Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
20.2 kB
from itertools import permutations
from copy import copy
from sympy.core.expr import unchanged
from sympy.core.numbers import Integer
from sympy.core.relational import Eq
from sympy.core.symbol import Symbol
from sympy.core.singleton import S
from sympy.combinatorics.permutations import \
Permutation, _af_parity, _af_rmul, _af_rmuln, AppliedPermutation, Cycle
from sympy.printing import sstr, srepr, pretty, latex
from sympy.testing.pytest import raises, warns_deprecated_sympy
rmul = Permutation.rmul
a = Symbol('a', integer=True)
def test_Permutation():
# don't auto fill 0
raises(ValueError, lambda: Permutation([1]))
p = Permutation([0, 1, 2, 3])
# call as bijective
assert [p(i) for i in range(p.size)] == list(p)
# call as operator
assert p(list(range(p.size))) == list(p)
# call as function
assert list(p(1, 2)) == [0, 2, 1, 3]
raises(TypeError, lambda: p(-1))
raises(TypeError, lambda: p(5))
# conversion to list
assert list(p) == list(range(4))
assert p.copy() == p
assert copy(p) == p
assert Permutation(size=4) == Permutation(3)
assert Permutation(Permutation(3), size=5) == Permutation(4)
# cycle form with size
assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]])
# random generation
assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[1], [0, 3, 5, 6, 2, 4]])
assert len({p, p}) == 1
r = Permutation([1, 3, 2, 0, 4, 6, 5])
ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form
assert rmul(p, q, r).array_form == ans
# make sure no other permutation of p, q, r could have given
# that answer
for a, b, c in permutations((p, q, r)):
if (a, b, c) == (p, q, r):
continue
assert rmul(a, b, c).array_form != ans
assert p.support() == list(range(7))
assert q.support() == [0, 2, 3, 4, 5, 6]
assert Permutation(p.cyclic_form).array_form == p.array_form
assert p.cardinality == 5040
assert q.cardinality == 5040
assert q.cycles == 2
assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0])
assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1])
assert _af_rmul(p.array_form, q.array_form) == \
[6, 5, 3, 0, 2, 4, 1]
assert rmul(Permutation([[1, 2, 3], [0, 4]]),
Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \
[[0, 4, 2], [1, 3]]
assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]]
assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]]
assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]]
t = p.transpositions()
assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)]
assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)])
assert Permutation([1, 0]).transpositions() == [(0, 1)]
assert p**13 == p
assert q**0 == Permutation(list(range(q.size)))
assert q**-2 == ~q**2
assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])
assert q**3 == q**2*q
assert q**4 == q**2*q**2
a = Permutation(1, 3)
b = Permutation(2, 0, 3)
I = Permutation(3)
assert ~a == a**-1
assert a*~a == I
assert a*b**-1 == a*~b
ans = Permutation(0, 5, 3, 1, 6)(2, 4)
assert (p + q.rank()).rank() == ans.rank()
assert (p + q.rank())._rank == ans.rank()
assert (q + p.rank()).rank() == ans.rank()
raises(TypeError, lambda: p + Permutation(list(range(10))))
assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank()
assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used
assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank()
assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)]))
assert p*Permutation([]) == p
assert Permutation([])*p == p
assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4])
assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4])
pq = p ^ q
assert pq == Permutation([5, 6, 0, 4, 1, 2, 3])
assert pq == rmul(q, p, ~q)
qp = q ^ p
assert qp == Permutation([4, 3, 6, 2, 1, 5, 0])
assert qp == rmul(p, q, ~p)
raises(ValueError, lambda: p ^ Permutation([]))
assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2)
assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1)
assert p.commutator(q) == ~q.commutator(p)
raises(ValueError, lambda: p.commutator(Permutation([])))
assert len(p.atoms()) == 7
assert q.atoms() == {0, 1, 2, 3, 4, 5, 6}
assert p.inversion_vector() == [2, 4, 1, 3, 1, 0]
assert q.inversion_vector() == [3, 1, 2, 2, 0, 1]
assert Permutation.from_inversion_vector(p.inversion_vector()) == p
assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\
== q.array_form
raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2]))
assert Permutation(list(range(500, -1, -1))).inversions() == 125250
s = Permutation([0, 4, 1, 3, 2])
assert s.parity() == 0
_ = s.cyclic_form # needed to create a value for _cyclic_form
assert len(s._cyclic_form) != s.size and s.parity() == 0
assert not s.is_odd
assert s.is_even
assert Permutation([0, 1, 4, 3, 2]).parity() == 1
assert _af_parity([0, 4, 1, 3, 2]) == 0
assert _af_parity([0, 1, 4, 3, 2]) == 1
s = Permutation([0])
assert s.is_Singleton
assert Permutation([]).is_Empty
r = Permutation([3, 2, 1, 0])
assert (r**2).is_Identity
assert rmul(~p, p).is_Identity
assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
assert p.max() == 6
assert p.min() == 0
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert q.max() == 4
assert q.min() == 0
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
assert p.ascents() == [0, 3, 4]
assert q.ascents() == [1, 2, 4]
assert r.ascents() == []
assert p.descents() == [1, 2, 5]
assert q.descents() == [0, 3, 5]
assert Permutation(r.descents()).is_Identity
assert p.inversions() == 7
# test the merge-sort with a longer permutation
big = list(p) + list(range(p.max() + 1, p.max() + 130))
assert Permutation(big).inversions() == 7
assert p.signature() == -1
assert q.inversions() == 11
assert q.signature() == -1
assert rmul(p, ~p).inversions() == 0
assert rmul(p, ~p).signature() == 1
assert p.order() == 6
assert q.order() == 10
assert (p**(p.order())).is_Identity
assert p.length() == 6
assert q.length() == 7
assert r.length() == 4
assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]]
assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]]
assert r.runs() == [[3], [2], [1], [0]]
assert p.index() == 8
assert q.index() == 8
assert r.index() == 3
assert p.get_precedence_distance(q) == q.get_precedence_distance(p)
assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q)
assert p.get_positional_distance(q) == p.get_positional_distance(q)
p = Permutation([0, 1, 2, 3])
q = Permutation([3, 2, 1, 0])
assert p.get_precedence_distance(q) == 6
assert p.get_adjacency_distance(q) == 3
assert p.get_positional_distance(q) == 8
p = Permutation([0, 3, 1, 2, 4])
q = Permutation.josephus(4, 5, 2)
assert p.get_adjacency_distance(q) == 3
raises(ValueError, lambda: p.get_adjacency_distance(Permutation([])))
raises(ValueError, lambda: p.get_positional_distance(Permutation([])))
raises(ValueError, lambda: p.get_precedence_distance(Permutation([])))
a = [Permutation.unrank_nonlex(4, i) for i in range(5)]
iden = Permutation([0, 1, 2, 3])
for i in range(5):
for j in range(i + 1, 5):
assert a[i].commutes_with(a[j]) == \
(rmul(a[i], a[j]) == rmul(a[j], a[i]))
if a[i].commutes_with(a[j]):
assert a[i].commutator(a[j]) == iden
assert a[j].commutator(a[i]) == iden
a = Permutation(3)
b = Permutation(0, 6, 3)(1, 2)
assert a.cycle_structure == {1: 4}
assert b.cycle_structure == {2: 1, 3: 1, 1: 2}
# issue 11130
raises(ValueError, lambda: Permutation(3, size=3))
raises(ValueError, lambda: Permutation([1, 2, 0, 3], size=3))
def test_Permutation_subclassing():
# Subclass that adds permutation application on iterables
class CustomPermutation(Permutation):
def __call__(self, *i):
try:
return super().__call__(*i)
except TypeError:
pass
try:
perm_obj = i[0]
return [self._array_form[j] for j in perm_obj]
except TypeError:
raise TypeError('unrecognized argument')
def __eq__(self, other):
if isinstance(other, Permutation):
return self._hashable_content() == other._hashable_content()
else:
return super().__eq__(other)
def __hash__(self):
return super().__hash__()
p = CustomPermutation([1, 2, 3, 0])
q = Permutation([1, 2, 3, 0])
assert p == q
raises(TypeError, lambda: q([1, 2]))
assert [2, 3] == p([1, 2])
assert type(p * q) == CustomPermutation
assert type(q * p) == Permutation # True because q.__mul__(p) is called!
# Run all tests for the Permutation class also on the subclass
def wrapped_test_Permutation():
# Monkeypatch the class definition in the globals
globals()['__Perm'] = globals()['Permutation']
globals()['Permutation'] = CustomPermutation
test_Permutation()
globals()['Permutation'] = globals()['__Perm'] # Restore
del globals()['__Perm']
wrapped_test_Permutation()
def test_josephus():
assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4])
assert Permutation.josephus(1, 5, 1).is_Identity
def test_ranking():
assert Permutation.unrank_lex(5, 10).rank() == 10
p = Permutation.unrank_lex(15, 225)
assert p.rank() == 225
p1 = p.next_lex()
assert p1.rank() == 226
assert Permutation.unrank_lex(15, 225).rank() == 225
assert Permutation.unrank_lex(10, 0).is_Identity
p = Permutation.unrank_lex(4, 23)
assert p.rank() == 23
assert p.array_form == [3, 2, 1, 0]
assert p.next_lex() is None
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)]
assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1,
2], [3, 0, 2, 1] ]
assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5))
assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \
Permutation([0, 1, 3, 2])
assert q.rank_trotterjohnson() == 2283
assert p.rank_trotterjohnson() == 3389
assert Permutation([1, 0]).rank_trotterjohnson() == 1
a = Permutation(list(range(3)))
b = a
l = []
tj = []
for i in range(6):
l.append(a)
tj.append(b)
a = a.next_lex()
b = b.next_trotterjohnson()
assert a == b is None
assert {tuple(a) for a in l} == {tuple(a) for a in tj}
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert p.rank() == 1964
assert q.rank() == 870
assert Permutation([]).rank_nonlex() == 0
prank = p.rank_nonlex()
assert prank == 1600
assert Permutation.unrank_nonlex(7, 1600) == p
qrank = q.rank_nonlex()
assert qrank == 41
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
assert a == [
[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0],
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1],
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2],
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3],
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
N = 10
p1 = Permutation(a[0])
for i in range(1, N+1):
p1 = p1*Permutation(a[i])
p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]])
assert p1 == p2
ok = []
p = Permutation([1, 0])
for i in range(3):
ok.append(p.array_form)
p = p.next_nonlex()
if p is None:
ok.append(None)
break
assert ok == [[1, 0], [0, 1], None]
assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2])
assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24))
def test_mul():
a, b = [0, 2, 1, 3], [0, 1, 3, 2]
assert _af_rmul(a, b) == [0, 2, 3, 1]
assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1]
assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1]
a = Permutation([0, 2, 1, 3])
b = (0, 1, 3, 2)
c = (3, 1, 2, 0)
assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0])
assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0])
raises(TypeError, lambda: Permutation.rmul(b, c))
n = 6
m = 8
a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)]
h = list(range(n))
for i in range(m):
h = _af_rmul(h, a[i])
h2 = _af_rmuln(*a[:i + 1])
assert h == h2
def test_args():
p = Permutation([(0, 3, 1, 2), (4, 5)])
assert p._cyclic_form is None
assert Permutation(p) == p
assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]]
assert p._array_form == [3, 2, 0, 1, 5, 4]
p = Permutation((0, 3, 1, 2))
assert p._cyclic_form is None
assert p._array_form == [0, 3, 1, 2]
assert Permutation([0]) == Permutation((0, ))
assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \
Permutation(((0, ), [1]))
assert Permutation([[1, 2]]) == Permutation([0, 2, 1])
assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2])
assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2])
assert Permutation(
[[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5])
assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2)
assert Permutation([], size=3) == Permutation([0, 1, 2])
assert Permutation(3).list(5) == [0, 1, 2, 3, 4]
assert Permutation(3).list(-1) == []
assert Permutation(5)(1, 2).list(-1) == [0, 2, 1]
assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5]
raises(ValueError, lambda: Permutation([1, 2], [0]))
# enclosing brackets needed
raises(ValueError, lambda: Permutation([[1, 2], 0]))
# enclosing brackets needed on 0
raises(ValueError, lambda: Permutation([1, 1, 0]))
raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3?
# but this is ok because cycles imply that only those listed moved
assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4])
def test_Cycle():
assert str(Cycle()) == '()'
assert Cycle(Cycle(1,2)) == Cycle(1, 2)
assert Cycle(1,2).copy() == Cycle(1,2)
assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2]
assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2)
assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5)
assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1)
raises(ValueError, lambda: Cycle().list())
assert Cycle(1, 2).list() == [0, 2, 1]
assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
assert Cycle(3).list(2) == [0, 1]
assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5]
assert Permutation(Cycle(1, 2), size=4) == \
Permutation([0, 2, 1, 3])
assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)'
assert str(Cycle(1, 2)) == '(1 2)'
assert Cycle(Permutation(list(range(3)))) == Cycle()
assert Cycle(1, 2).list() == [0, 2, 1]
assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
assert Cycle().size == 0
raises(ValueError, lambda: Cycle((1, 2)))
raises(ValueError, lambda: Cycle(1, 2, 1))
raises(TypeError, lambda: Cycle(1, 2)*{})
raises(ValueError, lambda: Cycle(4)[a])
raises(ValueError, lambda: Cycle(2, -4, 3))
# check round-trip
p = Permutation([[1, 2], [4, 3]], size=5)
assert Permutation(Cycle(p)) == p
def test_from_sequence():
assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3)
assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \
Permutation(4)(0, 2)(1, 3)
def test_resize():
p = Permutation(0, 1, 2)
assert p.resize(5) == Permutation(0, 1, 2, size=5)
assert p.resize(4) == Permutation(0, 1, 2, size=4)
assert p.resize(3) == p
raises(ValueError, lambda: p.resize(2))
p = Permutation(0, 1, 2)(3, 4)(5, 6)
assert p.resize(3) == Permutation(0, 1, 2)
raises(ValueError, lambda: p.resize(4))
def test_printing_cyclic():
p1 = Permutation([0, 2, 1])
assert repr(p1) == 'Permutation(1, 2)'
assert str(p1) == '(1 2)'
p2 = Permutation()
assert repr(p2) == 'Permutation()'
assert str(p2) == '()'
p3 = Permutation([1, 2, 0, 3])
assert repr(p3) == 'Permutation(3)(0, 1, 2)'
def test_printing_non_cyclic():
p1 = Permutation([0, 1, 2, 3, 4, 5])
assert srepr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
assert sstr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
p2 = Permutation([0, 1, 2])
assert srepr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
assert sstr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
p3 = Permutation([0, 2, 1])
assert srepr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
assert sstr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7])
assert srepr(p4, perm_cyclic=False) == 'Permutation([0, 1, 3, 2], size=8)'
def test_deprecated_print_cyclic():
p = Permutation(0, 1, 2)
try:
Permutation.print_cyclic = True
with warns_deprecated_sympy():
assert sstr(p) == '(0 1 2)'
with warns_deprecated_sympy():
assert srepr(p) == 'Permutation(0, 1, 2)'
with warns_deprecated_sympy():
assert pretty(p) == '(0 1 2)'
with warns_deprecated_sympy():
assert latex(p) == r'\left( 0\; 1\; 2\right)'
Permutation.print_cyclic = False
with warns_deprecated_sympy():
assert sstr(p) == 'Permutation([1, 2, 0])'
with warns_deprecated_sympy():
assert srepr(p) == 'Permutation([1, 2, 0])'
with warns_deprecated_sympy():
assert pretty(p, use_unicode=False) == '/0 1 2\\\n\\1 2 0/'
with warns_deprecated_sympy():
assert latex(p) == \
r'\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}'
finally:
Permutation.print_cyclic = None
def test_permutation_equality():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, 2)
assert Eq(a, b) is S.true
c = Permutation(0, 2, 1)
assert Eq(a, c) is S.false
d = Permutation(0, 1, 2, size=4)
assert unchanged(Eq, a, d)
e = Permutation(0, 2, 1, size=4)
assert unchanged(Eq, a, e)
i = Permutation()
assert unchanged(Eq, i, 0)
assert unchanged(Eq, 0, i)
def test_issue_17661():
c1 = Cycle(1,2)
c2 = Cycle(1,2)
assert c1 == c2
assert repr(c1) == 'Cycle(1, 2)'
assert c1 == c2
def test_permutation_apply():
x = Symbol('x')
p = Permutation(0, 1, 2)
assert p.apply(0) == 1
assert isinstance(p.apply(0), Integer)
assert p.apply(x) == AppliedPermutation(p, x)
assert AppliedPermutation(p, x).subs(x, 0) == 1
x = Symbol('x', integer=False)
raises(NotImplementedError, lambda: p.apply(x))
x = Symbol('x', negative=True)
raises(NotImplementedError, lambda: p.apply(x))
def test_AppliedPermutation():
x = Symbol('x')
p = Permutation(0, 1, 2)
raises(ValueError, lambda: AppliedPermutation((0, 1, 2), x))
assert AppliedPermutation(p, 1, evaluate=True) == 2
assert AppliedPermutation(p, 1, evaluate=False).__class__ == \
AppliedPermutation