Spaces:
Running
Running
from itertools import permutations | |
from copy import copy | |
from sympy.core.expr import unchanged | |
from sympy.core.numbers import Integer | |
from sympy.core.relational import Eq | |
from sympy.core.symbol import Symbol | |
from sympy.core.singleton import S | |
from sympy.combinatorics.permutations import \ | |
Permutation, _af_parity, _af_rmul, _af_rmuln, AppliedPermutation, Cycle | |
from sympy.printing import sstr, srepr, pretty, latex | |
from sympy.testing.pytest import raises, warns_deprecated_sympy | |
rmul = Permutation.rmul | |
a = Symbol('a', integer=True) | |
def test_Permutation(): | |
# don't auto fill 0 | |
raises(ValueError, lambda: Permutation([1])) | |
p = Permutation([0, 1, 2, 3]) | |
# call as bijective | |
assert [p(i) for i in range(p.size)] == list(p) | |
# call as operator | |
assert p(list(range(p.size))) == list(p) | |
# call as function | |
assert list(p(1, 2)) == [0, 2, 1, 3] | |
raises(TypeError, lambda: p(-1)) | |
raises(TypeError, lambda: p(5)) | |
# conversion to list | |
assert list(p) == list(range(4)) | |
assert p.copy() == p | |
assert copy(p) == p | |
assert Permutation(size=4) == Permutation(3) | |
assert Permutation(Permutation(3), size=5) == Permutation(4) | |
# cycle form with size | |
assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]]) | |
# random generation | |
assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) | |
p = Permutation([2, 5, 1, 6, 3, 0, 4]) | |
q = Permutation([[1], [0, 3, 5, 6, 2, 4]]) | |
assert len({p, p}) == 1 | |
r = Permutation([1, 3, 2, 0, 4, 6, 5]) | |
ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form | |
assert rmul(p, q, r).array_form == ans | |
# make sure no other permutation of p, q, r could have given | |
# that answer | |
for a, b, c in permutations((p, q, r)): | |
if (a, b, c) == (p, q, r): | |
continue | |
assert rmul(a, b, c).array_form != ans | |
assert p.support() == list(range(7)) | |
assert q.support() == [0, 2, 3, 4, 5, 6] | |
assert Permutation(p.cyclic_form).array_form == p.array_form | |
assert p.cardinality == 5040 | |
assert q.cardinality == 5040 | |
assert q.cycles == 2 | |
assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0]) | |
assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1]) | |
assert _af_rmul(p.array_form, q.array_form) == \ | |
[6, 5, 3, 0, 2, 4, 1] | |
assert rmul(Permutation([[1, 2, 3], [0, 4]]), | |
Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \ | |
[[0, 4, 2], [1, 3]] | |
assert q.array_form == [3, 1, 4, 5, 0, 6, 2] | |
assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]] | |
assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]] | |
assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]] | |
t = p.transpositions() | |
assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)] | |
assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)]) | |
assert Permutation([1, 0]).transpositions() == [(0, 1)] | |
assert p**13 == p | |
assert q**0 == Permutation(list(range(q.size))) | |
assert q**-2 == ~q**2 | |
assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4]) | |
assert q**3 == q**2*q | |
assert q**4 == q**2*q**2 | |
a = Permutation(1, 3) | |
b = Permutation(2, 0, 3) | |
I = Permutation(3) | |
assert ~a == a**-1 | |
assert a*~a == I | |
assert a*b**-1 == a*~b | |
ans = Permutation(0, 5, 3, 1, 6)(2, 4) | |
assert (p + q.rank()).rank() == ans.rank() | |
assert (p + q.rank())._rank == ans.rank() | |
assert (q + p.rank()).rank() == ans.rank() | |
raises(TypeError, lambda: p + Permutation(list(range(10)))) | |
assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank() | |
assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used | |
assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank() | |
assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)])) | |
assert p*Permutation([]) == p | |
assert Permutation([])*p == p | |
assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4]) | |
assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4]) | |
pq = p ^ q | |
assert pq == Permutation([5, 6, 0, 4, 1, 2, 3]) | |
assert pq == rmul(q, p, ~q) | |
qp = q ^ p | |
assert qp == Permutation([4, 3, 6, 2, 1, 5, 0]) | |
assert qp == rmul(p, q, ~p) | |
raises(ValueError, lambda: p ^ Permutation([])) | |
assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2) | |
assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1) | |
assert p.commutator(q) == ~q.commutator(p) | |
raises(ValueError, lambda: p.commutator(Permutation([]))) | |
assert len(p.atoms()) == 7 | |
assert q.atoms() == {0, 1, 2, 3, 4, 5, 6} | |
assert p.inversion_vector() == [2, 4, 1, 3, 1, 0] | |
assert q.inversion_vector() == [3, 1, 2, 2, 0, 1] | |
assert Permutation.from_inversion_vector(p.inversion_vector()) == p | |
assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\ | |
== q.array_form | |
raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2])) | |
assert Permutation(list(range(500, -1, -1))).inversions() == 125250 | |
s = Permutation([0, 4, 1, 3, 2]) | |
assert s.parity() == 0 | |
_ = s.cyclic_form # needed to create a value for _cyclic_form | |
assert len(s._cyclic_form) != s.size and s.parity() == 0 | |
assert not s.is_odd | |
assert s.is_even | |
assert Permutation([0, 1, 4, 3, 2]).parity() == 1 | |
assert _af_parity([0, 4, 1, 3, 2]) == 0 | |
assert _af_parity([0, 1, 4, 3, 2]) == 1 | |
s = Permutation([0]) | |
assert s.is_Singleton | |
assert Permutation([]).is_Empty | |
r = Permutation([3, 2, 1, 0]) | |
assert (r**2).is_Identity | |
assert rmul(~p, p).is_Identity | |
assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3]) | |
assert p.max() == 6 | |
assert p.min() == 0 | |
q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) | |
assert q.max() == 4 | |
assert q.min() == 0 | |
p = Permutation([1, 5, 2, 0, 3, 6, 4]) | |
q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) | |
assert p.ascents() == [0, 3, 4] | |
assert q.ascents() == [1, 2, 4] | |
assert r.ascents() == [] | |
assert p.descents() == [1, 2, 5] | |
assert q.descents() == [0, 3, 5] | |
assert Permutation(r.descents()).is_Identity | |
assert p.inversions() == 7 | |
# test the merge-sort with a longer permutation | |
big = list(p) + list(range(p.max() + 1, p.max() + 130)) | |
assert Permutation(big).inversions() == 7 | |
assert p.signature() == -1 | |
assert q.inversions() == 11 | |
assert q.signature() == -1 | |
assert rmul(p, ~p).inversions() == 0 | |
assert rmul(p, ~p).signature() == 1 | |
assert p.order() == 6 | |
assert q.order() == 10 | |
assert (p**(p.order())).is_Identity | |
assert p.length() == 6 | |
assert q.length() == 7 | |
assert r.length() == 4 | |
assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]] | |
assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]] | |
assert r.runs() == [[3], [2], [1], [0]] | |
assert p.index() == 8 | |
assert q.index() == 8 | |
assert r.index() == 3 | |
assert p.get_precedence_distance(q) == q.get_precedence_distance(p) | |
assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q) | |
assert p.get_positional_distance(q) == p.get_positional_distance(q) | |
p = Permutation([0, 1, 2, 3]) | |
q = Permutation([3, 2, 1, 0]) | |
assert p.get_precedence_distance(q) == 6 | |
assert p.get_adjacency_distance(q) == 3 | |
assert p.get_positional_distance(q) == 8 | |
p = Permutation([0, 3, 1, 2, 4]) | |
q = Permutation.josephus(4, 5, 2) | |
assert p.get_adjacency_distance(q) == 3 | |
raises(ValueError, lambda: p.get_adjacency_distance(Permutation([]))) | |
raises(ValueError, lambda: p.get_positional_distance(Permutation([]))) | |
raises(ValueError, lambda: p.get_precedence_distance(Permutation([]))) | |
a = [Permutation.unrank_nonlex(4, i) for i in range(5)] | |
iden = Permutation([0, 1, 2, 3]) | |
for i in range(5): | |
for j in range(i + 1, 5): | |
assert a[i].commutes_with(a[j]) == \ | |
(rmul(a[i], a[j]) == rmul(a[j], a[i])) | |
if a[i].commutes_with(a[j]): | |
assert a[i].commutator(a[j]) == iden | |
assert a[j].commutator(a[i]) == iden | |
a = Permutation(3) | |
b = Permutation(0, 6, 3)(1, 2) | |
assert a.cycle_structure == {1: 4} | |
assert b.cycle_structure == {2: 1, 3: 1, 1: 2} | |
# issue 11130 | |
raises(ValueError, lambda: Permutation(3, size=3)) | |
raises(ValueError, lambda: Permutation([1, 2, 0, 3], size=3)) | |
def test_Permutation_subclassing(): | |
# Subclass that adds permutation application on iterables | |
class CustomPermutation(Permutation): | |
def __call__(self, *i): | |
try: | |
return super().__call__(*i) | |
except TypeError: | |
pass | |
try: | |
perm_obj = i[0] | |
return [self._array_form[j] for j in perm_obj] | |
except TypeError: | |
raise TypeError('unrecognized argument') | |
def __eq__(self, other): | |
if isinstance(other, Permutation): | |
return self._hashable_content() == other._hashable_content() | |
else: | |
return super().__eq__(other) | |
def __hash__(self): | |
return super().__hash__() | |
p = CustomPermutation([1, 2, 3, 0]) | |
q = Permutation([1, 2, 3, 0]) | |
assert p == q | |
raises(TypeError, lambda: q([1, 2])) | |
assert [2, 3] == p([1, 2]) | |
assert type(p * q) == CustomPermutation | |
assert type(q * p) == Permutation # True because q.__mul__(p) is called! | |
# Run all tests for the Permutation class also on the subclass | |
def wrapped_test_Permutation(): | |
# Monkeypatch the class definition in the globals | |
globals()['__Perm'] = globals()['Permutation'] | |
globals()['Permutation'] = CustomPermutation | |
test_Permutation() | |
globals()['Permutation'] = globals()['__Perm'] # Restore | |
del globals()['__Perm'] | |
wrapped_test_Permutation() | |
def test_josephus(): | |
assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4]) | |
assert Permutation.josephus(1, 5, 1).is_Identity | |
def test_ranking(): | |
assert Permutation.unrank_lex(5, 10).rank() == 10 | |
p = Permutation.unrank_lex(15, 225) | |
assert p.rank() == 225 | |
p1 = p.next_lex() | |
assert p1.rank() == 226 | |
assert Permutation.unrank_lex(15, 225).rank() == 225 | |
assert Permutation.unrank_lex(10, 0).is_Identity | |
p = Permutation.unrank_lex(4, 23) | |
assert p.rank() == 23 | |
assert p.array_form == [3, 2, 1, 0] | |
assert p.next_lex() is None | |
p = Permutation([1, 5, 2, 0, 3, 6, 4]) | |
q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) | |
a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)] | |
assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1, | |
2], [3, 0, 2, 1] ] | |
assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5)) | |
assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \ | |
Permutation([0, 1, 3, 2]) | |
assert q.rank_trotterjohnson() == 2283 | |
assert p.rank_trotterjohnson() == 3389 | |
assert Permutation([1, 0]).rank_trotterjohnson() == 1 | |
a = Permutation(list(range(3))) | |
b = a | |
l = [] | |
tj = [] | |
for i in range(6): | |
l.append(a) | |
tj.append(b) | |
a = a.next_lex() | |
b = b.next_trotterjohnson() | |
assert a == b is None | |
assert {tuple(a) for a in l} == {tuple(a) for a in tj} | |
p = Permutation([2, 5, 1, 6, 3, 0, 4]) | |
q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) | |
assert p.rank() == 1964 | |
assert q.rank() == 870 | |
assert Permutation([]).rank_nonlex() == 0 | |
prank = p.rank_nonlex() | |
assert prank == 1600 | |
assert Permutation.unrank_nonlex(7, 1600) == p | |
qrank = q.rank_nonlex() | |
assert qrank == 41 | |
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form) | |
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)] | |
assert a == [ | |
[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], | |
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], | |
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], | |
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], | |
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]] | |
N = 10 | |
p1 = Permutation(a[0]) | |
for i in range(1, N+1): | |
p1 = p1*Permutation(a[i]) | |
p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]]) | |
assert p1 == p2 | |
ok = [] | |
p = Permutation([1, 0]) | |
for i in range(3): | |
ok.append(p.array_form) | |
p = p.next_nonlex() | |
if p is None: | |
ok.append(None) | |
break | |
assert ok == [[1, 0], [0, 1], None] | |
assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2]) | |
assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24)) | |
def test_mul(): | |
a, b = [0, 2, 1, 3], [0, 1, 3, 2] | |
assert _af_rmul(a, b) == [0, 2, 3, 1] | |
assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1] | |
assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1] | |
a = Permutation([0, 2, 1, 3]) | |
b = (0, 1, 3, 2) | |
c = (3, 1, 2, 0) | |
assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0]) | |
assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0]) | |
raises(TypeError, lambda: Permutation.rmul(b, c)) | |
n = 6 | |
m = 8 | |
a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)] | |
h = list(range(n)) | |
for i in range(m): | |
h = _af_rmul(h, a[i]) | |
h2 = _af_rmuln(*a[:i + 1]) | |
assert h == h2 | |
def test_args(): | |
p = Permutation([(0, 3, 1, 2), (4, 5)]) | |
assert p._cyclic_form is None | |
assert Permutation(p) == p | |
assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]] | |
assert p._array_form == [3, 2, 0, 1, 5, 4] | |
p = Permutation((0, 3, 1, 2)) | |
assert p._cyclic_form is None | |
assert p._array_form == [0, 3, 1, 2] | |
assert Permutation([0]) == Permutation((0, )) | |
assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \ | |
Permutation(((0, ), [1])) | |
assert Permutation([[1, 2]]) == Permutation([0, 2, 1]) | |
assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2]) | |
assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2]) | |
assert Permutation( | |
[[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5]) | |
assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2) | |
assert Permutation([], size=3) == Permutation([0, 1, 2]) | |
assert Permutation(3).list(5) == [0, 1, 2, 3, 4] | |
assert Permutation(3).list(-1) == [] | |
assert Permutation(5)(1, 2).list(-1) == [0, 2, 1] | |
assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5] | |
raises(ValueError, lambda: Permutation([1, 2], [0])) | |
# enclosing brackets needed | |
raises(ValueError, lambda: Permutation([[1, 2], 0])) | |
# enclosing brackets needed on 0 | |
raises(ValueError, lambda: Permutation([1, 1, 0])) | |
raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3? | |
# but this is ok because cycles imply that only those listed moved | |
assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4]) | |
def test_Cycle(): | |
assert str(Cycle()) == '()' | |
assert Cycle(Cycle(1,2)) == Cycle(1, 2) | |
assert Cycle(1,2).copy() == Cycle(1,2) | |
assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2] | |
assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2) | |
assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5) | |
assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1) | |
raises(ValueError, lambda: Cycle().list()) | |
assert Cycle(1, 2).list() == [0, 2, 1] | |
assert Cycle(1, 2).list(4) == [0, 2, 1, 3] | |
assert Cycle(3).list(2) == [0, 1] | |
assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5] | |
assert Permutation(Cycle(1, 2), size=4) == \ | |
Permutation([0, 2, 1, 3]) | |
assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)' | |
assert str(Cycle(1, 2)) == '(1 2)' | |
assert Cycle(Permutation(list(range(3)))) == Cycle() | |
assert Cycle(1, 2).list() == [0, 2, 1] | |
assert Cycle(1, 2).list(4) == [0, 2, 1, 3] | |
assert Cycle().size == 0 | |
raises(ValueError, lambda: Cycle((1, 2))) | |
raises(ValueError, lambda: Cycle(1, 2, 1)) | |
raises(TypeError, lambda: Cycle(1, 2)*{}) | |
raises(ValueError, lambda: Cycle(4)[a]) | |
raises(ValueError, lambda: Cycle(2, -4, 3)) | |
# check round-trip | |
p = Permutation([[1, 2], [4, 3]], size=5) | |
assert Permutation(Cycle(p)) == p | |
def test_from_sequence(): | |
assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3) | |
assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \ | |
Permutation(4)(0, 2)(1, 3) | |
def test_resize(): | |
p = Permutation(0, 1, 2) | |
assert p.resize(5) == Permutation(0, 1, 2, size=5) | |
assert p.resize(4) == Permutation(0, 1, 2, size=4) | |
assert p.resize(3) == p | |
raises(ValueError, lambda: p.resize(2)) | |
p = Permutation(0, 1, 2)(3, 4)(5, 6) | |
assert p.resize(3) == Permutation(0, 1, 2) | |
raises(ValueError, lambda: p.resize(4)) | |
def test_printing_cyclic(): | |
p1 = Permutation([0, 2, 1]) | |
assert repr(p1) == 'Permutation(1, 2)' | |
assert str(p1) == '(1 2)' | |
p2 = Permutation() | |
assert repr(p2) == 'Permutation()' | |
assert str(p2) == '()' | |
p3 = Permutation([1, 2, 0, 3]) | |
assert repr(p3) == 'Permutation(3)(0, 1, 2)' | |
def test_printing_non_cyclic(): | |
p1 = Permutation([0, 1, 2, 3, 4, 5]) | |
assert srepr(p1, perm_cyclic=False) == 'Permutation([], size=6)' | |
assert sstr(p1, perm_cyclic=False) == 'Permutation([], size=6)' | |
p2 = Permutation([0, 1, 2]) | |
assert srepr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])' | |
assert sstr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])' | |
p3 = Permutation([0, 2, 1]) | |
assert srepr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])' | |
assert sstr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])' | |
p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7]) | |
assert srepr(p4, perm_cyclic=False) == 'Permutation([0, 1, 3, 2], size=8)' | |
def test_deprecated_print_cyclic(): | |
p = Permutation(0, 1, 2) | |
try: | |
Permutation.print_cyclic = True | |
with warns_deprecated_sympy(): | |
assert sstr(p) == '(0 1 2)' | |
with warns_deprecated_sympy(): | |
assert srepr(p) == 'Permutation(0, 1, 2)' | |
with warns_deprecated_sympy(): | |
assert pretty(p) == '(0 1 2)' | |
with warns_deprecated_sympy(): | |
assert latex(p) == r'\left( 0\; 1\; 2\right)' | |
Permutation.print_cyclic = False | |
with warns_deprecated_sympy(): | |
assert sstr(p) == 'Permutation([1, 2, 0])' | |
with warns_deprecated_sympy(): | |
assert srepr(p) == 'Permutation([1, 2, 0])' | |
with warns_deprecated_sympy(): | |
assert pretty(p, use_unicode=False) == '/0 1 2\\\n\\1 2 0/' | |
with warns_deprecated_sympy(): | |
assert latex(p) == \ | |
r'\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}' | |
finally: | |
Permutation.print_cyclic = None | |
def test_permutation_equality(): | |
a = Permutation(0, 1, 2) | |
b = Permutation(0, 1, 2) | |
assert Eq(a, b) is S.true | |
c = Permutation(0, 2, 1) | |
assert Eq(a, c) is S.false | |
d = Permutation(0, 1, 2, size=4) | |
assert unchanged(Eq, a, d) | |
e = Permutation(0, 2, 1, size=4) | |
assert unchanged(Eq, a, e) | |
i = Permutation() | |
assert unchanged(Eq, i, 0) | |
assert unchanged(Eq, 0, i) | |
def test_issue_17661(): | |
c1 = Cycle(1,2) | |
c2 = Cycle(1,2) | |
assert c1 == c2 | |
assert repr(c1) == 'Cycle(1, 2)' | |
assert c1 == c2 | |
def test_permutation_apply(): | |
x = Symbol('x') | |
p = Permutation(0, 1, 2) | |
assert p.apply(0) == 1 | |
assert isinstance(p.apply(0), Integer) | |
assert p.apply(x) == AppliedPermutation(p, x) | |
assert AppliedPermutation(p, x).subs(x, 0) == 1 | |
x = Symbol('x', integer=False) | |
raises(NotImplementedError, lambda: p.apply(x)) | |
x = Symbol('x', negative=True) | |
raises(NotImplementedError, lambda: p.apply(x)) | |
def test_AppliedPermutation(): | |
x = Symbol('x') | |
p = Permutation(0, 1, 2) | |
raises(ValueError, lambda: AppliedPermutation((0, 1, 2), x)) | |
assert AppliedPermutation(p, 1, evaluate=True) == 2 | |
assert AppliedPermutation(p, 1, evaluate=False).__class__ == \ | |
AppliedPermutation | |