File size: 5,082 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import os
import tempfile
import unittest

import numpy as np
import numpy.testing as npt

import onnx
import onnx.helper
import onnx.model_container
import onnx.numpy_helper
import onnx.reference


def _linear_regression():
    X = onnx.helper.make_tensor_value_info("X", onnx.TensorProto.FLOAT, [None, None])
    Y = onnx.helper.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [None])
    graph = onnx.helper.make_graph(
        [
            onnx.helper.make_node("MatMul", ["X", "A"], ["XA"]),
            onnx.helper.make_node("MatMul", ["XA", "B"], ["XB"]),
            onnx.helper.make_node("MatMul", ["XB", "C"], ["Y"]),
        ],
        "mm",
        [X],
        [Y],
        [
            onnx.numpy_helper.from_array(
                np.arange(9).astype(np.float32).reshape((-1, 3)), name="A"
            ),
            onnx.numpy_helper.from_array(
                (np.arange(9) * 100).astype(np.float32).reshape((-1, 3)),
                name="B",
            ),
            onnx.numpy_helper.from_array(
                (np.arange(9) + 10).astype(np.float32).reshape((-1, 3)),
                name="C",
            ),
        ],
    )
    onnx_model = onnx.helper.make_model(graph)
    onnx.checker.check_model(onnx_model)
    return onnx_model


def _large_linear_regression():
    X = onnx.helper.make_tensor_value_info("X", onnx.TensorProto.FLOAT, [None, None])
    Y = onnx.helper.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [None])
    graph = onnx.helper.make_graph(
        [
            onnx.helper.make_node("MatMul", ["X", "A"], ["XA"]),
            onnx.helper.make_node("MatMul", ["XA", "B"], ["XB"]),
            onnx.helper.make_node("MatMul", ["XB", "C"], ["Y"]),
        ],
        "mm",
        [X],
        [Y],
        [
            onnx.model_container.make_large_tensor_proto(
                "#loc0", "A", onnx.TensorProto.FLOAT, (3, 3)
            ),
            onnx.numpy_helper.from_array(
                np.arange(9).astype(np.float32).reshape((-1, 3)), name="B"
            ),
            onnx.model_container.make_large_tensor_proto(
                "#loc1", "C", onnx.TensorProto.FLOAT, (3, 3)
            ),
        ],
    )
    onnx_model = onnx.helper.make_model(graph)
    large_model = onnx.model_container.make_large_model(
        onnx_model.graph,
        {
            "#loc0": (np.arange(9) * 100).astype(np.float32).reshape((-1, 3)),
            "#loc1": (np.arange(9) + 10).astype(np.float32).reshape((-1, 3)),
        },
    )
    large_model.check_model()
    return large_model


class TestLargeOnnxReferenceEvaluator(unittest.TestCase):
    def common_check_reference_evaluator(self, container):
        X = np.arange(9).astype(np.float32).reshape((-1, 3))
        ref = onnx.reference.ReferenceEvaluator(container)
        got = ref.run(None, {"X": X})
        expected = np.array(
            [
                [945000, 1015200, 1085400],
                [2905200, 3121200, 3337200],
                [4865400, 5227200, 5589000],
            ],
            dtype=np.float32,
        )
        npt.assert_allclose(expected, got[0])

    def test_large_onnx_no_large_initializer(self):
        model_proto = _linear_regression()
        large_model = onnx.model_container.make_large_model(model_proto.graph)
        self.common_check_reference_evaluator(large_model)
        with self.assertRaises(ValueError):
            large_model["#anymissingkey"]

        with tempfile.TemporaryDirectory() as temp:
            filename = os.path.join(temp, "model.onnx")
            large_model.save(filename)
            copy = onnx.model_container.ModelContainer()
            copy.load(filename)
            self.common_check_reference_evaluator(copy)

    def test_large_one_weight_file(self):
        large_model = _large_linear_regression()
        self.common_check_reference_evaluator(large_model)
        with tempfile.TemporaryDirectory() as temp:
            filename = os.path.join(temp, "model.onnx")
            large_model.save(filename, True)
            copy = onnx.model_container.ModelContainer()
            copy.load(filename)
            loaded_model = onnx.load_model(filename, load_external_data=True)
            self.common_check_reference_evaluator(loaded_model)

    def test_large_multi_files(self):
        large_model = _large_linear_regression()
        self.common_check_reference_evaluator(large_model)
        with tempfile.TemporaryDirectory() as temp:
            filename = os.path.join(temp, "model.onnx")
            large_model.save(filename, False)
            copy = onnx.load_model(filename)
            self.common_check_reference_evaluator(copy)
            loaded_model = onnx.load_model(filename, load_external_data=True)
            self.common_check_reference_evaluator(loaded_model)


if __name__ == "__main__":
    unittest.main(verbosity=2)