |
nu2 = unpolarify(nu) | |
if nu != nu2: | |
return expint(nu2, z) | |
if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer): | |
return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z))) | |
# Extract branching information. This can be deduced from what is | |
# explained in lowergamma.eval(). | |
z, n = z.extract_branch_factor() | |
if n is S.Zero: | |
return | |
if nu.is_integer: | |
if not nu > 0: | |
return | |
return expint(nu, z) \ | |
- 2*pi*I*n*S.NegativeOne**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1) | |
else: | |
return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z) | |
def fdiff(self, argindex): | |
nu, z = self.args | |
if argindex == 1: | |
return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z) | |
elif argindex == 2: | |
return -expint(nu - 1, z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return z**(nu - 1)*uppergamma(1 - nu, z) | |
def _eval_rewrite_as_Ei(self, nu, z, **kwargs): | |
if nu == 1: | |
return -Ei(z*exp_polar(-I*pi)) - I*pi | |
elif nu.is_Integer and nu > 1: | |
# DLMF, 8.19.7 | |
x = -unpolarify(z) | |
return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \ | |
exp(x)/factorial(nu - 1) * \ | |
Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)]) | |
else: | |
return self | |
def _eval_expand_func(self, **hints): | |
return self.rewrite(Ei).rewrite(expint, **hints) | |
def _eval_rewrite_as_Si(self, nu, z, **kwargs): | |
if nu != 1: | |
return self | |
return Shi(z) - Chi(z) | |
_eval_rewrite_as_Ci = _eval_rewrite_as_Si | |
_eval_rewrite_as_Chi = _eval_rewrite_as_Si | |
_eval_rewrite_as_Shi = _eval_rewrite_as_Si | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
if not self.args[0].has(x): | |
nu = self.args[0] | |
if nu == 1: | |
f = self._eval_rewrite_as_Si(*self.args) | |
return f._eval_nseries(x, n, logx) | |
elif nu.is_Integer and nu > 1: | |
f = self._eval_rewrite_as_Ei(*self.args) | |
return f._eval_nseries(x, n, logx) | |
return super()._eval_nseries(x, n, logx) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[1] | |
nu = self.args[0] | |
if point is S.Infinity: | |
z = self.args[1] | |
s = [S.NegativeOne**k * RisingFactorial(nu, k) / z**k for k in range(n)] + [Order(1/z**n, x)] | |
return (exp(-z)/z) * Add(*s) | |
return super(expint, self)._eval_aseries(n, args0, x, logx) | |
def _eval_rewrite_as_Integral(self, *args, **kwargs): | |
from sympy.integrals.integrals import Integral | |
n, x = self.args | |
t = Dummy(uniquely_named_symbol('t', args).name) | |
return Integral(t**-n * exp(-t*x), (t, 1, S.Infinity)) | |
def E1(z): | |
""" | |
Classical case of the generalized exponential integral. | |
Explanation | |
=========== | |
This is equivalent to ``expint(1, z)``. | |
Examples | |
======== | |
>>> from sympy import E1 | |
>>> E1(0) | |
expint(1, 0) | |
>>> E1(5) | |
expint(1, 5) | |
See Also | |
======== | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
""" | |
return expint(1, z) | |
class li(Function): | |
r""" | |
The classical logarithmic integral. | |
Explanation | |
=========== | |
For use in SymPy, this function is defined as | |
.. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,. | |
Examples | |
======== | |
>>> from sympy import I, oo, li | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> li(0) | |
0 | |
>>> li(1) | |
-oo | |
>>> li(oo) | |
oo | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(li(z), z) | |
1/log(z) | |
Defining the ``li`` function via an integral: | |
>>> from sympy import integrate | |
>>> integrate(li(z)) | |
z*li(z) - Ei(2*log(z)) | |
>>> integrate(li(z),z) | |
z*li(z) - Ei(2*log(z)) | |
The logarithmic integral can also be defined in terms of ``Ei``: | |
>>> from sympy import Ei | |
>>> li(z).rewrite(Ei) | |
Ei(log(z)) | |
>>> diff(li(z).rewrite(Ei), z) | |
1/log(z) | |
We can numerically evaluate the logarithmic integral to arbitrary precision | |
on the whole complex plane (except the singular points): | |
>>> li(2).evalf(30) | |
1.04516378011749278484458888919 | |
>>> li(2*I).evalf(30) | |
1.0652795784357498247001125598 + 3.08346052231061726610939702133*I | |
We can even compute Soldner's constant by the help of mpmath: | |
>>> from mpmath import findroot | |
>>> findroot(li, 2) | |
1.45136923488338 | |
Further transformations include rewriting ``li`` in terms of | |
the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``: | |
>>> from sympy import Si, Ci, Shi, Chi | |
>>> li(z).rewrite(Si) | |
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) | |
>>> li(z).rewrite(Ci) | |
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) | |
>>> li(z).rewrite(Shi) | |
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) | |
>>> li(z).rewrite(Chi) | |
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) | |
See Also | |
======== | |
Li: Offset logarithmic integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral | |
.. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html | |
.. [3] https://dlmf.nist.gov/6 | |
.. [4] https://mathworld.wolfram.com/SoldnersConstant.html | |
""" | |
def eval(cls, z): | |
if z.is_zero: | |
return S.Zero | |
elif z is S.One: | |
return S.NegativeInfinity | |
elif z is S.Infinity: | |
return S.Infinity | |
if z.is_zero: | |
return S.Zero | |
def fdiff(self, argindex=1): | |
arg = self.args[0] | |
if argindex == 1: | |
return S.One / log(arg) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_conjugate(self): | |
z = self.args[0] | |
# Exclude values on the branch cut (-oo, 0) | |
if not z.is_extended_negative: | |
return self.func(z.conjugate()) | |
def _eval_rewrite_as_Li(self, z, **kwargs): | |
return Li(z) + li(2) | |
def _eval_rewrite_as_Ei(self, z, **kwargs): | |
return Ei(log(z)) | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return (-uppergamma(0, -log(z)) + | |
S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z))) | |
def _eval_rewrite_as_Si(self, z, **kwargs): | |
return (Ci(I*log(z)) - I*Si(I*log(z)) - | |
S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z))) | |
_eval_rewrite_as_Ci = _eval_rewrite_as_Si | |
def _eval_rewrite_as_Shi(self, z, **kwargs): | |
return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))) | |
_eval_rewrite_as_Chi = _eval_rewrite_as_Shi | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return (log(z)*hyper((1, 1), (2, 2), log(z)) + | |
S.Half*(log(log(z)) - log(S.One/log(z))) + EulerGamma) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) | |
- meijerg(((), (1,)), ((0, 0), ()), -log(z))) | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
return z * _eis(log(z)) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
z = self.args[0] | |
s = [(log(z))**k / (factorial(k) * k) for k in range(1, n)] | |
return EulerGamma + log(log(z)) + Add(*s) | |
def _eval_is_zero(self): | |
z = self.args[0] | |
if z.is_zero: | |
return True | |
class Li(Function): | |
r""" | |
The offset logarithmic integral. | |
Explanation | |
=========== | |
For use in SymPy, this function is defined as | |
.. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2) | |
Examples | |
======== | |
>>> from sympy import Li | |
>>> from sympy.abc import z | |
The following special value is known: | |
>>> Li(2) | |
0 | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(Li(z), z) | |
1/log(z) | |
The shifted logarithmic integral can be written in terms of $li(z)$: | |
>>> from sympy import li | |
>>> Li(z).rewrite(li) | |
li(z) - li(2) | |
We can numerically evaluate the logarithmic integral to arbitrary precision | |
on the whole complex plane (except the singular points): | |
>>> Li(2).evalf(30) | |
0 | |
>>> Li(4).evalf(30) | |
1.92242131492155809316615998938 | |
See Also | |
======== | |
li: Logarithmic integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral | |
.. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html | |
.. [3] https://dlmf.nist.gov/6 | |
""" | |
def eval(cls, z): | |
if z is S.Infinity: | |
return S.Infinity | |
elif z == S(2): | |
return S.Zero | |
def fdiff(self, argindex=1): | |
arg = self.args[0] | |
if argindex == 1: | |
return S.One / log(arg) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_evalf(self, prec): | |
return self.rewrite(li).evalf(prec) | |
def _eval_rewrite_as_li(self, z, **kwargs): | |
return li(z) - li(2) | |
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): | |
return self.rewrite(li).rewrite("tractable", deep=True) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
f = self._eval_rewrite_as_li(*self.args) | |
return f._eval_nseries(x, n, logx) | |
############################################################################### | |
#################### TRIGONOMETRIC INTEGRALS ################################## | |
############################################################################### | |
class TrigonometricIntegral(Function): | |
""" Base class for trigonometric integrals. """ | |
def eval(cls, z): | |
if z is S.Zero: | |
return cls._atzero | |
elif z is S.Infinity: | |
return cls._atinf() | |
elif z is S.NegativeInfinity: | |
return cls._atneginf() | |
if z.is_zero: | |
return cls._atzero | |
nz = z.extract_multiplicatively(polar_lift(I)) | |
if nz is None and cls._trigfunc(0) == 0: | |
nz = z.extract_multiplicatively(I) | |
if nz is not None: | |
return cls._Ifactor(nz, 1) | |
nz = z.extract_multiplicatively(polar_lift(-I)) | |
if nz is not None: | |
return cls._Ifactor(nz, -1) | |
nz = z.extract_multiplicatively(polar_lift(-1)) | |
if nz is None and cls._trigfunc(0) == 0: | |
nz = z.extract_multiplicatively(-1) | |
if nz is not None: | |
return cls._minusfactor(nz) | |
nz, n = z.extract_branch_factor() | |
if n == 0 and nz == z: | |
return | |
return 2*pi*I*n*cls._trigfunc(0) + cls(nz) | |
def fdiff(self, argindex=1): | |
arg = unpolarify(self.args[0]) | |
if argindex == 1: | |
return self._trigfunc(arg)/arg | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_Ei(self, z, **kwargs): | |
return self._eval_rewrite_as_expint(z).rewrite(Ei) | |
def _eval_rewrite_as_uppergamma(self, z, **kwargs): | |
from sympy.functions.special.gamma_functions import uppergamma | |
return self._eval_rewrite_as_expint(z).rewrite(uppergamma) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
# NOTE this is fairly inefficient | |
if self.args[0].subs(x, 0) != 0: | |
return super()._eval_nseries(x, n, logx) | |
baseseries = self._trigfunc(x)._eval_nseries(x, n, logx) | |
if self._trigfunc(0) != 0: | |
baseseries -= 1 | |
baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False) | |
if self._trigfunc(0) != 0: | |
baseseries += EulerGamma + log(x) | |
return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx) | |
class Si(TrigonometricIntegral): | |
r""" | |
Sine integral. | |
Explanation | |
=========== | |
This function is defined by | |
.. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t. | |
It is an entire function. | |
Examples | |
======== | |
>>> from sympy import Si | |
>>> from sympy.abc import z | |
The sine integral is an antiderivative of $sin(z)/z$: | |
>>> Si(z).diff(z) | |
sin(z)/z | |
It is unbranched: | |
>>> from sympy import exp_polar, I, pi | |
>>> Si(z*exp_polar(2*I*pi)) | |
Si(z) | |
Sine integral behaves much like ordinary sine under multiplication by ``I``: | |
>>> Si(I*z) | |
I*Shi(z) | |
>>> Si(-z) | |
-Si(z) | |
It can also be expressed in terms of exponential integrals, but beware | |
that the latter is branched: | |
>>> from sympy import expint | |
>>> Si(z).rewrite(expint) | |
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 + | |
expint(1, z*exp_polar(I*pi/2))/2) + pi/2 | |
It can be rewritten in the form of sinc function (by definition): | |
>>> from sympy import sinc | |
>>> Si(z).rewrite(sinc) | |
Integral(sinc(_t), (_t, 0, z)) | |
See Also | |
======== | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
sinc: unnormalized sinc function | |
E1: Special case of the generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral | |
""" | |
_trigfunc = sin | |
_atzero = S.Zero | |
def _atinf(cls): | |
return pi*S.Half | |
def _atneginf(cls): | |
return -pi*S.Half | |
def _minusfactor(cls, z): | |
return -Si(z) | |
def _Ifactor(cls, z, sign): | |
return I*Shi(z)*sign | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
# XXX should we polarify z? | |
return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I | |
def _eval_rewrite_as_Integral(self, z, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', [z]).name) | |
return Integral(sinc(t), (t, 0, z)) | |
_eval_rewrite_as_sinc = _eval_rewrite_as_Integral | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
return arg | |
elif not arg0.is_infinite: | |
return self.func(arg0) | |
else: | |
return self | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
# Expansion at oo | |
if point is S.Infinity: | |
z = self.args[0] | |
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k + 1) | |
for k in range(n//2 + 1)] + [Order(1/z**n, x)] | |
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*(k + 1)) | |
for k in range(n//2)] + [Order(1/z**n, x)] | |
return pi/2 - cos(z)*Add(*p) - sin(z)*Add(*q) | |
# All other points are not handled | |
return super(Si, self)._eval_aseries(n, args0, x, logx) | |
def _eval_is_zero(self): | |
z = self.args[0] | |
if z.is_zero: | |
return True | |
class Ci(TrigonometricIntegral): | |
r""" | |
Cosine integral. | |
Explanation | |
=========== | |
This function is defined for positive $x$ by | |
.. math:: \operatorname{Ci}(x) = \gamma + \log{x} | |
+ \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t | |
= -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t, | |
where $\gamma$ is the Euler-Mascheroni constant. | |
We have | |
.. math:: \operatorname{Ci}(z) = | |
-\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right) | |
+ \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2} | |
which holds for all polar $z$ and thus provides an analytic | |
continuation to the Riemann surface of the logarithm. | |
The formula also holds as stated | |
for $z \in \mathbb{C}$ with $\Re(z) > 0$. | |
By lifting to the principal branch, we obtain an analytic function on the | |
cut complex plane. | |
Examples | |
======== | |
>>> from sympy import Ci | |
>>> from sympy.abc import z | |
The cosine integral is a primitive of $\cos(z)/z$: | |
>>> Ci(z).diff(z) | |
cos(z)/z | |
It has a logarithmic branch point at the origin: | |
>>> from sympy import exp_polar, I, pi | |
>>> Ci(z*exp_polar(2*I*pi)) | |
Ci(z) + 2*I*pi | |
The cosine integral behaves somewhat like ordinary $\cos$ under | |
multiplication by $i$: | |
>>> from sympy import polar_lift | |
>>> Ci(polar_lift(I)*z) | |
Chi(z) + I*pi/2 | |
>>> Ci(polar_lift(-1)*z) | |
Ci(z) + I*pi | |
It can also be expressed in terms of exponential integrals: | |
>>> from sympy import expint | |
>>> Ci(z).rewrite(expint) | |
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2 | |
See Also | |
======== | |
Si: Sine integral. | |
Shi: Hyperbolic sine integral. | |
Chi: Hyperbolic cosine integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral | |
""" | |
_trigfunc = cos | |
_atzero = S.ComplexInfinity | |
def _atinf(cls): | |
return S.Zero | |
def _atneginf(cls): | |
return I*pi | |
def _minusfactor(cls, z): | |
return Ci(z) + I*pi | |
def _Ifactor(cls, z, sign): | |
return Chi(z) + I*pi/2*sign | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2 | |
def _eval_rewrite_as_Integral(self, z, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', [z]).name) | |
return S.EulerGamma + log(z) - Integral((1-cos(t))/t, (t, 0, z)) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
c, e = arg.as_coeff_exponent(x) | |
logx = log(x) if logx is None else logx | |
return log(c) + e*logx + EulerGamma | |
elif arg0.is_finite: | |
return self.func(arg0) | |
else: | |
return self | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
if point in (S.Infinity, S.NegativeInfinity): | |
z = self.args[0] | |
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k + 1) | |
for k in range(n//2 + 1)] + [Order(1/z**n, x)] | |
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*(k + 1)) | |
for k in range(n//2)] + [Order(1/z**n, x)] | |
result = sin(z)*(Add(*p)) - cos(z)*(Add(*q)) | |
if point is S.NegativeInfinity: | |
result += I*pi | |
return result | |
return super(Ci, self)._eval_aseries(n, args0, x, logx) | |
class Shi(TrigonometricIntegral): | |
r""" | |
Sinh integral. | |
Explanation | |
=========== | |
This function is defined by | |
.. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t. | |
It is an entire function. | |
Examples | |
======== | |
>>> from sympy import Shi | |
>>> from sympy.abc import z | |
The Sinh integral is a primitive of $\sinh(z)/z$: | |
>>> Shi(z).diff(z) | |
sinh(z)/z | |
It is unbranched: | |
>>> from sympy import exp_polar, I, pi | |
>>> Shi(z*exp_polar(2*I*pi)) | |
Shi(z) | |
The $\sinh$ integral behaves much like ordinary $\sinh$ under | |
multiplication by $i$: | |
>>> Shi(I*z) | |
I*Si(z) | |
>>> Shi(-z) | |
-Shi(z) | |
It can also be expressed in terms of exponential integrals, but beware | |
that the latter is branched: | |
>>> from sympy import expint | |
>>> Shi(z).rewrite(expint) | |
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 | |
See Also | |
======== | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Chi: Hyperbolic cosine integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral | |
""" | |
_trigfunc = sinh | |
_atzero = S.Zero | |
def _atinf(cls): | |
return S.Infinity | |
def _atneginf(cls): | |
return S.NegativeInfinity | |
def _minusfactor(cls, z): | |
return -Shi(z) | |
def _Ifactor(cls, z, sign): | |
return I*Si(z)*sign | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
# XXX should we polarify z? | |
return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2 | |
def _eval_is_zero(self): | |
z = self.args[0] | |
if z.is_zero: | |
return True | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
return arg | |
elif not arg0.is_infinite: | |
return self.func(arg0) | |
else: | |
return self | |
class Chi(TrigonometricIntegral): | |
r""" | |
Cosh integral. | |
Explanation | |
=========== | |
This function is defined for positive $x$ by | |
.. math:: \operatorname{Chi}(x) = \gamma + \log{x} | |
+ \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t, | |
where $\gamma$ is the Euler-Mascheroni constant. | |
We have | |
.. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) | |
- i\frac{\pi}{2}, | |
which holds for all polar $z$ and thus provides an analytic | |
continuation to the Riemann surface of the logarithm. | |
By lifting to the principal branch we obtain an analytic function on the | |
cut complex plane. | |
Examples | |
======== | |
>>> from sympy import Chi | |
>>> from sympy.abc import z | |
The $\cosh$ integral is a primitive of $\cosh(z)/z$: | |
>>> Chi(z).diff(z) | |
cosh(z)/z | |
It has a logarithmic branch point at the origin: | |
>>> from sympy import exp_polar, I, pi | |
>>> Chi(z*exp_polar(2*I*pi)) | |
Chi(z) + 2*I*pi | |
The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under | |
multiplication by $i$: | |
>>> from sympy import polar_lift | |
>>> Chi(polar_lift(I)*z) | |
Ci(z) + I*pi/2 | |
>>> Chi(polar_lift(-1)*z) | |
Chi(z) + I*pi | |
It can also be expressed in terms of exponential integrals: | |
>>> from sympy import expint | |
>>> Chi(z).rewrite(expint) | |
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 | |
See Also | |
======== | |
Si: Sine integral. | |
Ci: Cosine integral. | |
Shi: Hyperbolic sine integral. | |
Ei: Exponential integral. | |
expint: Generalised exponential integral. | |
E1: Special case of the generalised exponential integral. | |
li: Logarithmic integral. | |
Li: Offset logarithmic integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral | |
""" | |
_trigfunc = cosh | |
_atzero = S.ComplexInfinity | |
def _atinf(cls): | |
return S.Infinity | |
def _atneginf(cls): | |
return S.Infinity | |
def _minusfactor(cls, z): | |
return Chi(z) + I*pi | |
def _Ifactor(cls, z, sign): | |
return Ci(z) + I*pi/2*sign | |
def _eval_rewrite_as_expint(self, z, **kwargs): | |
return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2 | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.NaN: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
c, e = arg.as_coeff_exponent(x) | |
logx = log(x) if logx is None else logx | |
return log(c) + e*logx + EulerGamma | |
elif arg0.is_finite: | |
return self.func(arg0) | |
else: | |
return self | |
############################################################################### | |
#################### FRESNEL INTEGRALS ######################################## | |
############################################################################### | |
class FresnelIntegral(Function): | |
""" Base class for the Fresnel integrals.""" | |
unbranched = True | |
def eval(cls, z): | |
# Values at positive infinities signs | |
# if any were extracted automatically | |
if z is S.Infinity: | |
return S.Half | |
# Value at zero | |
if z.is_zero: | |
return S.Zero | |
# Try to pull out factors of -1 and I | |
prefact = S.One | |
newarg = z | |
changed = False | |
nz = newarg.extract_multiplicatively(-1) | |
if nz is not None: | |
prefact = -prefact | |
newarg = nz | |
changed = True | |
nz = newarg.extract_multiplicatively(I) | |
if nz is not None: | |
prefact = cls._sign*I*prefact | |
newarg = nz | |
changed = True | |
if changed: | |
return prefact*cls(newarg) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return self._trigfunc(S.Half*pi*self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
_eval_is_finite = _eval_is_extended_real | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
as_real_imag = real_to_real_as_real_imag | |
class fresnels(FresnelIntegral): | |
r""" | |
Fresnel integral S. | |
Explanation | |
=========== | |
This function is defined by | |
.. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t. | |
It is an entire function. | |
Examples | |
======== | |
>>> from sympy import I, oo, fresnels | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> fresnels(0) | |
0 | |
>>> fresnels(oo) | |
1/2 | |
>>> fresnels(-oo) | |
-1/2 | |
>>> fresnels(I*oo) | |
-I/2 | |
>>> fresnels(-I*oo) | |
I/2 | |
In general one can pull out factors of -1 and $i$ from the argument: | |
>>> fresnels(-z) | |
-fresnels(z) | |
>>> fresnels(I*z) | |
-I*fresnels(z) | |
The Fresnel S integral obeys the mirror symmetry | |
$\overline{S(z)} = S(\bar{z})$: | |
>>> from sympy import conjugate | |
>>> conjugate(fresnels(z)) | |
fresnels(conjugate(z)) | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(fresnels(z), z) | |
sin(pi*z**2/2) | |
Defining the Fresnel functions via an integral: | |
>>> from sympy import integrate, pi, sin, expand_func | |
>>> integrate(sin(pi*z**2/2), z) | |
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) | |
>>> expand_func(integrate(sin(pi*z**2/2), z)) | |
fresnels(z) | |
We can numerically evaluate the Fresnel integral to arbitrary precision | |
on the whole complex plane: | |
>>> fresnels(2).evalf(30) | |
0.343415678363698242195300815958 | |
>>> fresnels(-2*I).evalf(30) | |
0.343415678363698242195300815958*I | |
See Also | |
======== | |
fresnelc: Fresnel cosine integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral | |
.. [2] https://dlmf.nist.gov/7 | |
.. [3] https://mathworld.wolfram.com/FresnelIntegrals.html | |
.. [4] https://functions.wolfram.com/GammaBetaErf/FresnelS | |
.. [5] The converging factors for the fresnel integrals | |
by John W. Wrench Jr. and Vicki Alley | |
""" | |
_trigfunc = sin | |
_sign = -S.One | |
def taylor_term(n, x, *previous_terms): | |
if n < 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 1: | |
p = previous_terms[-1] | |
return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p | |
else: | |
return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1)) | |
def _eval_rewrite_as_erf(self, z, **kwargs): | |
return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z)) | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4)) | |
* meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16)) | |
def _eval_rewrite_as_Integral(self, z, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', [z]).name) | |
return Integral(sin(pi*t**2/2), (t, 0, z)) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.series.order import Order | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.ComplexInfinity: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
return pi*arg**3/6 | |
elif arg0 in [S.Infinity, S.NegativeInfinity]: | |
s = 1 if arg0 is S.Infinity else -1 | |
return s*S.Half + Order(x, x) | |
else: | |
return self.func(arg0) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
# Expansion at oo and -oo | |
if point in [S.Infinity, -S.Infinity]: | |
z = self.args[0] | |
# expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8 | |
# as only real infinities are dealt with, sin and cos are O(1) | |
p = [S.NegativeOne**k * factorial(4*k + 1) / | |
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) | |
for k in range(0, n) if 4*k + 3 < n] | |
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) / | |
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) | |
for k in range(1, n) if 4*k + 1 < n] | |
p = [-sqrt(2/pi)*t for t in p] | |
q = [-sqrt(2/pi)*t for t in q] | |
s = 1 if point is S.Infinity else -1 | |
# The expansion at oo is 1/2 + some odd powers of z | |
# To get the expansion at -oo, replace z by -z and flip the sign | |
# The result -1/2 + the same odd powers of z as before. | |
return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q) | |
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) | |
# All other points are not handled | |
return super()._eval_aseries(n, args0, x, logx) | |
class fresnelc(FresnelIntegral): | |
r""" | |
Fresnel integral C. | |
Explanation | |
=========== | |
This function is defined by | |
.. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t. | |
It is an entire function. | |
Examples | |
======== | |
>>> from sympy import I, oo, fresnelc | |
>>> from sympy.abc import z | |
Several special values are known: | |
>>> fresnelc(0) | |
0 | |
>>> fresnelc(oo) | |
1/2 | |
>>> fresnelc(-oo) | |
-1/2 | |
>>> fresnelc(I*oo) | |
I/2 | |
>>> fresnelc(-I*oo) | |
-I/2 | |
In general one can pull out factors of -1 and $i$ from the argument: | |
>>> fresnelc(-z) | |
-fresnelc(z) | |
>>> fresnelc(I*z) | |
I*fresnelc(z) | |
The Fresnel C integral obeys the mirror symmetry | |
$\overline{C(z)} = C(\bar{z})$: | |
>>> from sympy import conjugate | |
>>> conjugate(fresnelc(z)) | |
fresnelc(conjugate(z)) | |
Differentiation with respect to $z$ is supported: | |
>>> from sympy import diff | |
>>> diff(fresnelc(z), z) | |
cos(pi*z**2/2) | |
Defining the Fresnel functions via an integral: | |
>>> from sympy import integrate, pi, cos, expand_func | |
>>> integrate(cos(pi*z**2/2), z) | |
fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) | |
>>> expand_func(integrate(cos(pi*z**2/2), z)) | |
fresnelc(z) | |
We can numerically evaluate the Fresnel integral to arbitrary precision | |
on the whole complex plane: | |
>>> fresnelc(2).evalf(30) | |
0.488253406075340754500223503357 | |
>>> fresnelc(-2*I).evalf(30) | |
-0.488253406075340754500223503357*I | |
See Also | |
======== | |
fresnels: Fresnel sine integral. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral | |
.. [2] https://dlmf.nist.gov/7 | |
.. [3] https://mathworld.wolfram.com/FresnelIntegrals.html | |
.. [4] https://functions.wolfram.com/GammaBetaErf/FresnelC | |
.. [5] The converging factors for the fresnel integrals | |
by John W. Wrench Jr. and Vicki Alley | |
""" | |
_trigfunc = cos | |
_sign = S.One | |
def taylor_term(n, x, *previous_terms): | |
if n < 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 1: | |
p = previous_terms[-1] | |
return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p | |
else: | |
return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n)) | |
def _eval_rewrite_as_erf(self, z, **kwargs): | |
return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z)) | |
def _eval_rewrite_as_hyper(self, z, **kwargs): | |
return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16) | |
def _eval_rewrite_as_meijerg(self, z, **kwargs): | |
return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4)) | |
* meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16)) | |
def _eval_rewrite_as_Integral(self, z, **kwargs): | |
from sympy.integrals.integrals import Integral | |
t = Dummy(uniquely_named_symbol('t', [z]).name) | |
return Integral(cos(pi*t**2/2), (t, 0, z)) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.series.order import Order | |
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir) | |
arg0 = arg.subs(x, 0) | |
if arg0 is S.ComplexInfinity: | |
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if arg0.is_zero: | |
return arg | |
elif arg0 in [S.Infinity, S.NegativeInfinity]: | |
s = 1 if arg0 is S.Infinity else -1 | |
return s*S.Half + Order(x, x) | |
else: | |
return self.func(arg0) | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
# Expansion at oo | |
if point in [S.Infinity, -S.Infinity]: | |
z = self.args[0] | |
# expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8 | |
# as only real infinities are dealt with, sin and cos are O(1) | |
p = [S.NegativeOne**k * factorial(4*k + 1) / | |
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) | |
for k in range(n) if 4*k + 3 < n] | |
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) / | |
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) | |
for k in range(1, n) if 4*k + 1 < n] | |
p = [-sqrt(2/pi)*t for t in p] | |
q = [ sqrt(2/pi)*t for t in q] | |
s = 1 if point is S.Infinity else -1 | |
# The expansion at oo is 1/2 + some odd powers of z | |
# To get the expansion at -oo, replace z by -z and flip the sign | |
# The result -1/2 + the same odd powers of z as before. | |
return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q) | |
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) | |
# All other points are not handled | |
return super()._eval_aseries(n, args0, x, logx) | |
############################################################################### | |
#################### HELPER FUNCTIONS ######################################### | |
############################################################################### | |
class _erfs(Function): | |
""" | |
Helper function to make the $\\mathrm{erf}(z)$ function | |
tractable for the Gruntz algorithm. | |
""" | |
def eval(cls, arg): | |
if arg.is_zero: | |
return S.One | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
point = args0[0] | |
# Expansion at oo | |
if point is S.Infinity: | |
z = self.args[0] | |
l = [1/sqrt(pi) * factorial(2*k)*(-S( | |
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)] | |
o = Order(1/z**(2*n + 1), x) | |
# It is very inefficient to first add the order and then do the nseries | |
return (Add(*l))._eval_nseries(x, n, logx) + o | |
# Expansion at I*oo | |
t = point.extract_multiplicatively(I) | |
if t is S.Infinity: | |
z = self.args[0] | |
# TODO: is the series really correct? | |
l = [1/sqrt(pi) * factorial(2*k)*(-S( | |
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)] | |
o = Order(1/z**(2*n + 1), x) | |
# It is very inefficient to first add the order and then do the nseries | |
return (Add(*l))._eval_nseries(x, n, logx) + o | |
# All other points are not handled | |
return super()._eval_aseries(n, args0, x, logx) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
z = self.args[0] | |
return -2/sqrt(pi) + 2*z*_erfs(z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_intractable(self, z, **kwargs): | |
return (S.One - erf(z))*exp(z**2) | |
class _eis(Function): | |
""" | |
Helper function to make the $\\mathrm{Ei}(z)$ and $\\mathrm{li}(z)$ | |
functions tractable for the Gruntz algorithm. | |
""" | |
def _eval_aseries(self, n, args0, x, logx): | |
from sympy.series.order import Order | |
if args0[0] != S.Infinity: | |
return super(_erfs, self)._eval_aseries(n, args0, x, logx) | |
z = self.args[0] | |
l = [factorial(k) * (1/z)**(k + 1) for k in range(n)] | |
o = Order(1/z**(n + 1), x) | |
# It is very inefficient to first add the order and then do the nseries | |
return (Add(*l))._eval_nseries(x, n, logx) + o | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
z = self.args[0] | |
return S.One / z - _eis(z) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_intractable(self, z, **kwargs): | |
return exp(-z)*Ei(z) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
x0 = self.args[0].limit(x, 0) | |
if x0.is_zero: | |
f = self._eval_rewrite_as_intractable(*self.args) | |
return f._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
x0 = self.args[0].limit(x, 0) | |
if x0.is_zero: | |
f = self._eval_rewrite_as_intractable(*self.args) | |
return f._eval_nseries(x, n, logx) | |
return super()._eval_nseries(x, n, logx) | |