Spaces:
Running
Running
File size: 10,883 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
// Copyright (c) ONNX Project Contributors
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <iostream>
#include "gtest/gtest.h"
#include "onnx/checker.h"
#include "onnx/common/constants.h"
#include "onnx/defs/function.h"
#include "onnx/defs/schema.h"
using namespace ONNX_NAMESPACE::checker;
#pragma warning(push)
#pragma warning(disable : 4530)
namespace ONNX_NAMESPACE {
namespace Test {
// Utilities. TODO: Turn them into reusable ONNX utilities for use by
TensorProto ToTensor(double value, TensorProto_DataType elem_type) {
TensorProto t;
t.set_data_type(elem_type);
switch (elem_type) {
case TensorProto_DataType::TensorProto_DataType_FLOAT:
t.add_float_data((float)value);
break;
case TensorProto_DataType::TensorProto_DataType_DOUBLE:
t.add_double_data(value);
break;
// case TensorProto_DataType::TensorProto_DataType_FLOAT16:
// t.add_int32_data(onnxruntime::math::floatToHalf((float)value));
// break;
default:
assert(false);
}
return t;
}
void BuildNodes(FunctionProto& functionProto, const std::vector<FunctionBodyHelper::NodeDef>& node_defs) {
for (size_t i = 0; i < node_defs.size(); i++) {
const FunctionBodyHelper::NodeDef& node = node_defs[i];
auto* np = functionProto.add_node();
np->set_op_type(node.op_type);
for (const auto& inp : node.inputs) {
np->add_input(inp);
}
for (const auto& o : node.outputs) {
np->add_output(o);
}
for (const auto& attr : node.attributes) {
*(np->add_attribute()) = attr.proto;
}
}
}
bool BuildFunctionProto(
FunctionProto& functionProto,
const OpSchema& schema,
const std::vector<FunctionBodyHelper::NodeDef>& node_defs) {
BuildNodes(functionProto, node_defs);
schema.BuildFunction(functionProto);
return true;
}
// A monomorphic context-dependent function test-case.
static bool
BuildFloatFunctionBody(const FunctionBodyBuildContext& ctx, const OpSchema& schema, FunctionProto& functionProto) {
// Create a scalar-tensor constant 2.0 of float type:
auto two_as_tensor = ToTensor(2.0, TensorProto_DataType::TensorProto_DataType_FLOAT);
std::vector<FunctionBodyHelper::NodeDef> body{// nodes: {outputs, op, inputs, attributes}
{{"Two"}, "Constant", {}, {{"value", two_as_tensor}}},
{{"Y"}, "Mul", {"X", "Two"}}};
return BuildFunctionProto(functionProto, schema, body);
}
void RegisterCustomFuncFloatSchema() {
ONNX_NAMESPACE::OpSchema schema;
schema.SetName("CustomFuncFloat")
.SetDomain(ONNX_DOMAIN)
.SinceVersion(12)
.SetDoc("This operator returns an output tensor that is twice the input tensor.")
.Input(0, "X", "Input tensor", "T", OpSchema::Single)
.Output(0, "Y", "Output tensor", "T", OpSchema::Single)
.TypeConstraint("T", {"tensor(float)"}, "Type of the input and output values")
.SetContextDependentFunctionBodyBuilder(BuildFloatFunctionBody);
ONNX_NAMESPACE::OpSchemaRegistry::OpSchemaRegisterOnce unused(schema);
(void)unused;
}
// Test for Context dependant function without type context
TEST(FunctionAPITest, ContextDependentFunctionTest) {
RegisterCustomFuncFloatSchema();
const auto* schema = OpSchemaRegistry::Schema("CustomFuncFloat", 12, ONNX_DOMAIN);
EXPECT_TRUE(schema);
EXPECT_FALSE(schema->HasFunction());
EXPECT_TRUE(schema->HasContextDependentFunction());
NodeProto nodeProto;
nodeProto.set_op_type("CustomFuncFloat");
nodeProto.add_input("X");
nodeProto.add_output("Y");
FunctionBodyBuildContextImpl ctx(nodeProto);
FunctionProto fnProto;
EXPECT_TRUE(schema->BuildContextDependentFunction(ctx, fnProto));
EXPECT_EQ(fnProto.node_size(), 2);
LexicalScopeContext lexicalScope;
CheckerContext checkerCtx;
std::unordered_map<std::string, int> opset_imports({{ONNX_DOMAIN, 12}});
checkerCtx.set_opset_imports(opset_imports);
checkerCtx.set_ir_version(7);
check_function(fnProto, checkerCtx, lexicalScope);
}
// A polymorphic context-dependent function test-case.
static bool
BuildFunctionBody(const FunctionBodyBuildContext& ctx, const OpSchema& schema, FunctionProto& functionProto) {
// Create a scalar-tensor constant 2.0 of input-type:
auto* tp = ctx.getInputType(0);
if ((tp == nullptr) || (!tp->has_tensor_type()))
return false;
auto elem_type = (TensorProto_DataType)tp->tensor_type().elem_type();
auto two_as_tensor = ToTensor(2.0, elem_type);
std::vector<FunctionBodyHelper::NodeDef> body{// nodes: {outputs, op, inputs, attributes}
{{"Two"}, "Constant", {}, {{"value", two_as_tensor}}},
{{"Y"}, "Mul", {"X", "Two"}}};
return BuildFunctionProto(functionProto, schema, body);
}
void RegisterCustomFunctionSchema() {
ONNX_NAMESPACE::OpSchema schema;
schema.SetName("CustomFunction")
.SetDomain(ONNX_DOMAIN)
.SinceVersion(12)
.SetDoc("This operator returns an output tensor that is twice the input tensor.")
.Input(0, "X", "Input tensor", "T", OpSchema::Single)
.Output(0, "Y", "Output tensor", "T", OpSchema::Single)
.TypeConstraint("T", {"tensor(float)", "tensor(double)"}, "Type of the input and output values")
.SetContextDependentFunctionBodyBuilder(BuildFunctionBody);
ONNX_NAMESPACE::OpSchemaRegistry::OpSchemaRegisterOnce unused(schema);
(void)unused;
}
TEST(FunctionAPITest, VersionedFunctionBodyTest) {
// This test illustrate issues of ONNX function ops.
// It is over simplified in that only one primary op (Sub) is used in function body.
// ONNX opset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// MySub: 2 9 // MySub function op is created at opset 2.
// // Its semantic is updated at opset 7
// Body Ideal: 2 6 7 9 13 14 16 // Ideally function body shall be provided
// // each time there is any version bump of
// // used primary ops. It will be more
// // frequent
// // if more primary ops are used.
// Body Real: 2 9 16 // In real life, we seldom add function body
// // due to primary op update
// Sub: 1 6 7 13 14 // Version bumps of Sub
// Model: y y y y n n n y y y y n n n y y y // Model can(y)/cannot(n) used
// with opset import version.
ONNX_NAMESPACE::OpSchema schema_ver2;
schema_ver2.SetName("MySub")
.SetDomain(ONNX_DOMAIN)
.SinceVersion(2)
.SetDoc("Z = Sub (X, Y)")
.Input(0, "X", "Input tensor X", "T", OpSchema::Single)
.Input(1, "Y", "Input tensor Y", "T", OpSchema::Single)
.Output(0, "Z", "Output tensor Z", "T", OpSchema::Single)
.TypeConstraint("T", {"tensor(float)", "tensor(double)"}, "Type of the input and output values")
.FunctionBody(
R"ONNX(
{
Z = Sub (X, Y)
}
)ONNX",
2);
ONNX_NAMESPACE::OpSchema schema_ver9;
schema_ver9.SetName("MySub")
.SetDomain(ONNX_DOMAIN)
.SinceVersion(9)
.SetDoc("Z = Sub (X, Y)")
.Input(0, "X", "Input tensor X", "T", OpSchema::Single)
.Input(1, "Y", "Input tensor Y", "T", OpSchema::Single)
.Output(0, "Z", "Output tensor Z", "T", OpSchema::Single)
.TypeConstraint("T", {"tensor(float)", "tensor(double)"}, "Type of the input and output values")
.FunctionBody(
R"ONNX(
{
Z = Sub (X, Y)
}
)ONNX",
9)
.FunctionBody(
R"ONNX(
{
Z = Sub (X, Y)
}
)ONNX",
16);
ONNX_NAMESPACE::OpSchemaRegistry::OpSchemaRegisterOnce unused2(schema_ver2);
(void)unused2;
ONNX_NAMESPACE::OpSchemaRegistry::OpSchemaRegisterOnce unused9(schema_ver9);
(void)unused9;
const auto* schema2 = OpSchemaRegistry::Schema("MySub", 2, ONNX_DOMAIN);
EXPECT_TRUE(schema2);
for (int model_opset_import = 2; model_opset_import < 9; model_opset_import++) {
try {
bool validate = true;
const FunctionProto* function = schema2->GetFunction(model_opset_import, validate);
if (model_opset_import >= 6) { // function body should be updated at opset 6 where Sub is updated
ASSERT_TRUE(function == nullptr);
} else {
ASSERT_TRUE(function);
}
} catch (std::runtime_error err) {
ASSERT_TRUE(model_opset_import == 6 || model_opset_import == 7 || model_opset_import == 8);
}
}
const auto* schema9 = OpSchemaRegistry::Schema("MySub", 9, ONNX_DOMAIN);
EXPECT_TRUE(schema9);
for (int model_opset_import = 9; model_opset_import < 10; model_opset_import++) {
try {
const FunctionProto* function = schema9->GetFunction(model_opset_import);
ASSERT_TRUE(function);
} catch (std::runtime_error err) {
ASSERT_TRUE(model_opset_import == 13 || model_opset_import == 14 || model_opset_import == 15);
}
}
}
TEST(FunctionAPITest, TypeContextTest) {
RegisterCustomFunctionSchema();
const auto* schema = OpSchemaRegistry::Schema("CustomFunction", 12, ONNX_DOMAIN);
EXPECT_TRUE(schema);
EXPECT_FALSE(schema->HasFunction());
EXPECT_TRUE(schema->HasContextDependentFunction());
NodeProto nodeProto;
nodeProto.set_op_type("CustomFunction");
nodeProto.add_input("X");
nodeProto.add_output("Y");
TypeProto floatTypeProto;
floatTypeProto.mutable_tensor_type()->set_elem_type(TensorProto_DataType::TensorProto_DataType_FLOAT);
FunctionBodyBuildContextImpl ctx(nodeProto, {floatTypeProto});
FunctionProto fnProto;
EXPECT_TRUE(schema->BuildContextDependentFunction(ctx, fnProto));
EXPECT_EQ(fnProto.node_size(), 2);
LexicalScopeContext lexicalScope;
CheckerContext checkerCtx;
std::unordered_map<std::string, int> opset_imports({{ONNX_DOMAIN, 12}});
checkerCtx.set_opset_imports(opset_imports);
checkerCtx.set_ir_version(7);
check_function(fnProto, checkerCtx, lexicalScope);
}
} // namespace Test
} // namespace ONNX_NAMESPACE
#pragma warning(pop)
|