Spaces:
Running
Running
File size: 166,662 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <algorithm>
#include <cmath>
#include <numeric>
#include "onnx/defs/data_propagators.h"
#include "onnx/defs/function.h"
#include "onnx/defs/tensor/utils.h"
#include "onnx/defs/tensor_proto_util.h"
namespace ONNX_NAMESPACE {
static const char* Cast_ver19_doc = R"DOC(
The operator casts the elements of a given input tensor to a data type
specified by the 'to' argument and returns an output tensor of the same size in
the converted type. The 'to' argument must be one of the data types specified
in the 'DataType' enum field in the TensorProto message.
Casting from string tensor in plain (e.g., "3.14" and "1000") and scientific numeric representations
(e.g., "1e-5" and "1E8") to float types is supported. For example, converting string "100.5" to an integer may
yield result 100. There are some string literals reserved for special floating-point values;
"+INF" (and "INF"), "-INF", and "NaN" are positive infinity, negative infinity, and not-a-number, respectively.
Any string which can exactly match "+INF" in a case-insensitive way would be mapped to positive infinite. Similarly,
this case-insensitive rule is applied to "INF" and "NaN". When casting from numeric tensors
to string tensors, plain floating-point representation (such as "314.15926") would be used.
Converting non-numerical-literal string such as "Hello World!" is an undefined behavior. Cases
of converting string representing floating-point arithmetic value, such as "2.718", to INT is an undefined behavior.
Conversion from a numerical type to any numerical type is always allowed.
User must be aware of precision loss and value change caused by range difference between two types.
For example, a 64-bit float 3.1415926459 may be round to a 32-bit float 3.141592. Similarly, converting
an integer 36 to Boolean may produce 1 because we truncate bits which can't be stored in the targeted type.
In more detail, the conversion among numerical types should follow these rules
if the destination type is not a float 8 type.
* Casting from floating point to:
* floating point: +/- infinity if OOR (out of range).
* fixed point: undefined if OOR.
* bool: +/- 0.0 to False; all else to True.
* Casting from fixed point to:
* floating point: +/- infinity if OOR. (+ infinity in the case of uint)
* fixed point: when OOR, discard higher bits and reinterpret (with respect to two's complement representation for
signed types). For example, 200 (int16) -> -56 (int8).
* bool: zero to False; nonzero to True.
* Casting from bool to:
* floating point: `{1.0, 0.0}`.
* fixed point: `{1, 0}`.
* bool: no change.
Float 8 type were introduced to speed up the training of
deep models. By default the conversion of a float *x* obeys
to the following rules. `[x]` means the value rounded to
the target mantissa width.
| x | E4M3FN | E4M3FNUZ | E5M2 | E5M2FNUZ |
|------|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 |
|-0 | -0 | 0 | -0 | 0 |
| NaN | NaN | NaN | NaN | NaN |
| +/- Inf | +/- FLT_MAX | NaN | FLT_MAX | NaN |
| [x] > FLT_MAX | FLT_MAX | FLT_MAX | FLT_MAX | FLT_MAX |
| [x] < -FLT_MAX | -FLT_MAX | -FLT_MAX | -FLT_MAX | -FLT_MAX |
| else | RNE | RNE | RNE | RNE |
The behavior changes if the parameter 'saturate' is set to False.
The rules then become:
| x | E4M3FN | E4M3FNUZ | E5M2 | E5M2FNUZ |
|------|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 |
|-0 | -0 | 0 | -0 | 0 |
| NaN | NaN | NaN | NaN | NaN |
| +/- Inf | NaN | NaN | +/- Inf | NaN |
| [x] > FLT_MAX | NaN | NaN | Inf | NaN |
| [x] < -FLT_MAX | NaN | NaN | -Inf | NaN |
| else | RNE | RNE | RNE | RNE |
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Cast,
21,
OpSchema()
.SetDoc(Cast_ver19_doc)
.Attr(
"to",
"The data type to which the elements of the input tensor are cast. "
"Strictly must be one of the types from DataType enum in TensorProto",
AttributeProto::INT)
.Attr(
"saturate",
"The parameter defines how the conversion behaves if an input value is out of "
"range of the destination type. It only applies for float 8 conversion "
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
"All cases are fully described in two tables inserted in the operator description.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Input(0, "input", "Input tensor to be cast.", "T1", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Output(
0,
"output",
"Output tensor with the same shape as input with type "
"specified by the 'to' argument",
"T2",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint(
"T1",
{"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)",
"tensor(int16)", "tensor(int32)", "tensor(int64)", "tensor(uint8)",
"tensor(uint16)", "tensor(uint32)", "tensor(uint64)", "tensor(bool)",
"tensor(string)", "tensor(bfloat16)", "tensor(float8e4m3fn)", "tensor(float8e4m3fnuz)",
"tensor(float8e5m2)", "tensor(float8e5m2fnuz)", "tensor(uint4)", "tensor(int4)"},
"Constrain input types. Casting from complex is not supported.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)",
"tensor(int16)", "tensor(int32)", "tensor(int64)", "tensor(uint8)",
"tensor(uint16)", "tensor(uint32)", "tensor(uint64)", "tensor(bool)",
"tensor(string)", "tensor(bfloat16)", "tensor(float8e4m3fn)", "tensor(float8e4m3fnuz)",
"tensor(float8e5m2)", "tensor(float8e5m2fnuz)", "tensor(uint4)", "tensor(int4)"},
"Constrain output types. Casting to complex is not supported.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromAttributeToOutput(ctx, "to", 0);
if (hasNInputShapes(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
PropagateShapeDataFromInputToOutput(ctx, 0);
}));
static const char* CastLike_ver19_doc = R"DOC(
The operator casts the elements of a given input tensor (the first input) to
the same data type as the elements of the second input tensor.
See documentation of the Cast operator for further details.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
CastLike,
21,
OpSchema()
.SetDoc(CastLike_ver19_doc)
.Attr(
"saturate",
"The parameter defines how the conversion behaves if an input value is out of "
"range of the destination type. It only applies for float 8 conversion "
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
"Please refer to operator Cast description for further details.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Input(0, "input", "Input tensor to be cast.", "T1", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"target_type",
"The (first) input tensor will be cast to produce a tensor of the same type as this (second input) tensor.",
"T2",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Output tensor produced by casting the first input tensor to have the same type as the second input tensor.",
"T2",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint(
"T1",
{"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)",
"tensor(int16)", "tensor(int32)", "tensor(int64)", "tensor(uint8)",
"tensor(uint16)", "tensor(uint32)", "tensor(uint64)", "tensor(bool)",
"tensor(string)", "tensor(bfloat16)", "tensor(float8e4m3fn)", "tensor(float8e4m3fnuz)",
"tensor(float8e5m2)", "tensor(float8e5m2fnuz)", "tensor(uint4)", "tensor(int4)"},
"Constrain input types. Casting from complex is not supported.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)", "tensor(int8)",
"tensor(int16)", "tensor(int32)", "tensor(int64)", "tensor(uint8)",
"tensor(uint16)", "tensor(uint32)", "tensor(uint64)", "tensor(bool)",
"tensor(string)", "tensor(bfloat16)", "tensor(float8e4m3fn)", "tensor(float8e4m3fnuz)",
"tensor(float8e5m2)", "tensor(float8e5m2fnuz)", "tensor(uint4)", "tensor(int4)"},
"Constrain output types. Casting to complex is not supported.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 1, 0);
if (hasNInputShapes(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
})
.SetContextDependentFunctionBodyBuilder(
[](const FunctionBodyBuildContext& ctx, const OpSchema& schema, FunctionProto& functionProto) -> bool {
auto target_type = ctx.getInputType(1);
if ((target_type == nullptr) || (!target_type->has_tensor_type())) {
// we cannot create a correct function body without knowing the target element type
return false;
}
auto target_elt_type = target_type->tensor_type().elem_type();
FunctionBuilder builder(functionProto);
builder.Add(
MakeString("output = Cast <to= ", (int64_t)(target_elt_type), ", saturate: int = @saturate> (input)")
.c_str());
schema.BuildFunction(functionProto);
return true;
}));
static const char* Reshape_ver19_doc = R"DOC(
Reshape the input tensor similar to numpy.reshape.
First input is the data tensor, second input is a shape tensor which specifies the output shape. It outputs the reshaped tensor.
At most one dimension of the new shape can be -1. In this case, the value is
inferred from the size of the tensor and the remaining dimensions. A dimension
could also be 0, in which case the actual dimension value is unchanged (i.e. taken
from the input tensor). If 'allowzero' is set, and the new shape includes 0, the
dimension will be set explicitly to zero (i.e. not taken from input tensor).
Shape (second input) could be an empty shape, which means converting to a scalar.
The input tensor's shape and the output tensor's shape are required to have the same number of elements.
If the attribute 'allowzero' is set, it is invalid for the specified shape to
contain both a zero value and -1, as the value of the dimension corresponding
to -1 cannot be determined uniquely.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Reshape,
21,
OpSchema()
.SetDoc(Reshape_ver19_doc)
.Attr(
"allowzero",
"(Optional) By default, when any value in the 'shape' input is equal to zero "
"the corresponding dimension value is copied from the input tensor dynamically. "
"allowzero=1 indicates that if any value in the 'shape' input is set to zero, "
"the zero value is honored, similar to NumPy.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"shape",
"Specified shape for output.",
"tensor(int64)",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(0, "reshaped", "Reshaped data.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir10(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
bool found;
TensorShapeProto targetShapeProto = getShapeInput(ctx, 1, found);
if (!found) {
return;
}
int allowzero = static_cast<int>(getAttribute(ctx, "allowzero", 0));
// Iterate through targetShape, adding dimensions in the outputShape
// TensorProto. If the targetShape dimension is -1, we do not set the
// dimension value in this iteration, but we record the Dimension. If
// targetShape dimension is 0, we attempt to propagate the dimension
// value/param. If the value cannot be inferred, we set the flag in
// the unresolveZeros vector. If targetShape dimension is positive, we
// set the dimension value in the outputShape. We track the product of
// the dimensions we are setting outputShape in the outputProduct
// variable. The outputProduct will potentially be used for inferring
// a dimension marked -1.
auto* outputShape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
TensorShapeProto::Dimension* negativeOneDim = nullptr;
const auto& dataInputTensorType = ctx.getInputType(0)->tensor_type();
std::vector<bool> unresolvedZeros(targetShapeProto.dim_size(), false);
int64_t outputProduct = 1;
bool outputProductValid = true;
for (int i = 0; i < static_cast<int>(targetShapeProto.dim_size()); ++i) {
// Add a new dimension to outputShape
auto* new_dim = outputShape->add_dim();
if (targetShapeProto.dim(i).has_dim_param()) {
// There is a tricky edge case here. It is possible that the value of
// symbolic dim can be -1 or 0 at runtime. In that case simply propgating this
// symbol can be erroneous. This should be a very rare scenario and in such a
// case an option is to turn off data propagation during shape inference.
new_dim->set_dim_param(targetShapeProto.dim(i).dim_param());
outputProductValid = false;
} else {
if (!targetShapeProto.dim(i).has_dim_value()) {
outputProductValid = false;
// treat this dim as unknown dim
continue;
}
const auto dim_value = targetShapeProto.dim(i).dim_value();
if (dim_value == -1) {
// Check if multiple -1's. If not, set negativeOneDim, marking
// this dimension to potentially be filled in later.
if (negativeOneDim) {
fail_shape_inference("Target shape may not have multiple -1 dimensions.");
}
negativeOneDim = new_dim;
} else if (dim_value == 0) {
// Check if data input has a shape and if the index i is within
// its bounds. If these conditions are satisfied, any dimension
// value/param should be propagated. If dimension value cannot be
// inferred, set the corresponding unresolvedZeros flag to true.
// If allowzero is set however, do not propagate values, since output
// dimension is explicitly zero.
if (allowzero == 0) {
unresolvedZeros[i] = true;
if (dataInputTensorType.has_shape()) {
if (i >= dataInputTensorType.shape().dim_size()) {
fail_shape_inference("Invalid position of 0.");
}
if (dataInputTensorType.shape().dim(i).has_dim_value()) {
const auto& input_dim_value = dataInputTensorType.shape().dim(i).dim_value();
new_dim->set_dim_value(input_dim_value);
outputProduct *= input_dim_value;
unresolvedZeros[i] = false;
} else if (dataInputTensorType.shape().dim(i).has_dim_param()) {
new_dim->set_dim_param(dataInputTensorType.shape().dim(i).dim_param());
}
}
} else {
new_dim->set_dim_value(dim_value);
outputProduct *= dim_value;
}
} else if (dim_value > 0) {
// Set the dimension value to dim_value
new_dim->set_dim_value(dim_value);
outputProduct *= dim_value;
} else {
// Check if value is less than -1; fail if so
fail_shape_inference("Invalid dimension value: ", dim_value);
}
}
}
// If negativeOneDim has been set, we attempt to infer its value. This
// can be done if all dimension values for the data input tensor shape
// are known other than the ones corresponding to unresolvedZeros
// flags.
if (negativeOneDim && outputProductValid) {
// First, attempt to compute product of data input shape dimensions
// that are not marked by unresolvedZeros. If not possible, set the
// inputProductValid flag to false.
if (!outputProduct) {
fail_shape_inference("Invalid Target shape product of 0. Product cannot be 0 in combination with -1");
}
int64_t inputProduct = 1;
bool inputProductValid = true;
if (!dataInputTensorType.has_shape()) {
inputProductValid = false;
} else {
for (int i = 0; i < dataInputTensorType.shape().dim_size(); ++i) {
if (dataInputTensorType.shape().dim(i).has_dim_value()) {
inputProduct *= dataInputTensorType.shape().dim(i).dim_value();
} else if (i >= static_cast<int>(unresolvedZeros.size()) || !unresolvedZeros[i]) {
inputProductValid = false;
break;
}
}
}
if (inputProductValid) {
if (inputProduct % outputProduct != 0) {
fail_shape_inference("Dimension could not be inferred: incompatible shapes");
}
negativeOneDim->set_dim_value(inputProduct / outputProduct);
}
}
}));
static const char* Shape_ver19_doc = R"DOC(
Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor.
Optional attributes start and end can be used to compute a slice of the input tensor's shape.
If start axis is omitted, the slice starts from axis 0.
The end axis, if specified, is exclusive (and the returned value will not include the size of that axis).
If the end axis is omitted, the axes upto the last one will be included.
Negative axes indicate counting back from the last axis.
Note that axes will be clamped to the range [0, r-1], where r is the
rank of the input tensor if they are out-of-range (after adding r in the case of
negative axis). Thus, specifying any end value > r is equivalent to specifying an end
value of r, and specifying any start value < -r is equivalent to specifying a start
value of 0.
Examples:
```
Input tensor with shape: [2, 3, 4]
No attributes specified.
Output: [2, 3, 4]
```
```
Input tensor with shape: [2, 3, 4]
start: -1
Output: [4]
```
```
Input tensor with shape: [2, 3, 4]
end: -1
Output: [2, 3]
```
```
Input tensor with shape: [2, 3, 4]
start: 1
end: 2
Output: [3]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Shape,
21,
OpSchema()
.SetDoc(Shape_ver19_doc)
.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "shape", "Shape of the input tensor", "T1", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Attr(
"start",
"(Optional) Starting axis for slicing the shape. Default value is 0."
"Negative value means counting dimensions from the back.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"end",
"(Optional) Ending axis for slicing the shape. "
"Negative value means counting dimensions from the back. "
"If omitted, sizes of all axes upto (including) the last one will be included.",
AttributeProto::INT,
OPTIONAL_VALUE)
.TypeConstraint("T", OpSchema::all_tensor_types_ir10(), "Input tensor can be of arbitrary type.")
.TypeConstraint("T1", {"tensor(int64)"}, "Constrain output to int64 tensor.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
ctx.getOutputType(0)->mutable_tensor_type()->set_elem_type(TensorProto::INT64);
auto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
auto* output_length = output_shape->add_dim();
if (!hasNInputShapes(ctx, 1)) {
return;
}
int64_t rank = static_cast<int64_t>(ctx.getInputType(0)->tensor_type().shape().dim_size());
int64_t start = getAttribute(ctx, "start", 0);
if (start < 0)
start += rank;
start = (start < 0) ? 0 : (start > rank) ? rank : start;
int64_t end = getAttribute(ctx, "end", rank);
if (end < 0)
end += rank;
end = (end < 0) ? 0 : (end > rank) ? rank : end;
output_length->set_dim_value((end - start) < 0 ? 0 : (end - start));
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
if (hasInputShape(ctx, 0)) {
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
int64_t rank = static_cast<int64_t>(input_shape.dim_size());
int64_t start = getAttribute(ctx, "start", 0);
if (start < 0)
start += rank;
start = (start < 0) ? 0 : (start > rank) ? rank : start;
int64_t end = getAttribute(ctx, "end", rank);
if (end < 0)
end += rank;
end = (end < 0) ? 0 : (end > rank) ? rank : end;
TensorShapeProto output_shape;
for (int64_t d = start; d < end; ++d) {
*output_shape.add_dim() = input_shape.dim(static_cast<int>(d));
}
ctx.addOutputData(0, std::move(output_shape));
}
}));
static const char* Size_ver19_doc = R"DOC(
Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Size,
21,
OpSchema()
.SetDoc(Size_ver19_doc)
.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(
0,
"size",
"Total number of elements of the input tensor",
"T1",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir10(), "Input tensor can be of arbitrary type.")
.TypeConstraint("T1", {"tensor(int64)"}, "Constrain output to int64 tensor, which should be a scalar though.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
ctx.getOutputType(0)->mutable_tensor_type()->set_elem_type(TensorProto::INT64);
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
const auto input_data = ctx.getInputData(0);
if (input_data != nullptr) {
TensorShapeProto tsp;
tsp.mutable_dim()->Add()->set_dim_value(input_data->dim_size());
ctx.addOutputData(0, std::move(tsp));
}
}));
ONNX_OPERATOR_SET_SCHEMA(
Concat,
13,
OpSchema()
.Attr(
"axis",
"Which axis to concat on. A negative value means counting dimensions from the back. "
"Accepted range is [-r, r-1] where r = rank(inputs)..",
AttributeProto::INT)
.SetDoc(
"Concatenate a list of tensors into a single tensor. "
"All input tensors must have the same shape, except for the dimension size of the axis to concatenate on.")
.Input(
0,
"inputs",
"List of tensors for concatenation",
"T",
OpSchema::Variadic,
true,
1,
OpSchema::Differentiable)
.Output(0, "concat_result", "Concatenated tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain output types to any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
auto numInputs = ctx.getNumInputs();
if (numInputs < 1 || !hasNInputShapes(ctx, static_cast<int>(numInputs))) {
return;
}
auto rank = ctx.getInputType(0)->tensor_type().shape().dim_size();
auto axisAttr = ctx.getAttribute("axis");
if (!axisAttr) {
fail_shape_inference("Required attribute axis is missing");
}
int axis = static_cast<int>(axisAttr->i());
if (axis < -rank || axis >= rank) {
fail_shape_inference("axis must be in [-rank, rank-1].");
}
if (axis < 0) {
axis += rank;
}
if (numInputs == 1) {
propagateShapeFromInputToOutput(ctx, 0, 0);
return;
}
bool all_lengths_known = true;
int total_length = 0;
auto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
for (int64_t i = 0; i < rank; ++i) {
output_shape->add_dim();
}
for (size_t i = 0; i < numInputs; i++) {
const auto& shape = ctx.getInputType(i)->tensor_type().shape();
if (shape.dim_size() != rank) {
fail_shape_inference(
"All inputs to Concat must have same rank. Input ", i, " has rank ", shape.dim_size(), " != ", rank);
}
for (int j = 0; j < rank; j++) {
if (j == axis) {
if (shape.dim(j).has_dim_value()) {
total_length += static_cast<int>(shape.dim(j).dim_value());
} else {
all_lengths_known = false;
}
} else {
auto& output_dim = *output_shape->mutable_dim(j);
const auto& input_dim = shape.dim(j);
mergeInDimensionInfo(input_dim, output_dim, j);
}
}
}
if (all_lengths_known) {
output_shape->mutable_dim(axis)->set_dim_value(total_length);
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
if (!axisIsZero(ctx)) {
return;
}
TensorShapeProto tsp;
for (size_t i = 0; i < ctx.getNumInputs(); ++i) {
const auto input_data = ctx.getInputData(i);
if (input_data == nullptr) {
return;
}
for (int j = 0; j < input_data->dim_size(); ++j) {
*tsp.add_dim() = input_data->dim(j);
}
}
if (tsp.dim_size() > 0) {
ctx.addOutputData(0, std::move(tsp));
}
}));
static const char* Split_ver18_doc =
R"DOC(Split a tensor into a list of tensors, along the specified 'axis'.
Either input 'split' or the attribute 'num_outputs' should be specified, but not both.
If the attribute 'num_outputs' is specified, then the tensor is split into equal sized parts.
If the tensor is not evenly splittable into `num_outputs`, the last chunk will be smaller.
If the input 'split' is specified, it indicates the sizes of each output in the split.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Split,
18,
OpSchema()
.Input(0, "input", "The tensor to split", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"split",
"Optional length of each output. Values should be >= 0."
"Sum of the values must be equal to the dim value at 'axis' specified.",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"outputs",
"One or more outputs forming list of tensors after splitting",
"T",
OpSchema::Variadic,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.Attr(
"axis",
"Which axis to split on. "
"A negative value means counting dimensions from the back. Accepted range is [-rank, rank-1] "
"where r = rank(input).",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"num_outputs",
"Number of outputs to split parts of the tensor into. "
"If the tensor is not evenly splittable the last chunk will be smaller.",
AttributeProto::INT,
false)
.SetDoc(Split_ver18_doc)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
for (int i = 0; i < static_cast<int>(ctx.getNumOutputs()); ++i) {
propagateElemTypeFromInputToOutput(ctx, 0, i);
}
if (!hasNInputShapes(ctx, 1)) {
return;
}
const auto& shape = ctx.getInputType(0)->tensor_type().shape();
int rank = shape.dim_size();
int axis = static_cast<int>(getAttribute(ctx, "axis", 0));
if (axis < -rank || axis >= rank) {
fail_type_inference("Invalid value of attribute 'axis'. Rank=", rank, " Value=", axis);
}
if (axis < 0) {
axis += rank;
}
const auto& split_dim = shape.dim(axis);
if (!split_dim.has_dim_value()) {
for (size_t i = 0; i < ctx.getNumOutputs(); i++) {
*ctx.getOutputType(i)->mutable_tensor_type()->mutable_shape() = shape;
ctx.getOutputType(i)->mutable_tensor_type()->mutable_shape()->mutable_dim(axis)->Clear();
}
return;
}
int split_dim_value = static_cast<int>(split_dim.dim_value());
std::vector<int64_t> split;
const auto num_outputs_attr = ctx.getAttribute("num_outputs");
if (ctx.hasInput(1) && num_outputs_attr) {
fail_shape_inference("Both 'split' input and 'num_outputs' attribute were given");
}
if (ctx.hasInput(1)) { //'split' is input
auto split_proto = ctx.getInputData(1);
if (split_proto == nullptr) {
// skip if split is not an initializer
return;
}
split = ParseData<int64_t>(split_proto);
if (split.size() != ctx.getNumOutputs()) {
fail_shape_inference(
"Mismatch between number of splits (", split.size(), ") and outputs (", ctx.getNumOutputs(), ")");
}
int64_t total_dim = 0;
for (int64_t d : split) {
total_dim += d;
}
if (total_dim != split_dim_value) {
fail_shape_inference(
"Mismatch between the sum of 'split' (",
total_dim,
") and the split dimension of the input (",
split_dim_value,
")");
}
} else { // no value available for 'split'
if (num_outputs_attr) {
const auto num_outputs = num_outputs_attr->i();
if (num_outputs < 1) {
fail_shape_inference("Attribute `num_outputs` value cannot be lower than 1");
}
if (split_dim_value % num_outputs == 0) { // tensor is evenly splittable
int chunk_size = split_dim_value / num_outputs;
split.resize(num_outputs, chunk_size);
} else { // tensor needs to be split unevenly
int chunk_size = (split_dim_value / num_outputs) + 1;
int last_chunk_size = split_dim_value - (chunk_size * (num_outputs - 1));
split.resize(num_outputs - 1, chunk_size);
split.push_back(last_chunk_size);
}
} else {
fail_shape_inference("Neither 'split' input nor 'num_outputs' attribute has been given");
}
}
for (size_t i = 0; i < ctx.getNumOutputs(); i++) {
*ctx.getOutputType(i)->mutable_tensor_type()->mutable_shape() = shape;
ctx.getOutputType(i)->mutable_tensor_type()->mutable_shape()->mutable_dim(axis)->set_dim_value(split[i]);
}
}));
static const char* Slice_ver13_doc = R"DOC(
Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://numpy.org/doc/stable/user/basics.indexing.html?highlight=slice#slicing-and-striding
Slice uses the `starts`, `ends`, `axes` and `steps` inputs to select a sub-tensor
of its input `data` tensor.
An effective `starts[i]`, `ends[i]`, and `steps[i]` must be computed for each `i`
in `[0, ... r-1]` where `r = rank(input)` as follows:
If `axes` are omitted, they are set to `[0, ..., r-1]`.
If `steps` are omitted, they are set to `[1, ..., 1]` of length `len(starts)`
The effective values are initialized as `start[i] = 0`, `ends[i] = dims[i]` where
`dims` are the dimensions of `input` and `steps[i] = 1`.
All negative elements of `axes` are made non-negative by adding `r` to them, where
`r =rank(input)`.
All negative values in `starts[i]` and `ends[i]` have `dims[axes[i]]` added to them,
where `dims` are the dimensions of `input`. Then `start[axes[i]]` is the adjusted
`starts[i]` is clamped into the range `[0, dims[axes[i]]]` for positive stepping
and `[0, dims[axes[i]]-1]` for negative stepping.
The clamping for the adjusted `ends[i]` depends on the sign of `steps[i]` and must
accommodate copying 0 through `dims[axes[i]]` elements, so for positive stepping
`ends[axes[i]]` is clamped to `[0, dims[axes[i]]]`, while for negative stepping it
is clamped to `[-1, dims[axes[i]]-1]`.
Finally, `steps[axes[i]] = steps[i]`.
For slicing to the end of a dimension with unknown size, it is recommended to pass
in `INT_MAX` when slicing forward and 'INT_MIN' when slicing backward.
Example 1:
```
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
axes = [0, 1]
starts = [1, 0]
ends = [2, 3]
steps = [1, 2]
result = [
[5, 7],
]
```
Example 2:
```
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
starts = [0, 1]
ends = [-1, 1000]
result = [
[2, 3, 4],
]
```
)DOC";
inline void processSliceInputs(const int64_t input_rank, int64_t& start, int64_t& end, int64_t& step) {
auto clamp = [](int64_t val, int64_t min, int64_t max) -> int64_t {
return (val < min) ? min : (val > max) ? max : val;
};
// process step
if (step == 0) {
fail_shape_inference("'step' cannot be 0 for Slice");
}
// process start
if (start < 0)
start += input_rank;
if (step < 0)
start = clamp(start, 0, input_rank - 1);
else
start = clamp(start, 0, input_rank);
// process end
if (end < 0)
end += input_rank;
if (step < 0)
end = clamp(end, -1, input_rank - 1);
else
end = clamp(end, 0, input_rank);
}
ONNX_OPERATOR_SET_SCHEMA(
Slice,
13,
OpSchema()
.SetDoc(Slice_ver13_doc)
.Input(
0,
"data",
"Tensor of data to extract slices from.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
1,
"starts",
"1-D tensor of starting indices of corresponding axis in `axes`",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"ends",
"1-D tensor of ending indices (exclusive) of corresponding axis in `axes`",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
3,
"axes",
"1-D tensor of axes that `starts` and `ends` apply to. Negative value means counting dimensions "
"from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an "
"axis is repeated.",
"Tind",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Input(
4,
"steps",
"1-D tensor of slice step of corresponding axis in `axes`. "
"Negative value means slicing backward. 'steps' cannot be 0. "
"Defaults to 1s.",
"Tind",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(0, "output", "Sliced data tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
size_t num_inputs = ctx.getNumInputs();
if (num_inputs != 3 && num_inputs != 4 && num_inputs != 5) {
fail_type_inference("Slice op must have either three, four or five inputs.");
}
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
// Shape Inference if
// 1. 2nd and 3rd input data (starts, ends) are available.
// and 2. 4th and 5th optional input (axes, steps) are either not set,
// or set and is initializer.
const TensorProto* startsInitializer = ctx.getInputData(1);
const TensorProto* endsInitializer = ctx.getInputData(2);
const TensorProto* axesInitializer = hasInputShape(ctx, 3) ? ctx.getInputData(3) : nullptr;
const TensorProto* stepsInitializer = hasInputShape(ctx, 4) ? ctx.getInputData(4) : nullptr;
if (!startsInitializer || !endsInitializer || (hasInputShape(ctx, 3) && !ctx.getInputData(3)) ||
(hasInputShape(ctx, 4) && !ctx.getInputData(4))) {
const auto input_rank = ctx.getInputType(0)->tensor_type().shape().dim_size();
// we can infer the output rank - it never changes
for (size_t i = 0; (int64_t)i < input_rank; ++i) {
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim();
}
return;
}
// don't know data_type- can't proceed
if (!startsInitializer->has_data_type())
return;
auto get_initializer_data = [](const TensorProto* initializer) -> std::vector<int64_t> {
std::vector<int64_t> vec;
if (initializer->data_type() == TensorProto::INT64) {
const auto& data = ParseData<int64_t>(initializer);
vec.insert(vec.end(), data.begin(), data.end());
} else if (initializer->data_type() == TensorProto::INT32) {
const auto& data = ParseData<int32_t>(initializer);
vec.insert(vec.end(), data.begin(), data.end());
} else {
// unaccepted data type
fail_shape_inference("Only supports `int32_t` or `int64_t` inputs for starts/ends/axes/steps");
}
return vec;
};
std::vector<int64_t> starts = get_initializer_data(startsInitializer);
std::vector<int64_t> ends = get_initializer_data(endsInitializer);
if (starts.size() != ends.size()) {
fail_shape_inference("Incorrect or missing input value for starts and ends");
}
const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const auto input_rank = input_shape.dim_size();
std::vector<int64_t> axes(starts.size());
if (!axesInitializer) {
std::iota(axes.begin(), axes.end(), 0);
} else {
axes = get_initializer_data(axesInitializer);
if (axes.size() != starts.size()) {
fail_shape_inference("Input axes has incorrect length");
}
}
checkAxesRange(axes, input_rank);
adjustNegativeAxes(axes, input_rank);
checkDuplicateAxes(axes, input_rank);
std::vector<int64_t> steps;
if (!stepsInitializer) {
steps = std::vector<int64_t>(starts.size(), 1);
} else {
steps = get_initializer_data(stepsInitializer);
if (steps.size() != axes.size()) {
fail_shape_inference("Input steps has incorrect length");
}
}
for (size_t i = 0; (int64_t)i < input_rank; ++i) {
// first update rank of output dim
auto* output_dim = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim();
const auto& input_dim = input_shape.dim((int)i);
if (input_dim.has_dim_value()) {
output_dim->set_dim_value(input_dim.dim_value());
} else if (input_dim.has_dim_param()) {
output_dim->set_dim_param(input_dim.dim_param());
}
}
size_t axes_size = axes.size();
for (size_t axis_index = 0; axis_index < axes_size; ++axis_index) {
auto axis = axes[axis_index] < 0 ? axes[axis_index] + static_cast<int64_t>(input_rank) : axes[axis_index];
auto input_dim = ctx.getInputType(0)->tensor_type().shape().dim((int)axis);
// input dim value is missing - cannot perform shape inference for
// this axis
if (!input_dim.has_dim_value()) {
// Clear any previously propagated dim_param and leave this dimension "empty",
// before moving on to the next dimension
ctx.getOutputType(0)
->mutable_tensor_type()
->mutable_shape()
->mutable_dim(static_cast<int>(axis))
->clear_dim_param();
continue;
}
auto start = starts[axis_index];
auto end = ends[axis_index];
auto step = steps[axis_index];
processSliceInputs(input_dim.dim_value(), start, end, step);
// find output dim value for this axis
auto temp = static_cast<int64_t>(ceil(1.0 * (end - start) / step));
if (temp < 0)
temp = 0;
// assign output value
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->mutable_dim((int)axis)->set_dim_value(temp);
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
const auto input_data = ctx.getInputData(0);
const auto starts = ctx.getInputData(1);
const auto ends = ctx.getInputData(2);
bool axes_specified = ctx.getNumInputs() >= 4;
bool steps_specified = ctx.getNumInputs() >= 5;
const TensorShapeProto* axes = nullptr;
const TensorShapeProto* steps = nullptr;
if (axes_specified) {
axes = ctx.getInputData(3);
if (axes == nullptr) {
return;
}
}
if (steps_specified) {
steps = ctx.getInputData(4);
if (steps == nullptr) {
return;
}
}
if (input_data == nullptr || starts == nullptr || ends == nullptr) {
return;
}
if (starts->dim_size() != ends->dim_size()) {
fail_shape_inference(
"Input rank for starts and ends should be the same: (",
starts->dim_size(),
") vs (",
ends->dim_size(),
").");
}
// Only supports axis = 0 since the data comes from Shape
if ((!axes_specified || (axes->dim_size() == 1 && axes->dim(0).dim_value() == 0)) &&
starts->dim_size() == 1 && ends->dim_size() == 1) {
auto start = starts->dim(0).dim_value();
auto end = ends->dim(0).dim_value();
int64_t step = 1; // Default step is 1
if (steps_specified) {
if (steps->dim_size() != 1) {
return;
}
if (!steps->dim(0).has_dim_value()) {
return;
}
step = steps->dim(0).dim_value();
}
processSliceInputs(input_data->dim_size(), start, end, step);
TensorShapeProto tsp;
if (step > 0) {
for (int i = start; i < end; i += step) {
*tsp.add_dim() = input_data->dim(i);
}
} else {
for (int i = start; i > end; i += step) {
*tsp.add_dim() = input_data->dim(i);
}
}
if (tsp.dim_size() > 0) {
ctx.addOutputData(0, std::move(tsp));
}
}
}));
static const char* Transpose_ver13_doc = R"DOC(
Transpose the input tensor similar to numpy.transpose. For example, when
perm=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape
will be (2, 1, 3).
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Transpose,
21,
OpSchema()
.SetDoc(Transpose_ver13_doc)
.Attr(
"perm",
"A list of integers. By default, reverse the dimensions, "
"otherwise permute the axes according to the values given. "
"Its length must be equal to the rank of the input.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Output(0, "transposed", "Transposed output.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir10(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
auto input_type = ctx.getInputType(0);
const TensorShapeProto& shape = input_type->tensor_type().shape();
std::vector<int64_t> perm;
bool has_perm_attr = getRepeatedAttribute(ctx, "perm", perm);
if (!has_perm_attr) {
perm.reserve(shape.dim_size());
for (int i = shape.dim_size() - 1; i >= 0; --i)
perm.push_back(i);
} else if (!perm.empty()) {
// check if every index is valid
std::vector<bool> seen(shape.dim_size(), false);
for (int64_t fromDimIndex : perm) {
if (!(0 <= fromDimIndex && fromDimIndex < shape.dim_size())) {
std::ostringstream oss;
oss << "Invalid attribute perm {" << perm[0];
for (size_t i = 1; i != perm.size(); ++i) {
oss << ", " << perm[i];
}
oss << "}, input shape = {";
if (shape.dim_size() > 0) {
oss << shape.dim(0).dim_value();
for (int i = 1; i != shape.dim_size(); ++i) {
oss << ", " << shape.dim(i).dim_value();
}
oss << "}";
}
fail_type_inference(oss.str());
} else {
// check if any perm is repeated
if (seen[fromDimIndex]) {
fail_type_inference("Attribute perm for Transpose has repeated value: ", fromDimIndex);
}
seen[fromDimIndex] = true;
}
}
}
getOutputShape(ctx, 0);
propagateElemTypeFromInputToOutput(ctx, 0, 0);
for (size_t i = 0; i < perm.size(); ++i) {
appendSingleDimCopiedFromInputTypeToOutputType(ctx, 0, 0, static_cast<size_t>(perm[i]));
}
}));
static const char* Scatter_ver11_doc = R"DOC(
This operator is deprecated. Please use ScatterElements, which provides the same functionality.
Scatter takes three inputs `data`, `updates`, and `indices` of the same
rank r >= 1 and an optional attribute axis that identifies an axis of `data`
(by default, the outer-most axis, that is axis 0). The output of the operation
is produced by creating a copy of the input `data`, and then updating its value
to values specified by `updates` at specific index positions specified by
`indices`. Its output shape is the same as the shape of `data`.
For each entry in `updates`, the target index in `data` is obtained by combining
the corresponding entry in `indices` with the index of the entry itself: the
index-value for dimension = axis is obtained from the value of the corresponding
entry in `indices` and the index-value for dimension != axis is obtained from the
index of the entry itself.
For instance, in a 2-D tensor case, the update corresponding to the [i][j] entry
is performed as below:
```
output[indices[i][j]][j] = updates[i][j] if axis = 0,
output[i][indices[i][j]] = updates[i][j] if axis = 1,
```
This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation.
Example 1:
```
data = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
]
indices = [
[1, 0, 2],
[0, 2, 1],
]
updates = [
[1.0, 1.1, 1.2],
[2.0, 2.1, 2.2],
]
output = [
[2.0, 1.1, 0.0]
[1.0, 0.0, 2.2]
[0.0, 2.1, 1.2]
]
```
Example 2:
```
data = [[1.0, 2.0, 3.0, 4.0, 5.0]]
indices = [[1, 3]]
updates = [[1.1, 2.1]]
axis = 1
output = [[1.0, 1.1, 3.0, 2.1, 5.0]]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Scatter,
11,
OpSchema()
.Deprecate()
.SetDoc(Scatter_ver11_doc)
.Attr(
"axis",
"Which axis to scatter on. Negative value means "
"counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of int32/int64 indices, of r >= 1 (same rank as input). All index values are expected to be "
"within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"updates",
"Tensor of rank r >=1 (same rank and shape as indices)",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(
0,
"output",
"Tensor of rank r >= 1 (same rank as input).",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types(), "Input and output types can be of any tensor type.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (hasNInputShapes(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
static const char* ScatterND_ver18_doc = R"DOC(
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1,
and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation
is produced by creating a copy of the input `data`, and then updating its value to values
specified by `updates` at specific index positions specified by `indices`. Its output shape
is the same as the shape of `data`.
`indices` is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of `indices`.
`indices` is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into `data`.
Hence, k can be a value at most the rank of `data`. When k equals rank(data), each update entry specifies an
update to a single element of the tensor. When k is less than rank(data) each update entry specifies an
update to a slice of the tensor. Index values are allowed to be negative, as per the usual
convention for counting backwards from the end, but are expected in the valid range.
`updates` is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the
first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape.
The remaining dimensions of `updates` correspond to the dimensions of the
replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,
corresponding to the trailing (r-k) dimensions of `data`. Thus, the shape of `updates`
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation
of shapes.
The `output` is calculated via the following equation:
```
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
```
The order of iteration in the above loop is not specified.
In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
This ensures that the output value does not depend on the iteration order.
`reduction` allows specification of an optional reduction operation, which is applied to all values in `updates`
tensor into `output` at the specified `indices`.
In cases where `reduction` is set to "none", indices should not have duplicate entries: that is, if idx1 != idx2,
then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order.
When `reduction` is set to some reduction function `f`, `output` is calculated as follows:
```
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = f(output[indices[idx]], updates[idx])
```
where the `f` is `+`, `*`, `max` or `min` as specified.
This operator is the inverse of GatherND.
(Opset 18 change): Adds max/min to the set of allowed reduction ops.
Example 1:
```
data = [1, 2, 3, 4, 5, 6, 7, 8]
indices = [[4], [3], [1], [7]]
updates = [9, 10, 11, 12]
output = [1, 11, 3, 10, 9, 6, 7, 12]
```
Example 2:
```
data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
indices = [[0], [2]]
updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
ScatterND,
18,
OpSchema()
.SetDoc(ScatterND_ver18_doc)
.Attr(
"reduction",
"Type of reduction to apply: none (default), add, mul, max, min. "
"'none': no reduction applied. "
"'add': reduction using the addition operation. "
"'mul': reduction using the addition operation. "
"'max': reduction using the maximum operation."
"'min': reduction using the minimum operation.",
AttributeProto::STRING,
std::string("none"))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of rank q >= 1.",
"tensor(int64)",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"updates",
"Tensor of rank q + r - indices_shape[-1] - 1.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(0, "output", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (hasNInputShapes(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
static const char* ScatterElements_ver18_doc = R"DOC(
ScatterElements takes three inputs `data`, `updates`, and `indices` of the same
rank r >= 1 and an optional attribute axis that identifies an axis of `data`
(by default, the outer-most axis, that is axis 0). The output of the operation
is produced by creating a copy of the input `data`, and then updating its value
to values specified by `updates` at specific index positions specified by
`indices`. Its output shape is the same as the shape of `data`.
For each entry in `updates`, the target index in `data` is obtained by combining
the corresponding entry in `indices` with the index of the entry itself: the
index-value for dimension = axis is obtained from the value of the corresponding
entry in `indices` and the index-value for dimension != axis is obtained from the
index of the entry itself.
`reduction` allows specification of an optional reduction operation, which is applied to all values in `updates`
tensor into `output` at the specified `indices`.
In cases where `reduction` is set to "none", indices should not have duplicate entries: that is, if idx1 != idx2,
then indices[idx1] != indices[idx2]. For instance, in a 2-D tensor case, the update
corresponding to the [i][j] entry is performed as below:
```
output[indices[i][j]][j] = updates[i][j] if axis = 0,
output[i][indices[i][j]] = updates[i][j] if axis = 1,
```
When `reduction` is set to some reduction function `f`, the update corresponding to the [i][j] entry is performed as below:
```
output[indices[i][j]][j] = f(output[indices[i][j]][j], updates[i][j]) if axis = 0,
output[i][indices[i][j]] = f(output[i][indices[i][j]], updates[i][j]) if axis = 1,
```
where the `f` is `+`, `*`, `max` or `min` as specified.
This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation.
(Opset 18 change): Adds max/min to the set of allowed reduction ops.
Example 1:
```
data = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
]
indices = [
[1, 0, 2],
[0, 2, 1],
]
updates = [
[1.0, 1.1, 1.2],
[2.0, 2.1, 2.2],
]
output = [
[2.0, 1.1, 0.0]
[1.0, 0.0, 2.2]
[0.0, 2.1, 1.2]
]
```
Example 2:
```
data = [[1.0, 2.0, 3.0, 4.0, 5.0]]
indices = [[1, 3]]
updates = [[1.1, 2.1]]
axis = 1
output = [[1.0, 1.1, 3.0, 2.1, 5.0]]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
ScatterElements,
18,
OpSchema()
.SetDoc(ScatterElements_ver18_doc)
.Attr(
"axis",
"Which axis to scatter on. Negative value means "
"counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"reduction",
"Type of reduction to apply: none (default), add, mul, max, min. "
"'none': no reduction applied. "
"'add': reduction using the addition operation. "
"'mul': reduction using the multiplication operation."
"'max': reduction using the maximum operation."
"'min': reduction using the minimum operation.",
AttributeProto::STRING,
std::string("none"))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of int32/int64 indices, of r >= 1 (same rank as input). All index values are expected to be "
"within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"updates",
"Tensor of rank r >=1 (same rank and shape as indices)",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(
0,
"output",
"Tensor of rank r >= 1 (same rank as input).",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Input and output types can be of any tensor type.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (hasNInputShapes(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
static const char* Gather_ver13_doc = R"DOC(
Given `data` tensor of rank r >= 1, and `indices` tensor of rank q, gather
entries of the axis dimension of `data` (by default outer-most one as axis=0) indexed by `indices`, and concatenates
them in an output tensor of rank q + (r - 1).
If `axis = 0`, let `k = indices[i_{0}, ..., i_{q-1}]`
then `output[i_{0}, ..., i_{q-1}, j_{0}, ..., j_{r-2}] = input[k , j_{0}, ..., j_{r-2}]`:
```
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
indices = [
[0, 1],
[1, 2],
]
output = [
[
[1.0, 1.2],
[2.3, 3.4],
],
[
[2.3, 3.4],
[4.5, 5.7],
],
]
```
If `axis = 1`, let `k = indices[i_{0}, ..., i_{q-1}]`
then `output[j_{0}, i_{0}, ..., i_{q-1}, j_{1}, ..., j_{r-2}] = input[j_{0}, k, j_{1}, ..., j_{r-2}]`:
```
data = [
[1.0, 1.2, 1.9],
[2.3, 3.4, 3.9],
[4.5, 5.7, 5.9],
]
indices = [
[0, 2],
]
axis = 1,
output = [
[[1.0, 1.9]],
[[2.3, 3.9]],
[[4.5, 5.9]],
]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Gather,
13,
OpSchema()
.SetDoc(Gather_ver13_doc)
.Attr(
"axis",
"Which axis to gather on. Negative value means "
"counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of int32/int64 indices, of any rank q. All index values are expected to be within bounds [-s, s-1] "
"along axis of size s. It is an error if any of the index values are out of bounds.",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(0, "output", "Tensor of rank q + (r - 1).", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to any tensor type.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 2)) {
return;
}
const TensorShapeProto& data_shape = ctx.getInputType(0)->tensor_type().shape();
const TensorShapeProto& indices_shape = ctx.getInputType(1)->tensor_type().shape();
int r = data_shape.dim_size();
if (r < 1) {
fail_shape_inference("data tensor must have rank >= 1");
}
int q = indices_shape.dim_size();
int axis = static_cast<int>(getAttribute(ctx, "axis", 0));
if (axis < -r || axis >= r) {
fail_shape_inference("axis must be in [-r, r-1]");
}
if (axis < 0) {
axis += r;
}
int out_rank = q + r - 1;
if (out_rank == 0) {
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
}
for (int i = 0; i < out_rank; ++i) {
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() = (i < axis) ? data_shape.dim(i)
: // i < axis < r
(i >= axis && i < axis + q) ? indices_shape.dim(i - axis)
: // i - axis < q
data_shape.dim(i - q + 1); // i < out_rank < q + r - 1
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) { GatherOp13DataPropagator(ctx); }));
static const char* GatherElements_ver13_doc = R"DOC(
GatherElements takes two inputs `data` and `indices` of the same rank r >= 1
and an optional attribute `axis` that identifies an axis of `data`
(by default, the outer-most axis, that is axis 0). It is an indexing operation
that produces its output by indexing into the input data tensor at index
positions determined by elements of the `indices` tensor.
Its output shape is the same as the shape of `indices` and consists of one value
(gathered from the `data`) for each element in `indices`.
For instance, in the 3-D case (r = 3), the output produced is determined
by the following equations:
```
out[i][j][k] = input[index[i][j][k]][j][k] if axis = 0,
out[i][j][k] = input[i][index[i][j][k]][k] if axis = 1,
out[i][j][k] = input[i][j][index[i][j][k]] if axis = 2,
```
This operator is also the inverse of ScatterElements. It is similar to Torch's gather operation.
Example 1:
```
data = [
[1, 2],
[3, 4],
]
indices = [
[0, 0],
[1, 0],
]
axis = 1
output = [
[1, 1],
[4, 3],
]
```
Example 2:
```
data = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]
indices = [
[1, 2, 0],
[2, 0, 0],
]
axis = 0
output = [
[4, 8, 3],
[7, 2, 3],
]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GatherElements,
13,
OpSchema()
.SetDoc(GatherElements_ver13_doc)
.Attr(
"axis",
"Which axis to gather on. Negative value means "
"counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of int32/int64 indices, with the same rank r as the input. All index values are expected to be "
"within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Tensor of the same shape as indices.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to any tensor type.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// propagate indices' shape to output if it exists
if (hasInputShape(ctx, 1)) {
propagateShapeFromInputToOutput(ctx, 1, 0);
}
}));
static const char* Squeeze_ver13_doc = R"DOC(
Remove single-dimensional entries from the shape of a tensor.
Takes an input `axes` with a list of axes to squeeze.
If `axes` is not provided, all the single dimensions will be removed from
the shape. If an axis is selected with shape entry not equal to one, an error is raised.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Squeeze,
21,
OpSchema()
.SetDoc(Squeeze_ver13_doc)
.Input(
0,
"data",
"Tensors with at least max(dims) dimensions.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
1,
"axes",
"List of integers indicating the dimensions to squeeze. Negative value means counting dimensions "
"from the back. Accepted range is [-r, r-1] where r = rank(data).",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"squeezed",
"Reshaped tensor with same data as input.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint(
"T",
OpSchema::all_tensor_types_ir10(),
"Constrain input and output types to all tensor types up to IRv10.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
std::vector<int64_t> axes;
size_t num_inputs = ctx.getNumInputs();
bool axes_not_specified = false;
if ((num_inputs == 2) && ctx.getInputType(1)) { //'axes' is input
auto axes_proto = ctx.getInputData(1);
if (axes_proto == nullptr) {
// skip if axes is not an initializer
return;
}
axes = ParseData<int64_t>(axes_proto);
} else {
// axes not specified
axes_not_specified = true;
}
const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const auto input_ndim = input_shape.dim_size();
checkAxesRange(axes, input_ndim);
adjustNegativeAxes(axes, input_ndim);
for (int i = 0; i < input_ndim; ++i) {
if (!input_shape.dim(i).has_dim_value() && axes_not_specified) {
// if dim has a symbolic value and the axes spec want to act on all dims,
// return early because we can't infer the shape
return;
}
}
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
for (int i = 0; i < input_ndim; ++i) {
if (axes_not_specified && input_shape.dim(i).dim_value() == 1) {
// if axes not specified, do not keep shape if the dimension is equal to one
continue;
} else if (!axes_not_specified && std::find(axes.begin(), axes.end(), i) != axes.end()) {
// if axes wants to explicitly act on this dim, fail explicitly only if the
// dim is numerical and != 1. If the dim is 1 or symbolic, remove it. If
// the dim is symbolic, runtime engines should check that the dimension is
// actually 1 when the op is evaluated
if (input_shape.dim(i).has_dim_value() && input_shape.dim(i).dim_value() != 1) {
fail_shape_inference(
"Dimension of input ", i, " must be 1 instead of ", input_shape.dim(i).dim_value());
}
} else {
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() = input_shape.dim(i);
}
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
PropagateShapeDataFromInputToOutput(ctx, 0);
}));
static const char* Unsqueeze_ver13_doc = R"DOC(
Insert single-dimensional entries to the shape of an input tensor (`data`).
Takes one required input `axes` - which contains a list of dimension indices and this operator will insert a dimension of value `1` into the corresponding index of the output tensor (`expanded`).
For example, given an input tensor (`data`) of shape [3, 4, 5], then
Unsqueeze(data, axes=[0, 4]) outputs a tensor (`expanded`) containing same data as `data` but with shape [1, 3, 4, 5, 1].
The input `axes` should not contain any duplicate entries. It is an error if it contains duplicates.
The rank of the output tensor (`output_rank`) is the rank of the input tensor (`data`) plus the number of values in `axes`.
Each value in `axes` should be within the (inclusive) range [-output_rank , output_rank - 1].
The order of values in `axes` does not matter and can come in any order.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Unsqueeze,
21,
OpSchema()
.SetDoc(Unsqueeze_ver13_doc)
.Input(0, "data", "Original tensor", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"axes",
"List of integers indicating the dimensions to be inserted. Negative value means counting dimensions "
"from the back. Accepted range is [-r, r-1] where r = rank(expanded).",
"tensor(int64)",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"expanded",
"Reshaped tensor with same data as input.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint(
"T",
OpSchema::all_tensor_types_ir10(),
"Constrain input and output types to all tensor types up to IRv10.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
std::vector<int64_t> axes;
auto axes_proto = ctx.getInputData(1);
if (axes_proto == nullptr) {
// skip if axes is not an initializer
return;
}
axes = ParseData<int64_t>(axes_proto);
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const auto input_ndim = input_shape.dim_size();
const auto output_ndim = input_ndim + static_cast<int>(axes.size());
checkAxesRange(axes, output_ndim);
adjustNegativeAxes(axes, output_ndim);
checkDuplicateAxes(axes, output_ndim);
// sort after correcting negative axes values (if any)
std::sort(axes.begin(), axes.end());
int j = 0;
for (int i = 0; i < input_ndim; ++i) {
while (static_cast<size_t>(j) < axes.size() &&
axes[j] == ctx.getOutputType(0)->tensor_type().shape().dim_size()) {
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim()->set_dim_value(1);
++j;
}
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() =
ctx.getInputType(0)->tensor_type().shape().dim(i);
}
while (static_cast<size_t>(j) < axes.size() &&
axes[j] == ctx.getOutputType(0)->tensor_type().shape().dim_size()) {
ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim()->set_dim_value(1);
++j;
}
})
.PartialDataPropagationFunction([](DataPropagationContext& ctx) {
PropagateShapeDataFromInputToOutput(ctx, 0);
}));
static const char* SpaceToDepth_ver13_doc =
R"DOC(SpaceToDepth rearranges blocks of spatial data into depth. More specifically,
this op outputs a copy of the input tensor where values from the height and width dimensions
are moved to the depth dimension.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
SpaceToDepth,
13,
OpSchema()
.Attr("blocksize", "Blocks of [blocksize, blocksize] are moved.", AttributeProto::INT)
.SetDoc(SpaceToDepth_ver13_doc)
.Input(
0,
"input",
"Input tensor of [N,C,H,W], where N is the batch axis, C is the channel or depth"
", H is the height and W is the width.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(
0,
"output",
"Output tensor of [N, C * blocksize * blocksize, H/blocksize, W/blocksize].",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
auto blocksize = getAttribute(ctx, "blocksize", 0);
if (blocksize <= 0) {
fail_shape_inference("Blocksize must be positive");
}
if (hasInputShape(ctx, 0)) {
auto& input_shape = getInputShape(ctx, 0);
if (input_shape.dim_size() == 4) {
// TODO: Clarify what behavior should be if H or W is not a
// multiple of blocksize.
updateOutputShape(
ctx,
0,
{input_shape.dim(0),
input_shape.dim(1) * (blocksize * blocksize),
input_shape.dim(2) / blocksize,
input_shape.dim(3) / blocksize});
} else {
fail_shape_inference("Input tensor must be 4-dimensional");
}
}
}));
static const char* DepthToSpace_ver13_doc =
R"DOC(DepthToSpace rearranges (permutes) data from depth into blocks of spatial data.
This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of
the input tensor where values from the depth dimension are moved in spatial blocks to the height
and width dimensions. By default, `mode` = `DCR`.
In the DCR mode, elements along the depth dimension from the input tensor are rearranged in the
following order: depth, column, and then row. The output y is computed from the input x as below:
```
b, c, h, w = x.shape
tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h, w])
tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize, w * blocksize])
```
In the CRD mode, elements along the depth dimension from the input tensor are rearranged in the
following order: column, row, and the depth. The output y is computed from the input x as below:
```
b, c, h, w = x.shape
tmp = np.reshape(x, [b, c // (blocksize ** 2), blocksize, blocksize, h, w])
tmp = np.transpose(tmp, [0, 1, 4, 2, 5, 3])
y = np.reshape(tmp, [b, c // (blocksize ** 2), h * blocksize, w * blocksize])
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
DepthToSpace,
13,
OpSchema()
.Attr("blocksize", "Blocks of [blocksize, blocksize] are moved.", AttributeProto::INT)
.Attr(
"mode",
"DCR (default) for depth-column-row order re-arrangement. Use CRD for column-row-depth order.",
AttributeProto::STRING,
std::string("DCR"))
.SetDoc(DepthToSpace_ver13_doc)
.Input(
0,
"input",
"Input tensor of [N,C,H,W], where N is the batch axis, C is the channel or depth"
", H is the height and W is the width.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(
0,
"output",
"Output tensor of [N, C/(blocksize * blocksize), H * blocksize, W * blocksize].",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
auto blocksize = getAttribute(ctx, "blocksize", 0);
if (blocksize <= 0) {
fail_shape_inference("Blocksize must be positive");
}
if (hasInputShape(ctx, 0)) {
auto& input_shape = getInputShape(ctx, 0);
if (input_shape.dim_size() == 4) {
// TODO: Clarify what behavior should be if C is not a multiple of
// blocksize*blocksize.
updateOutputShape(
ctx,
0,
{input_shape.dim(0),
input_shape.dim(1) / (blocksize * blocksize),
input_shape.dim(2) * blocksize,
input_shape.dim(3) * blocksize});
} else {
fail_shape_inference("Input tensor must be 4-dimensional");
}
}
}));
static const char* Tile_ver13_doc =
R"DOC(Constructs a tensor by tiling a given tensor.
This is the same as function `tile` in Numpy, but no broadcast.
For example A = [[1, 2], [3, 4]], B = [1, 2], tile(A, B) = [[1, 2, 1, 2], [3, 4, 3, 4]]
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Tile,
13,
OpSchema()
.SetDoc(Tile_ver13_doc)
.Input(0, "input", "Input tensor of any shape.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"repeats",
"1D int64 tensor of the same length as input's dimension number, "
"includes numbers of repeated copies along input's dimensions.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Output tensor of the same dimensions and type as tensor input. "
"output_dim[i] = input_dim[i] * repeats[i]",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeConstraint("T1", {"tensor(int64)"}, "Constrain repeat's type to int64 tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference
// Needs at least the first input to proceed
if (!hasNInputShapes(ctx, 1)) {
return;
}
const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const auto input_rank = input_shape.dim_size();
const auto* repeats_inputs = ctx.getInputData(1);
auto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
if (nullptr != repeats_inputs && hasNInputShapes(ctx, 2)) {
// shape inference is possible only when 'repeats' is an initializer
const auto& repeats_shape = ctx.getInputType(1)->tensor_type().shape();
if (repeats_shape.dim_size() != 1 || repeats_inputs->data_type() != TensorProto::INT64) {
fail_shape_inference("'Repeats' input must be 1D tensor of type int64");
}
const auto& repeats_data = ParseData<int64_t>(repeats_inputs);
if (repeats_data.size() != static_cast<size_t>(input_rank)) {
fail_shape_inference(
"'Repeats' input has incorrect number of values. "
"The number of values in 'repeats' must be equal "
"to the number of input dimensions.");
}
for (size_t i = 0; (int64_t)i < input_rank; ++i) {
const auto& input_dim = input_shape.dim((int)i);
auto* output_dim = output_shape->add_dim();
if (input_dim.has_dim_value()) {
output_dim->set_dim_value(input_dim.dim_value() * repeats_data[i]);
}
}
} else {
// Infer output shape's rank in any case (if repeats data is not
// available)
auto* output_shape_0 = getOutputShape(ctx, 0);
for (size_t i = 0; (int64_t)i < input_rank; ++i) {
output_shape_0->add_dim();
}
}
return;
}));
static const char* Upsample_ver10_doc = R"DOC(
Upsample the input tensor.
Each dimension value of the output tensor is:
output_dimension = floor(input_dimension * scale).
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Upsample,
10,
OpSchema()
.Deprecate()
.Attr(
"mode",
"Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)",
AttributeProto::STRING,
std::string("nearest"))
.Input(0, "X", "N-D tensor", "T", OpSchema::Single)
.Input(
1,
"scales",
"The scale array along each dimension. It takes value greater than or equal to 1."
" The number of elements of 'scales' should be the same as the rank of input 'X'.",
"tensor(float)",
OpSchema::Single)
.Output(0, "Y", "N-D tensor after resizing", "T", OpSchema::Single)
.TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain input 'X' and output 'Y' to all tensor types.")
.SetDoc(Upsample_ver10_doc)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { resizeShapeInference_opset7_to_10(ctx); }));
static const char* Resize_ver19_doc = R"DOC(
Resize the input tensor. In general, it calculates every value in the output tensor as a weighted average of neighborhood (a.k.a. sampling locations) in the input tensor.
Each dimension value of the output tensor is:
```
output_dimension = floor(input_dimension * (roi_end - roi_start) * scale)
```
if input \"sizes\" is not specified.
)DOC";
static const char* Resize_ver19_attr_coordinate_transformation_mode_doc = R"DOC(
This attribute describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor.
The coordinate of each dimension is transformed individually. Let's describe a case using axis x as an example.
Denote `x_resized` as the coordinate of axis x in the resized tensor,
`x_original` as the coordinate of axis x in the original tensor,
`length_original` as the length of the original tensor in axis x,
`length_resized` as the length of the resized tensor in axis x,
`scale = length_resized / length_original`,
`output_width` the target length on the axis x which can be a fractional number when it is calculated out of a scale factor,
and `output_width_int` the effective output width as an integer.
if coordinate_transformation_mode is `"half_pixel"`,
```
x_original = (x_resized + 0.5) / scale - 0.5
```
if coordinate_transformation_mode is `"half_pixel_symmetric"`,
```
adjustment = output_width_int / output_width
center = input_width / 2
offset = center * (1 - adjustment)
x_ori = offset + (x + 0.5) / scale - 0.5
```
if coordinate_transformation_mode is `"pytorch_half_pixel"`,
```
x_original = length_resized > 1 ? (x_resized + 0.5) / scale - 0.5 : 0
```
if coordinate_transformation_mode is `"align_corners"`,
```
x_original = x_resized * (length_original - 1) / (length_resized - 1)
```
if coordinate_transformation_mode is `"asymmetric"`,
```
x_original = x_resized / scale
```
if coordinate_transformation_mode is `"tf_crop_and_resize"`,
```
x_original = length_resized > 1 ? start_x * (length_original - 1) + x_resized * (end_x - start_x) * (length_original - 1) / (length_resized - 1) : 0.5 * (start_x + end_x) * (length_original - 1)
```
.)DOC";
static const char* Resize_ver19_attr_keep_aspect_ratio_policy_doc = R"DOC(
This attribute describes how to interpret the `sizes` input with regard to keeping the original aspect ratio of the input, and it is not applicable when
the `scales` input is used.
Given a set of `sizes`, associated with a subset of `axes` (explicitly provided or default), and assuming `d = axes[i]`, with `i` being the index of the provided `sizes`.
If `keep_aspect_ratio_policy` is `"stretch"`, the original aspect ratio is disregarded, and the input is resized to the specified size:
`out_size[d] = sizes[i]`
If `keep_aspect_ratio_policy` is `"not_larger"`, the sizes are adjusted so that no extent of the output is larger than the specified size, while keeping the original aspect ratio:
```
scale = Min(sizes[i] / in_size[d])
out_size[d] = round_int(scale * in_size[i])
```
If `keep_aspect_ratio_policy` is `"not_smaller"`, the sizes are adjusted so that no extent of the output is smaller than the specified size, while keeping the original aspect ratio:
```
scale = Max(sizes[i] / in_size[d])
out_size[d] = round_int(scale * in_size[i])
```
For non-resizable axes (those not specified in `axes`), the output size will be equal to the input size.
Note: `round_int` stands for computing the nearest integer value, rounding halfway cases up.)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Resize,
19,
OpSchema()
.Attr(
"mode",
"Three interpolation modes: \"nearest\" (default), \"linear\" and \"cubic\". "
"The \"linear\" mode includes linear interpolation for 1D tensor and N-linear interpolation for N-D tensor (for example, bilinear interpolation for 2D tensor). "
"The \"cubic\" mode includes cubic interpolation for 1D tensor and N-cubic interpolation for N-D tensor (for example, bicubic interpolation for 2D tensor).",
AttributeProto::STRING,
std::string("nearest"))
.Attr(
"cubic_coeff_a",
"The coefficient 'a' used in cubic interpolation. Two common choice are -0.5 (in some cases of TensorFlow) and -0.75"
" (in PyTorch). Check out Equation (4) in https://ieeexplore.ieee.org/document/1163711 for the details. "
"This attribute is valid only if mode is \"cubic\".",
AttributeProto::FLOAT,
static_cast<float>(-0.75))
.Attr(
"exclude_outside",
"If set to 1, the weight of sampling locations outside the tensor will be set to 0"
" and the weight will be renormalized so that their sum is 1.0. The default value is 0.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"coordinate_transformation_mode",
Resize_ver19_attr_coordinate_transformation_mode_doc,
AttributeProto::STRING,
std::string("half_pixel"))
.Attr(
"nearest_mode",
"Four modes: \"round_prefer_floor\" (default, as known as round half down), \"round_prefer_ceil\" (as known as round half up), \"floor\", \"ceil\". Only used by nearest interpolation. It indicates how to get \"nearest\" pixel in input tensor from x_original, so this attribute is valid only if \"mode\" is \"nearest\".",
AttributeProto::STRING,
std::string("round_prefer_floor"))
.Attr(
"extrapolation_value",
"When coordinate_transformation_mode is \"tf_crop_and_resize\" and x_original is outside the range [0, length_original - 1], this value is used as the corresponding output value. Default is 0.0f.",
AttributeProto::FLOAT,
static_cast<float>(0))
.Attr(
"antialias",
"If set to 1, \"linear\" and \"cubic\" interpolation modes will use an antialiasing filter when downscaling. "
"Antialiasing is achieved by stretching the resampling filter by a factor max(1, 1 / scale), which means that when downsampling, more input pixels contribute to an output pixel.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"axes",
"If provided, it specifies a subset of axes that 'roi', 'scales' and 'sizes' refer to. "
"If not provided, all axes are assumed [0, 1, ..., r-1], where r = rank(data). "
"Non-specified dimensions are interpreted as non-resizable. "
"Negative value means counting dimensions from the back. Accepted range is [-r, r-1], where r = rank(data). "
"Behavior is undefined if an axis is repeated.",
AttributeProto::INTS,
false)
.Attr(
"keep_aspect_ratio_policy",
Resize_ver19_attr_keep_aspect_ratio_policy_doc,
AttributeProto::STRING,
std::string("stretch"))
.Input(0, "X", "N-D tensor", "T1", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"roi",
"1-D tensor given as [start1, ..., startN, end1, ..., endN], where N is the rank of X or the length of axes, if provided. "
"The RoIs' coordinates are normalized in the coordinate system of the input image. It only takes effect when coordinate_transformation_mode is \"tf_crop_and_resize\"",
"T2",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"scales",
"The scale array along each dimension. It takes value greater than 0. If it's less than 1,"
" it's sampling down, otherwise, it's upsampling. The number of elements of 'scales' should"
" be the same as the rank of input 'X' or the length of 'axes', if provided. "
"One of 'scales' and 'sizes' MUST be specified and it is an error if both are specified. If 'sizes' is needed, the user can use an empty string as the name of 'scales' in this operator's input list.",
"tensor(float)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Input(
3,
"sizes",
"Target size of the output tensor. Its interpretation depends on the 'keep_aspect_ratio_policy' value."
"The number of elements of 'sizes' should be the same as the"
" rank of input 'X', or the length of 'axes', if provided. Only one of 'scales' and 'sizes' can be specified. ",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(0, "Y", "N-D tensor after resizing", "T1", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint(
"T1",
OpSchema::all_tensor_types_ir4(),
"Constrain input 'X' and output 'Y' to all tensor types.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain roi type to float or double.")
.SetDoc(Resize_ver19_doc)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { resizeShapeInference_opset18_to_19(ctx); }));
static const char* GridSample_ver20_doc = R"DOC(
Given an input `X` and a flow-field `grid`, computes the output `Y` using `X` values and pixel locations from the `grid`.
For spatial input `X` with shape (N, C, H, W), the `grid` will have shape (N, H_out, W_out, 2),
the output `Y` will have shape (N, C, H_out, W_out). For volumetric input `X` with shape (N, C, D, H, W),
the `grid` will have shape (N, D_out, H_out, W_out, 3), the output `Y` will have shape (N, C, D_out, H_out, W_out).
More generally, for an input `X` of rank r+2 with shape (N, C, d1, d2, ..., dr),
the `grid` will have shape (N, D1_out, D2_out, ..., Dr_out, r), the output `Y` will have shape (N, C, D1_out, D2_out, ..., Dr_out).
The tensor `X` contains values at centers of square pixels (voxels, etc) locations such as (n, c, d1_in, d2_in, ..., dr_in).
The (n, d1_out, d2_out, ..., dr_out, :) values from the tensor `grid` are the normalized positions for interpolating the values
at the (n, c, d1_out, d2_out, ..., dr_out) locations from the output tensor `Y` using a specified interpolation method (the mode)
and a padding mode (for `grid` positions falling outside the 2-dimensional image).
For example, the values in `grid[n, h_out, w_out, :]` are size-2 vectors specifying normalized positions in the 2-dimensional space of `X`.
They are used to interpolate output values of `Y[n, c, h_out, w_out]`.
The GridSample operator is often used in doing grid generator and sampler in the
[Spatial Transformer Networks](https://arxiv.org/abs/1506.02025).
See also in [torch.nn.functional.grid_sample](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html).
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GridSample,
20,
OpSchema()
.Attr(
"mode",
"Three interpolation modes: linear (default), nearest and cubic. "
"The \"linear\" mode includes linear and N-linear interpolation modes depending on the number of spatial dimensions "
"of the input tensor (i.e. linear for 1 spatial dimension, bilinear for 2 spatial dimensions, etc.). "
"The \"cubic\" mode also includes N-cubic interpolation modes following the same rules. The \"nearest\" mode rounds "
"to the nearest even index when the sampling point falls halfway between two indices.",
AttributeProto::STRING,
std::string("linear"))
.Attr(
"padding_mode",
"Support padding modes for outside grid values: `zeros`(default), `border`, `reflection`. "
"zeros: use 0 for out-of-bound grid locations, "
"border: use border values for out-of-bound grid locations, "
"reflection: use values at locations reflected by the border for out-of-bound grid locations. "
"If index 0 represents the margin pixel, the reflected value at index -1 will be the same as the value at index 1. "
"For location far away from the border, it will keep being reflected until becoming in bound. "
"If pixel location x = -3.5 reflects by border -1 and becomes x' = 1.5, then reflects by border 1 and becomes x'' = 0.5.",
AttributeProto::STRING,
std::string("zeros"))
.Attr(
"align_corners",
"If align_corners=1, the extrema (-1 and 1) are considered as referring to the center points of the input's corner pixels (voxels, etc.). "
"If align_corners=0, they are instead considered as referring to the corner points of the input's corner pixels (voxels, etc.), "
"making the sampling more resolution agnostic.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(
0,
"X",
"Input tensor of rank r+2 that has shape (N, C, D1, D2, ..., Dr), where N is the batch size, "
"C is the number of channels, D1, D2, ..., Dr are the spatial dimensions.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
1,
"grid",
"Input offset of shape (N, D1_out, D2_out, ..., Dr_out, r), where D1_out, D2_out, ..., "
"Dr_out are the spatial dimensions of the grid and output, and r is the number of spatial dimensions. "
"Grid specifies the sampling locations normalized by the input spatial dimensions. "
"Therefore, it should have most values in the range of [-1, 1]. If the grid has values outside the range of [-1, 1], "
"the corresponding outputs will be handled as defined by padding_mode. Following computer vision convention, "
"the coordinates in the length-r location vector are listed from the innermost tensor dimension to the outermost, "
"the opposite of regular tensor indexing.",
"T2",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"Y",
"Output tensor of rank r+2 that has shape (N, C, D1_out, D2_out, ..., Dr_out) of the sampled values. "
"For integer input types, intermediate values are computed as floating point and cast to integer at the end.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint(
"T1",
OpSchema::all_tensor_types(),
"Constrain input `X` and output `Y` types to all tensor types.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain grid types to float tensors.")
.SetDoc(GridSample_ver20_doc)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) { gridSampleShapeInference(ctx); }));
static const char* AffineGrid_ver20_doc = R"DOC(
Generates a 2D or 3D flow field (sampling grid), given a batch of affine matrices theta
(https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html).
An affine matrix `theta` is applied to a position tensor represented in its homogeneous expression. Here is an example in 3D:
```
[r00, r01, r02, t0] [x] [x']
[r10, r11, r12, t1] * [y] = [y']
[r20, r21, r22, t2] [z] [z']
[0, 0, 0, 1 ] [1] [1 ]
```
where `(x, y, z)` is the position in the original space, `(x', y', z')` is the position in the output space.
The last row is always `[0, 0, 0, 1]` and is not stored in the affine matrix. Therefore we have `theta` of shape `(N, 2, 3)` for 2D or `(N, 3, 4)` for 3D.
Input `size` is used to define grid of positions evenly spaced in the original 2D or 3D space, with dimensions ranging from `-1` to `1`.
The output `grid` contains positions in the output space.
When `align_corners=1`, consider `-1` and `1` to refer to the centers of the corner pixels (mark `v` in illustration).
```
v v v v
|-------------------|------------------|
-1 0 1
```
When `align_corners=0`, consider `-1` and `1` to refer to the outer edge of the corner pixels.
```
v v v v
|------------------|-------------------|
-1 0 1
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
AffineGrid,
20,
OpSchema()
.Attr(
"align_corners",
"if align_corners=1, consider -1 and 1 to refer to the centers of the corner pixels. "
"if align_corners=0, consider -1 and 1 to refer to the outer edge the corner pixels.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(
0,
"theta",
"input batch of affine matrices with shape (N, 2, 3) for 2D or (N, 3, 4) for 3D",
"T1",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
1,
"size",
"the target output image size (N, C, H, W) for 2D or (N, C, D, H, W) for 3D",
"T2",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"grid",
"output tensor of shape (N, H, W, 2) of 2D sample coordinates or (N, D, H, W, 3) of 3D sample coordinates.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T1", OpSchema::all_float_types_ir4(), "Constrain grid types to float tensors.")
.TypeConstraint("T2", {"tensor(int64)"}, "Constrain size's type to int64 tensors.")
.SetDoc(AffineGrid_ver20_doc)
.FunctionBody(R"ONNX(
{
# naming one: 1, one_f: 1.0, one_1d: [1], one_f_1d: [1.0]
one = Constant <value_int: int=1> ()
two = Constant <value_int: int=2> ()
zero = Constant <value_int: int=0> ()
four = Constant <value_int: int=4> ()
one_1d = Constant <value_ints: ints = [1]> ()
zero_1d = Constant <value_ints: ints = [0]> ()
minus_one = Constant <value_int: int=-1> ()
minus_one_f = CastLike (minus_one, theta)
zero_f = CastLike (zero, theta)
one_f = CastLike (one, theta)
two_f = CastLike (two, theta)
constant_align_corners = Constant <value_int: int=@align_corners> ()
constant_align_corners_equal_zero = Equal (constant_align_corners, zero)
size_ndim = Size (size)
condition_is_2d = Equal (size_ndim, four)
N, C, D, H, W = If (condition_is_2d) <
then_branch = g1 () => (N_then, C_then, D_then, H_then, W_then) {
N_then, C_then, H_then, W_then = Split <num_outputs: int=4> (size)
D_then = Identity (one_1d)
},
else_branch = g2 () => (N_else, C_else, D_else, H_else, W_else) {
N_else, C_else, D_else, H_else, W_else = Split <num_outputs: int=5> (size)
}
>
size_NCDHW = Concat <axis=0> (N, C, D, H, W)
theta_3d = If (condition_is_2d) <
then_branch = g3 () => (theta_then) { # theta: N by 2 by 3 => N by 3 by 4
# use of thetaN23 is a way to make shape inference happy when theta is N by 3 by 4.
gather_idx_6 = Constant <value_ints: ints = [0, 1, 2, 0, 1, 2]> ()
shape_23 = Constant <value_ints: ints = [2, 3]> ()
gather_idx_23 = Reshape (gather_idx_6, shape_23)
shape_N23 = Concat <axis=0>(N, shape_23)
gather_idx_N23 = Expand (gather_idx_23, shape_N23)
thetaN23 = GatherElements <axis=2> (theta, gather_idx_N23) # N by 2 by 3 => N by 3 by 2
r1, r2 = Split <axis: int=1, num_outputs: int=2> (thetaN23) # N by 1 by 3
r1_ = Squeeze (r1) # N by 3
r2_ = Squeeze (r2)
r11, r12, t1 = Split <axis: int=1, num_outputs: int=3> (r1_) # N by 1
r21, r22, t2 = Split <axis: int=1, num_outputs: int=3> (r2_)
r11_shape = Shape (r21)
float_zero_1d_ = ConstantOfShape (r11_shape) # N by 1
float_zero_1d = CastLike (float_zero_1d_, theta)
float_one_1d = Add (float_zero_1d, one_f) # N by 1
R1 = Concat <axis=1>(r11, r12, float_zero_1d, t1) # N by 4
R2 = Concat <axis=1>(r21, r22, float_zero_1d, t2)
R3 = Concat <axis=1>(float_zero_1d, float_zero_1d, float_one_1d, float_zero_1d)
R1_ = Unsqueeze (R1, one_1d) # N by 1 by 4
R2_ = Unsqueeze (R2, one_1d)
R3_ = Unsqueeze (R3, one_1d)
theta_then = Concat <axis=1> (R1_, R2_, R3_) # N by 3 by 4
# theta_then = Identity (theta)
},
else_branch = g4 () => (theta_else) {
theta_else = Identity (theta)
}
>
two_1d = Constant <value_ints=[2]> ()
three_1d = Constant <value_ints=[3]> ()
five_1d = Constant <value_ints=[5]> ()
constant_D_H_W_shape = Slice (size_NCDHW, two_1d, five_1d) # [N, C, D, H, W] => [D, H, W]
zeros_D_H_W_ = ConstantOfShape (constant_D_H_W_shape)
zeros_D_H_W = CastLike (zeros_D_H_W_, theta)
ones_D_H_W = Add (zeros_D_H_W, one_f)
D_float = CastLike (D, zero_f)
H_float = CastLike (H, zero_f)
W_float = CastLike (W, zero_f)
start_d, step_d, start_h, step_h, start_w, step_w = If (constant_align_corners_equal_zero) <
then_branch = h1 () => (start_d_then, step_d_then, start_h_then, step_h_then, start_w_then, step_w_then) { # => (float, float, float, float, float, float)
step_d_then = Div (two_f, D_float)
step_h_then = Div (two_f, H_float)
step_w_then = Div (two_f, W_float)
step_d_half = Div (step_d_then, two_f)
start_d_then = Add (minus_one_f, step_d_half)
step_h_half = Div (step_h_then, two_f)
start_h_then = Add (minus_one_f, step_h_half)
step_w_half = Div (step_w_then, two_f)
start_w_then = Add (minus_one_f, step_w_half)
},
else_branch = h2 () => (start_d_else, step_d_else, start_h_else, step_h_else, start_w_else, step_w_else) { # => (float, float, float, float, float, float)
D_float_nimus_one = Sub (D_float, one_f)
H_float_nimus_one = Sub (H_float, one_f)
W_float_nimus_one = Sub (W_float, one_f)
# avoid divide by 0
D_equals_one = Equal (D, one)
step_d_else = If (D_equals_one) <
then_branch = g5 () => (step_d_else_then) {
step_d_else_then = Identity (zero_f)
},
else_branch = g6 () => (step_d_else_else) {
step_d_else_else = Div (two_f, D_float_nimus_one)
}
>
step_h_else = Div (two_f, H_float_nimus_one)
step_w_else = Div (two_f, W_float_nimus_one)
start_d_else = Identity (minus_one_f)
start_h_else = Identity (minus_one_f)
start_w_else = Identity (minus_one_f)
}
>
grid_w_steps_int = Range (zero, W, one)
grid_w_steps_float = CastLike (grid_w_steps_int, step_w)
grid_w_steps = Mul (grid_w_steps_float, step_w)
grid_w_0 = Add (start_w, grid_w_steps)
grid_h_steps_int = Range (zero, H, one)
grid_h_steps_float = CastLike (grid_h_steps_int, step_h)
grid_h_steps = Mul (grid_h_steps_float, step_h)
grid_h_0 = Add (start_h, grid_h_steps)
grid_d_steps_int = Range (zero, D, one)
grid_d_steps_float = CastLike (grid_d_steps_int, step_d)
grid_d_steps = Mul (grid_d_steps_float, step_d)
grid_d_0 = Add (start_d, grid_d_steps)
zeros_H_W_D = Transpose <perm = [1, 2, 0]> (zeros_D_H_W)
grid_d_1 = Add (zeros_H_W_D, grid_d_0)
grid_d = Transpose <perm = [2, 0, 1]> (grid_d_1)
zeros_D_W_H = Transpose <perm = [0, 2, 1]> (zeros_D_H_W)
grid_h_1 = Add (zeros_D_W_H, grid_h_0)
grid_h = Transpose <perm = [0, 2, 1]> (grid_h_1)
grid_w = Add (grid_w_0, zeros_D_H_W)
grid_w_usqzed = Unsqueeze (grid_w, minus_one)
grid_h_usqzed = Unsqueeze (grid_h, minus_one)
grid_d_usqzed = Unsqueeze (grid_d, minus_one)
ones_D_H_W_usqzed = Unsqueeze (ones_D_H_W, minus_one)
original_grid = Concat <axis=-1> (grid_w_usqzed, grid_h_usqzed, grid_d_usqzed, ones_D_H_W_usqzed)
constant_shape_DHW_4 = Constant <value_ints: ints = [-1, 4]> ()
original_grid_DHW_4 = Reshape (original_grid, constant_shape_DHW_4)
original_grid_4_DHW_ = Transpose (original_grid_DHW_4)
original_grid_4_DHW = CastLike (original_grid_4_DHW_, theta_3d)
grid_N_3_DHW = MatMul (theta_3d, original_grid_4_DHW)
grid_N_DHW_3 = Transpose <perm = [0, 2, 1]> (grid_N_3_DHW)
N_D_H_W_3 = Concat <axis=-1> (N, D, H, W, three_1d)
grid_3d_else_ = Reshape (grid_N_DHW_3, N_D_H_W_3)
grid_3d = CastLike (grid_3d_else_, theta_3d)
# grid = Identity (grid_3d)
grid = If (condition_is_2d) <
then_branch = g1 () => (grid_then) { # [N, D=1, H, W, 3] => [N, H, W, 2]
grid_squeezed = Squeeze (grid_3d, one_1d) # [N, H, W, 3]
grid_then = Slice (grid_squeezed, zero_1d, two_1d, three_1d) # [N, H, W, 2]
},
else_branch = g2 () => (grid_else) {
grid_else = Identity (grid_3d)
}
>
}
)ONNX")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
checkInputRank(ctx, 1, 1);
bool found;
TensorShapeProto size_proto = getShapeInput(ctx, 1, found);
if (!found) {
return;
}
const auto size_length = size_proto.dim_size();
if (size_length != 4 && size_length != 5) {
fail_shape_inference("Length of input 'size' is ", size_length, ". It must be 4 for 2D or 5 for 5D.");
}
auto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
const auto& N = size_proto.dim(0);
*output_shape->add_dim() = N;
// const auto& C = size_proto.dim(1); // C is not used
if (size_length == 4) {
// 2D case: size shape (N, C, H, W), output shape (N, C, H, W, 2)
const auto& H = size_proto.dim(2);
const auto& W = size_proto.dim(3);
*output_shape->add_dim() = H;
*output_shape->add_dim() = W;
output_shape->add_dim()->set_dim_value(2);
} else if (size_length == 5) {
// 3D case: size shape (N, C, D, H, W), output shape (N, C, D, H, W, 3)
const auto& D = size_proto.dim(2);
const auto& H = size_proto.dim(3);
const auto& W = size_proto.dim(4);
*output_shape->add_dim() = D;
*output_shape->add_dim() = H;
*output_shape->add_dim() = W;
output_shape->add_dim()->set_dim_value(3);
}
}));
ONNX_OPERATOR_SET_SCHEMA(
Identity,
21,
OpSchema()
.SetDoc("Identity operator")
.Input(0, "input", "Input tensor", "V", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Output(0, "output", "Tensor to copy input into.", "V", OpSchema::Single, true, 1, OpSchema::Differentiable)
.TypeConstraint(
"V",
[]() {
auto t = OpSchema::all_tensor_types_ir10();
auto s = OpSchema::all_tensor_sequence_types();
auto o = OpSchema::all_optional_types();
t.insert(t.end(), s.begin(), s.end());
t.insert(t.end(), o.begin(), o.end());
return t;
}(),
"Constrain input and output types to all tensor, sequence, and optional types.")
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
static const char* Compress_ver11_doc = R"DOC(
Selects slices from an input tensor along a given axis where condition evaluates to True for each axis index.
In case axis is not provided, input is flattened before elements are selected.
Compress behaves like numpy.compress: https://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Compress,
11,
OpSchema()
.SetDoc(Compress_ver11_doc)
.Attr(
"axis",
"(Optional) Axis along which to take slices. If not specified, "
"input is flattened before elements being selected. Negative value means counting dimensions "
"from the back. Accepted range is [-r, r-1] where r = rank(input).",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(0, "input", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"condition",
"Rank 1 tensor of booleans to indicate which slices or data elements to be selected. "
"Its length can be less than the input length along the axis "
"or the flattened input size if axis is not specified. "
"In such cases data slices or elements exceeding the condition length are discarded.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Tensor of rank r if axis is specified. Otherwise output is a Tensor of rank 1.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain input and output types to all tensor types.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain to boolean tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
auto axisAttr = ctx.getAttribute("axis");
if (hasInputShape(ctx, 0)) {
const TensorShapeProto& indices_shape = ctx.getInputType(0)->tensor_type().shape();
int r = indices_shape.dim_size();
if (r < 1) {
fail_shape_inference("Indices tensor must have rank >= 1");
}
if (axisAttr) {
int axis = static_cast<int>(axisAttr->i());
if (axis < -r || axis >= r) {
fail_shape_inference("'axis' must be in [-rank(indices), rank(indices)-1]");
}
if (axis < 0) {
axis += r;
}
TensorShapeProto* shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
for (int i = 0; i < indices_shape.dim_size(); i++) {
auto* dim = shape->add_dim();
if (i != axis) {
*dim = indices_shape.dim(i);
}
}
}
}
if (!axisAttr) {
updateOutputShape(ctx, 0, {Dim()});
}
}));
static const char* OneHot_ver11_doc = R"DOC(
Produces a one-hot tensor based on inputs.
The locations represented by the index values in the 'indices' input tensor will have 'on_value'
and the other locations will have 'off_value' in the output tensor, where 'on_value' and 'off_value'
are specified as part of required input argument 'values', which is a two-element tensor of format
[off_value, on_value]. The rank of the output tensor will be one greater than the rank of the
input tensor. The additional dimension is for one-hot representation. The additional dimension will
be inserted at the position specified by 'axis'. If 'axis' is not specified then then additional
dimension will be inserted as the innermost dimension, i.e. axis=-1. The size of the additional
dimension is specified by required scalar input 'depth'. The type of the output tensor is the same
as the type of the 'values' input. Any entries in the 'indices' input tensor with values outside
the range [-depth, depth-1] will result in one-hot representation with all 'off_value' values in the
output tensor.
when axis = 0:
output[input[i, j, k], i, j, k] = 1 for all i, j, k and 0 otherwise.
when axis = -1:
output[i, j, k, input[i, j, k]] = 1 for all i, j, k and 0 otherwise.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
OneHot,
11,
OpSchema()
.SetDoc(OneHot_ver11_doc)
.Attr(
"axis",
"(Optional) Axis along which one-hot representation in added. Default: axis=-1. "
"axis=-1 means that the additional dimension will be inserted as the "
"innermost/last dimension in the output tensor. Negative value means counting dimensions "
"from the back. Accepted range is [-r-1, r] where r = rank(indices).",
AttributeProto::INT,
static_cast<int64_t>(-1))
.Input(
0,
"indices",
"Input tensor containing indices. Any entries in the 'indices' input tensor with "
"values outside the range [-depth, depth-1] will result in one-hot representation with all "
"'off_value' values in the output tensor."
"In case 'indices' is of non-integer type, the values will be casted to int64 before use.",
"T1",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
1,
"depth",
"Scalar or Rank 1 tensor containing exactly one element, specifying the number of classes "
"in one-hot tensor. This is also the size of the one-hot dimension (specified by 'axis' attribute) "
"added on in the output tensor. The values in the 'indices' input tensor are expected to be "
"in the range [-depth, depth-1]. "
"In case 'depth' is of non-integer type, it will be casted to int64 before use.",
"T2",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
2,
"values",
"Rank 1 tensor containing exactly two elements, in the format [off_value, on_value], "
"where 'on_value' is the value used for filling locations specified in 'indices' input "
"tensor, and 'off_value' is the value used for filling locations other than those specified "
"in 'indices' input tensor. ",
"T3",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Tensor of rank one greater than input tensor 'indices', i.e. rank(output) = rank(indices) + 1. "
"The data type for the elements of the output tensor is the same as the type of input 'values' "
"is used.",
"T3",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.TypeConstraint("T1", OpSchema::all_numeric_types(), "Constrain input to only numeric types.")
.TypeConstraint("T2", OpSchema::all_numeric_types(), "Constrain input to only numeric types.")
.TypeConstraint("T3", OpSchema::all_tensor_types(), "Constrain to any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Check that the node has three inputs.
if (ctx.getNumInputs() != 3) {
fail_type_inference("OneHot node must have three inputs.");
}
// Input 'depth' must be a scalar or a single-element vector.
// TODO: Ideally to match spec for this input only Scalar should
// be allowed. Making this change now can affect backward
// compatibility for this op. Since this does not seem like a good
// justification to update version for this op, allowing both scalar
// and 1 element vector for now. In future when version update for
// this op is done we should only allow scalar or change the spec to
// allow both.
if (hasInputShape(ctx, 1)) {
auto& depth_shape = getInputShape(ctx, 1);
if (depth_shape.dim_size() != 0 && depth_shape.dim_size() != 1) {
fail_type_inference("Input 'depth' must be a scalar or rank 1 tensor.");
}
if (depth_shape.dim_size() == 1 && depth_shape.dim((int)0).has_dim_value() &&
depth_shape.dim((int)0).dim_value() != 1) {
fail_type_inference("Input 'depth' must have exactly one element.");
}
}
// Input 'values' must be a two-element vector.
if (hasInputShape(ctx, 2)) {
auto& values_shape = getInputShape(ctx, 2);
if (values_shape.dim_size() != 1) {
fail_type_inference("Input 'values' must be rank 1 tensor.");
}
if (values_shape.dim((int)0).has_dim_value() && values_shape.dim((int)0).dim_value() != 2) {
fail_type_inference("Input 'values' must have exactly two elements.");
}
}
// Set output type to be the same as the third input, 'values'.
propagateElemTypeFromInputToOutput(ctx, 2, 0);
// Set the output shape, if input 0 (indices) shape is available.
if (hasInputShape(ctx, 0)) {
const TensorShapeProto& indices_shape = ctx.getInputType(0)->tensor_type().shape();
int r = indices_shape.dim_size();
if (r < 1) {
fail_shape_inference("Indices tensor must have rank >= 1");
}
int out_rank = r + 1;
int axis = static_cast<int>(getAttribute(ctx, "axis", -1));
if (axis < -out_rank || axis >= out_rank) {
fail_shape_inference("'axis' must be in [-rank(indices), rank(indices)-1]");
}
if (axis < 0) {
axis += out_rank;
}
auto* output_shape = getOutputShape(ctx, 0);
for (int i = 0; i < out_rank; ++i) {
auto* dim = output_shape->add_dim();
if (i < axis) {
if (indices_shape.dim(i).has_dim_value()) {
dim->set_dim_value(indices_shape.dim(i).dim_value());
} else if (indices_shape.dim(i).has_dim_param()) {
dim->set_dim_param(indices_shape.dim(i).dim_param());
}
} else if (i > axis) {
if (indices_shape.dim(i - 1).has_dim_value()) {
dim->set_dim_value(indices_shape.dim(i - 1).dim_value());
} else if (indices_shape.dim(i - 1).has_dim_param()) {
dim->set_dim_param(indices_shape.dim(i - 1).dim_param());
}
}
}
}
}));
ONNX_OPERATOR_SET_SCHEMA(
IsNaN,
20,
OpSchema()
.SetDoc(R"DOC(Returns which elements of the input are NaN.)DOC")
.Input(0, "X", "input", "T1", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Y", "output", "T2", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.TypeConstraint("T1", OpSchema::all_float_types_ir9(), "Constrain input types to float tensors.")
.TypeConstraint("T2", {"tensor(bool)"}, "Constrain output types to boolean tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
updateOutputElemType(ctx, 0, TensorProto::BOOL);
if (hasInputShape(ctx, 0)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
ONNX_OPERATOR_SET_SCHEMA(
IsInf,
20,
OpSchema()
.SetDoc(R"DOC(Map infinity to true and other values to false.)DOC")
.Input(0, "X", "input", "T1", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Y", "output", "T2", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Attr(
"detect_positive",
"(Optional) Whether map positive infinity to true. Default to 1 "
"so that positive infinity induces true. Set this attribute to 0 "
"if positive infinity should be mapped to false.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Attr(
"detect_negative",
"(Optional) Whether map negative infinity to true. Default to 1 "
"so that negative infinity induces true. Set this attribute to 0 "
"if negative infinity should be mapped to false.",
AttributeProto::INT,
static_cast<int64_t>(1))
.TypeConstraint("T1", OpSchema::all_float_types_ir9(), "Constrain input types to float tensors.")
.TypeConstraint("T2", {"tensor(bool)"}, "Constrain output types to boolean tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
updateOutputElemType(ctx, 0, TensorProto::BOOL);
if (hasInputShape(ctx, 0)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
static const char* Where_ver16_doc = R"DOC(
Return elements, either from X or Y, depending on condition.
Where behaves like
[numpy.where](https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html)
with three parameters.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Where,
16,
OpSchema()
.SetDoc(GET_OP_DOC_STR(std::string(Where_ver16_doc) + GenerateBroadcastingDocMul()))
.Input(
0,
"condition",
"When True (nonzero), yield X, otherwise yield Y",
"B",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(
1,
"X",
"values selected at indices where condition is True",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
2,
"Y",
"values selected at indices where condition is False",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Output(
0,
"output",
"Tensor of shape equal to the broadcasted shape of condition, X, and Y.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("B", {"tensor(bool)"}, "Constrain to boolean tensors.")
.TypeConstraint(
"T",
OpSchema::all_tensor_types_ir4(),
"Constrain input and output types to all tensor types (including bfloat).")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 1, 0);
if (hasNInputShapes(ctx, 3)) {
std::vector<const TensorShapeProto*> shapes;
shapes.push_back(&ctx.getInputType(0)->tensor_type().shape());
shapes.push_back(&ctx.getInputType(1)->tensor_type().shape());
shapes.push_back(&ctx.getInputType(2)->tensor_type().shape());
multidirectionalBroadcastShapeInference(
shapes, *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape());
}
}));
ONNX_OPERATOR_SET_SCHEMA(
NonZero,
13,
OpSchema()
.SetDoc(NonZero_ver9_doc)
.Input(0, "X", "input", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Y", "output", "tensor(int64)", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
updateOutputElemType(ctx, 0, TensorProto::INT64);
TensorShapeProto output_shape;
auto* dim = output_shape.add_dim();
if (hasInputShape(ctx, 0)) {
const TensorShapeProto& input_shape = getInputShape(ctx, 0);
dim->set_dim_value(input_shape.dim_size());
}
output_shape.add_dim();
updateOutputShape(ctx, 0, output_shape);
}));
static const char* ReverseSequence_ver10_doc = R"DOC(
Reverse batch of sequences having different lengths specified by `sequence_lens`.
For each slice i iterating on batch axis, the operator reverses the first sequence_lens[i] elements on time axis,
and copies elements whose index's beyond sequence_lens[i] to the output. So the output slice i contains reversed
sequences on the first sequence_lens[i] elements, then have original values copied for the other elements.
Example 1:
input = [[0.0, 4.0, 8.0, 12.0],
[1.0, 5.0, 9.0, 13.0],
[2.0, 6.0, 10.0, 14.0],
[3.0, 7.0, 11.0, 15.0]]
sequence_lens = [4, 3, 2, 1]
time_axis = 0
batch_axis = 1
output = [[3.0, 6.0, 9.0, 12.0],
[2.0, 5.0, 8.0, 13.0],
[1.0, 4.0, 10.0, 14.0],
[0.0, 7.0, 11.0, 15.0]]
Example 2:
input = [[0.0, 1.0, 2.0, 3.0 ],
[4.0, 5.0, 6.0, 7.0 ],
[8.0, 9.0, 10.0, 11.0],
[12.0, 13.0, 14.0, 15.0]]
sequence_lens = [1, 2, 3, 4]
time_axis = 1
batch_axis = 0
output = [[0.0, 1.0, 2.0, 3.0 ],
[5.0, 4.0, 6.0, 7.0 ],
[10.0, 9.0, 8.0, 11.0],
[15.0, 14.0, 13.0, 12.0]]
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
ReverseSequence,
10,
OpSchema()
.SetDoc(ReverseSequence_ver10_doc)
.Attr(
"time_axis",
"(Optional) Specify which axis is time axis. Must be one of 0 (default), or 1.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"batch_axis",
"(Optional) Specify which axis is batch axis. Must be one of 1 (default), or 0.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Input(0, "input", "Tensor of rank r >= 2.", "T", OpSchema::Single)
.Input(
1,
"sequence_lens",
"Tensor specifying lengths of the sequences in a batch. It has shape `[batch_size]`.",
"tensor(int64)",
OpSchema::Single)
.Output(0, "Y", "Tensor with same shape of input.", "T", OpSchema::Single)
.TypeConstraint("T", OpSchema::all_tensor_types(), "Input and output types can be of any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 2)) {
return;
}
auto& first_input_shape = getInputShape(ctx, 0);
if (first_input_shape.dim_size() < 2) {
fail_shape_inference("'input' must have rank >= 2");
}
auto& seq_len_input_shape = getInputShape(ctx, 1);
if (seq_len_input_shape.dim_size() != 1) {
fail_shape_inference("'sequence_lens' must have rank of 1");
}
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
static const char* Unique_ver11_doc = R"DOC(
Find the unique elements of a tensor. When an optional attribute 'axis' is provided, unique subtensors sliced along the 'axis' are returned.
Otherwise the input tensor is flattened and unique values of the flattened tensor are returned.
This operator returns the unique values or sliced unique subtensors of the input tensor and three optional outputs.
The first output tensor 'Y' contains all unique values or subtensors of the input.
The second optional output tensor 'indices' contains indices of 'Y' elements' first occurrence in 'X'.
The third optional output tensor 'inverse_indices' contains, for elements of 'X', its corresponding indices in 'Y'.
The fourth optional output tensor 'counts' contains the count of each element of 'Y' in the input.
Outputs are either sorted in ascending order or optionally in the order of the first occurrence of the values in the input.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html
Example 1:
```
input_X = [2, 1, 1, 3, 4, 3]
attribute_sorted = 0
attribute_axis = None
output_Y = [2, 1, 3, 4]
output_indices = [0, 1, 3, 4]
output_inverse_indices = [0, 1, 1, 2, 3, 2]
output_counts = [1, 2, 2, 1]
```
Example 2:
```
input_X = [[1, 3], [2, 3]]
attribute_sorted = 1
attribute_axis = None
output_Y = [1, 2, 3]
output_indices = [0, 2, 1]
output_inverse_indices = [0, 2, 1, 2]
output_counts = [1, 1, 2]
```
Example 3:
```
input_X = [[1, 0, 0], [1, 0, 0], [2, 3, 4]]
attribute_sorted = 1
attribute_axis = 0
output_Y = [[1, 0, 0], [2, 3, 4]]
output_indices = [0, 2]
output_inverse_indices = [0, 0, 1]
output_counts = [2, 1]
```
Example 4:
```
input_x = [[[1., 1.], [0., 1.], [2., 1.], [0., 1.]],
[[1., 1.], [0., 1.], [2., 1.], [0., 1.]]]
attribute_sorted = 1
attribute_axis = 1
```
intermediate data are presented below for better understanding:
there are 4 subtensors sliced along axis 1 of input_x (shape = (2, 4, 2)):
```
A: [[1, 1], [1, 1]],
[[0, 1], [0, 1]],
[[2, 1], [2, 1]],
[[0, 1], [0, 1]].
```
there are 3 unique subtensors:
```
[[1, 1], [1, 1]],
[[0, 1], [0, 1]],
[[2, 1], [2, 1]].
```
sorted unique subtensors:
```
B: [[0, 1], [0, 1]],
[[1, 1], [1, 1]],
[[2, 1], [2, 1]].
```
output_Y is constructed from B:
```
[[[0. 1.], [1. 1.], [2. 1.]],
[[0. 1.], [1. 1.], [2. 1.]]]
```
output_indices is to map from B to A:
```
[1, 0, 2]
```
output_inverse_indices is to map from A to B:
```
[1, 0, 2, 0]
```
output_counts:
```
[2, 1, 1]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Unique,
11,
OpSchema()
.SetDoc(Unique_ver11_doc)
.Attr(
"sorted",
"(Optional) Whether to sort the unique elements in ascending order before returning as output. "
"Must be one of 0, or 1 (default).",
AttributeProto::INT,
static_cast<int64_t>(1))
.Attr(
"axis",
"(Optional) The dimension to apply unique. If not specified, the unique elements of the "
"flattened input are returned. Negative value means counting dimensions "
"from the back. Accepted range is [-r, r-1] where r = rank(input).",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(
0,
"X",
"A N-D input tensor that is to be processed.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"Y",
"A tensor of the same type as 'X' "
"containing all the unique values or subtensors sliced along a provided 'axis' in 'X', either sorted "
"or maintained in the same order they occur in input 'X'",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
1,
"indices",
"A 1-D INT64 tensor "
"containing indices of 'Y' elements' first occurrence in 'X'. "
"When 'axis' is provided, it contains indices to subtensors in input 'X' on the 'axis'. "
"When 'axis' is not provided, it contains indices to values in the flattened input tensor. ",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(
2,
"inverse_indices",
"A 1-D INT64 tensor "
"containing, for elements of 'X', its corresponding indices in 'Y'. "
"When 'axis' is provided, it contains indices to subtensors in output 'Y' on the 'axis'. "
"When 'axis' is not provided, it contains indices to values in output 'Y'. ",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(
3,
"counts",
"A 1-D INT64 tensor containing "
"the count of each element "
"of 'Y' in input 'X'",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.TypeConstraint("T", OpSchema::all_tensor_types(), "Input can be of any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
const TypeProto* xTensorProto = ctx.getInputType(0);
TypeProto* yTensorProto = ctx.getOutputType(0);
TypeProto* indicesTensorProto = nullptr;
TypeProto* inverseIndicesTensorProto = nullptr;
TypeProto* countsTensorProto = nullptr;
// 'indices', 'inverse_indices', and 'counts' are 1-D tensors of
// unknown dimension.
// Shape inference will happen even in case of empty optional outputs,
// graph-level shape inference should not propagate the shape downstream for empty optional outputs.
auto num_outputs = ctx.getNumOutputs();
if (num_outputs >= 2) {
indicesTensorProto = ctx.getOutputType(1);
updateOutputElemType(ctx, 1, TensorProto::INT64);
indicesTensorProto->mutable_tensor_type()->mutable_shape()->add_dim();
}
if (num_outputs >= 3) {
inverseIndicesTensorProto = ctx.getOutputType(2);
updateOutputElemType(ctx, 2, TensorProto::INT64);
inverseIndicesTensorProto->mutable_tensor_type()->mutable_shape()->add_dim();
}
if (num_outputs >= 4) {
countsTensorProto = ctx.getOutputType(3);
updateOutputElemType(ctx, 3, TensorProto::INT64);
countsTensorProto->mutable_tensor_type()->mutable_shape()->add_dim();
}
auto axisAttr = ctx.getAttribute("axis");
if (!axisAttr) {
// 'axis' is not provided. Input 'X' is flattened.
// 'Y' is a 1-D tensor of unknown dimension.
yTensorProto->mutable_tensor_type()->mutable_shape()->add_dim();
} else {
// 'axis' is provided.
int axis = static_cast<int>(axisAttr->i());
if (!xTensorProto->tensor_type().has_shape()) {
return;
}
const TensorShapeProto& input_shape = xTensorProto->tensor_type().shape();
int rank = input_shape.dim_size();
if (axis < 0)
axis += rank;
if (axis < 0 || axis >= rank) {
fail_shape_inference("Invalid value for attribute axis");
}
// 'Y' has the same shape as 'X' except in the 'axis' dimension
// which is unknown.
for (int i = 0; i < input_shape.dim_size(); i++) {
auto* dim = yTensorProto->mutable_tensor_type()->mutable_shape()->add_dim();
if (i != axis) {
*dim = input_shape.dim(i);
}
}
}
}));
static const char* GatherND_ver13_doc = R"DOC(
Given `data` tensor of rank `r` >= 1, `indices` tensor of rank `q` >= 1, and `batch_dims` integer `b`, this operator gathers
slices of `data` into an output tensor of rank `q + r - indices_shape[-1] - 1 - b`.
`indices` is an q-dimensional integer tensor, best thought of as a `(q-1)`-dimensional tensor of index-tuples into `data`,
where each element defines a slice of `data`
`batch_dims` (denoted as `b`) is an integer indicating the number of batch dimensions, i.e the leading `b` number of dimensions of
`data` tensor and `indices` are representing the batches, and the gather starts from the `b+1` dimension.
Some salient points about the inputs' rank and shape:
1) r >= 1 and q >= 1 are to be honored. There is no dependency condition to be met between ranks `r` and `q`
2) The first `b` dimensions of the shape of `indices` tensor and `data` tensor must be equal.
3) b < min(q, r) is to be honored.
4) The `indices_shape[-1]` should have a value between 1 (inclusive) and rank `r-b` (inclusive)
5) All values in `indices` are expected to be within bounds [-s, s-1] along axis of size `s` (i.e.) `-data_shape[i] <= indices[...,i] <= data_shape[i] - 1`.
It is an error if any of the index values are out of bounds.
The output is computed as follows:
The output tensor is obtained by mapping each index-tuple in the `indices` tensor to the corresponding slice of the input `data`.
1) If `indices_shape[-1] > r-b` => error condition
2) If `indices_shape[-1] == r-b`, since the rank of `indices` is `q`, `indices` can be thought of as `N` `(q-b-1)`-dimensional tensors
containing 1-D tensors of dimension `r-b`, where `N` is an integer equals to the product of 1 and all the elements in the batch dimensions
of the indices_shape. Let us think of each such `r-b` ranked tensor as `indices_slice`. Each *scalar value* corresponding to `data[0:b-1,indices_slice]`
is filled into the corresponding location of the `(q-b-1)`-dimensional tensor to form the `output` tensor (Example 1 below)
3) If `indices_shape[-1] < r-b`, since the rank of `indices` is `q`, `indices` can be thought of as `N` `(q-b-1)`-dimensional tensor
containing 1-D tensors of dimension `< r-b`. Let us think of each such tensors as `indices_slice`. Each *tensor slice* corresponding
to `data[0:b-1, indices_slice , :]` is filled into the corresponding location of the `(q-b-1)`-dimensional tensor
to form the `output` tensor (Examples 2, 3, 4 and 5 below)
This operator is the inverse of `ScatterND`.
**Example 1**
```
batch_dims = 0
data = [[0,1],[2,3]] # data_shape = [2, 2]
indices = [[0,0],[1,1]] # indices_shape = [2, 2]
output = [0,3] # output_shape = [2]
```
**Example 2**
```
batch_dims = 0
data = [[0,1],[2,3]] # data_shape = [2, 2]
indices = [[1],[0]] # indices_shape = [2, 1]
output = [[2,3],[0,1]] # output_shape = [2, 2]
```
**Example 3**
```
batch_dims = 0
data = [[[0,1],[2,3]],[[4,5],[6,7]]] # data_shape = [2, 2, 2]
indices = [[0,1],[1,0]] # indices_shape = [2, 2]
output = [[2,3],[4,5]] # output_shape = [2, 2]
```
**Example 4**
```
batch_dims = 0
data = [[[0,1],[2,3]],[[4,5],[6,7]]] # data_shape = [2, 2, 2]
indices = [[[0,1]],[[1,0]]] # indices_shape = [2, 1, 2]
output = [[[2,3]],[[4,5]]] # output_shape = [2, 1, 2]
```
**Example 5**
```
batch_dims = 1
data = [[[0,1],[2,3]],[[4,5],[6,7]]] # data_shape = [2, 2, 2]
indices = [[1],[0]] # indices_shape = [2, 1]
output = [[2,3],[4,5]] # output_shape = [2, 2]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
GatherND,
13,
OpSchema()
.SetDoc(GatherND_ver13_doc)
.Attr(
"batch_dims",
"The number of batch dimensions. The gather of indexing starts from dimension of data[batch_dims:]",
AttributeProto::INT,
static_cast<int64_t>(0))
.Input(0, "data", "Tensor of rank r >= 1.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Input(
1,
"indices",
"Tensor of rank q >= 1. All index values are expected to be within bounds [-s, s-1] "
"along axis of size s. It is an error if any of the index values are out of bounds.",
"tensor(int64)",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Tensor of rank q + r - indices_shape[-1] - 1.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to any tensor type.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference
if (!hasNInputShapes(ctx, 2)) {
// cannot proceed with shape or rank inference
return;
}
const auto& data_shape = ctx.getInputType(0)->tensor_type().shape();
const auto data_rank = data_shape.dim_size();
const auto& indices_shape = ctx.getInputType(1)->tensor_type().shape();
const auto indices_rank = indices_shape.dim_size();
int64_t batch_dims_data = getAttribute(ctx, "batch_dims", 0);
if (data_rank < 1 || indices_rank < 1) {
fail_shape_inference(
"Both `data` and `indices` input tensors in GatherND op "
"need to have rank larger than 0.");
}
// cannot ascertain if the input shapes are valid if shape of
// `indices` is missing last dimension value so return at this point
if (!indices_shape.dim(indices_rank - 1).has_dim_value()) {
return;
}
const auto last_index_dimension = indices_shape.dim(indices_rank - 1).dim_value() + batch_dims_data;
if (last_index_dimension > data_rank) {
fail_shape_inference(
"Last dimension of `indices` input tensor in GatherND op "
"must not be larger than the rank of `data` tensor");
}
for (int i = 0; i < indices_rank - 1; ++i) {
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() = indices_shape.dim(i);
}
for (int i = static_cast<int>(last_index_dimension); i < data_rank; ++i) {
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim() = data_shape.dim(i);
}
}));
static const char* Pad_ver19_doc = R"DOC(
Given a tensor containing the data to be padded (`data`), a tensor containing the number of start and end pad values for axis (`pads`), (optionally) a `mode`, and (optionally) `constant_value`,
a padded tensor (`output`) is generated.
The three supported `modes` are (similar to corresponding modes supported by `numpy.pad`):
1) `constant`(default) - pads with a given constant value as specified by `constant_value` (which defaults to 0, empty string, or False)
2) `reflect` - pads with the reflection of the vector mirrored on the first and last values of the vector along each axis
3) `edge` - pads with the edge values of array
4) `wrap` - wrap-around padding as if the data tensor forms a torus
Example 1 (`constant` mode):
Insert 0 pads to the beginning of the second dimension.
```
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
]
```
Example 2 (`reflect` mode):
```
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'reflect'
output = [
[1.0, 1.2, 1.0, 1.2],
[2.3, 3.4, 2.3, 3.4],
[4.5, 5.7, 4.5, 5.7],
]
```
Example 3 (`edge` mode):
```
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'edge'
output = [
[1.0, 1.0, 1.0, 1.2],
[2.3, 2.3, 2.3, 3.4],
[4.5, 4.5, 4.5, 5.7],
]
```
Example 4 (`wrap` mode):
```
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [2, 1, 1, 1]
mode = 'wrap'
output = [
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
]
```
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Pad,
21,
OpSchema().FillUsing(PadDocGenerator(
Pad_ver19_doc,
"Supported modes: `constant`(default), `reflect`, `edge`, `wrap`",
OpSchema::all_tensor_types_ir10(),
"Constrain input and output types to all tensor types up to IRv10.")));
static const char* Trilu_ver14_doc = R"DOC(
Given a 2-D matrix or batches of 2-D matrices, returns the upper or lower triangular part of the tensor(s).
The attribute "upper" determines whether the upper or lower part is retained. If set to true,
the upper triangular matrix is retained. Lower triangular matrix is retained otherwise.
Default value for the "upper" attribute is true.
Trilu takes one input tensor of shape [*, N, M], where * is zero or more batch dimensions. The upper triangular part consists
of the elements on and above the given diagonal (k). The lower triangular part consists of elements on and below the diagonal.
All other elements in the matrix are set to zero.
If k = 0, the triangular part on and above/below the main diagonal is retained.
If upper is set to true, a positive k retains the upper triangular matrix excluding the main diagonal and (k-1) diagonals above it.
A negative k value retains the main diagonal and |k| diagonals below it.
If upper is set to false, a positive k retains the lower triangular matrix including the main diagonal and k diagonals above it.
A negative k value excludes the main diagonal and (|k|-1) diagonals below it.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Trilu,
14,
OpSchema()
.SetDoc(Trilu_ver14_doc)
.Attr(
"upper",
"Boolean. Indicates whether upper or lower part of matrix is retained. Default is true.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Input(
0,
"input",
"Input tensor of rank 2 or higher.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
1,
"k",
"A 0-D tensor containing a single value corresponding to the number diagonals above or below the main diagonal to exclude or include. "
"Default value is 0 if it's not specified.",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable)
.Output(
0,
"output",
"Output tensor of the same type and shape as the input tensor.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference needs the input data shape
if (hasInputShape(ctx, 0)) {
const TensorShapeProto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const int rank = static_cast<int>(input_shape.dim_size());
if (rank < 2) {
fail_shape_inference("Input rank must be >= 2.")
}
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}));
static const char* CenterCropPad_ver18_doc = R"DOC(
Center crop or pad an input to given dimensions.
The crop/pad dimensions can be specified for a subset of the `axes`. Non-specified dimensions will not be
cropped or padded.
If the input dimensions are bigger than the crop shape, a centered cropping window is extracted from the input.
If the input dimensions are smaller than the crop shape, the input is padded on each side equally,
so that the input is centered in the output.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
CenterCropPad,
18,
OpSchema()
.SetDoc(CenterCropPad_ver18_doc)
.Input(
0,
"input_data",
"Input to extract the centered crop from.",
"T",
OpSchema::Single,
true,
1,
OpSchema::Differentiable)
.Input(
1,
"shape",
"1-D tensor representing the cropping window dimensions.",
"Tind",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Output(0, "output_data", "Output data.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable)
.Attr(
"axes",
"If provided, it specifies a subset of axes that 'shape' refer to. "
"If not provided, all axes are assumed [0, 1, ..., r-1], where r = rank(data). "
"Negative value means counting dimensions from the back. Accepted range is [-r, r-1], where r = rank(data). "
"Behavior is undefined if an axis is repeated.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.TypeConstraint("T", OpSchema::all_tensor_types_ir4(), "Constrain input and output types to all tensor types.")
.TypeConstraint("Tind", {"tensor(int32)", "tensor(int64)"}, "Constrain indices to integer types")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
if (ctx.getNumInputs() != 2) {
fail_type_inference("CenterCropPad op must have 2 inputs.");
}
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
// Shape Inference if shape is initializer
const TensorProto* cropShapeInitializer = ctx.getInputData(1);
if (!cropShapeInitializer) {
return;
}
// don't know data_type - can't proceed
if (!cropShapeInitializer->has_data_type())
return;
const auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
const int64_t input_rank = input_shape.dim_size();
std::vector<int64_t> shape;
if (cropShapeInitializer->data_type() == TensorProto::INT64) {
const auto& data = ParseData<int64_t>(cropShapeInitializer);
shape.insert(shape.end(), data.begin(), data.end());
} else if (cropShapeInitializer->data_type() == TensorProto::INT32) {
const auto& data = ParseData<int32_t>(cropShapeInitializer);
shape.insert(shape.end(), data.begin(), data.end());
} else {
// unaccepted data type
fail_shape_inference("`shape` only supports `int32_t` or `int64_t` inputs");
}
auto axes_attr = ctx.getAttribute("axes");
std::vector<int64_t> axes;
if (axes_attr) {
axes = RetrieveValues<int64_t>(*axes_attr);
checkAxesRange(axes, input_rank);
adjustNegativeAxes(axes, input_rank);
checkDuplicateAxes(axes, input_rank);
} else {
axes.resize(input_rank);
std::iota(axes.begin(), axes.end(), 0);
}
if (shape.size() != axes.size()) {
fail_shape_inference(
"Number of elements of input 'shape' (",
shape.size(),
") does not match the number of axes (",
axes.size(),
").");
}
// Populating default dims
std::vector<TensorShapeProto_Dimension*> out_dims(input_rank);
auto* output_shape = getOutputShape(ctx, 0);
for (int i = 0; i < input_rank; ++i) {
out_dims[i] = output_shape->add_dim();
const auto& input_dim = input_shape.dim(i);
if (input_dim.has_dim_value()) {
out_dims[i]->set_dim_value(input_dim.dim_value());
} else if (input_dim.has_dim_param()) {
out_dims[i]->set_dim_param(input_dim.dim_param());
}
}
int j = 0;
for (int axis : axes) {
out_dims[axis]->set_dim_value(shape[j++]);
}
})
.SetContextDependentFunctionBodyBuilder([](const FunctionBodyBuildContext& ctx,
const OpSchema& schema,
FunctionProto& functionProto) {
FunctionBuilder builder(functionProto);
builder.Const("k2", std::vector<int64_t>{2});
auto axes_attr = ctx.getAttribute("axes");
if (axes_attr) { // axes provided, need to work on a subset of dimensions
builder.Add("axes_input = Constant <value_ints : ints = @axes>()");
builder.Add("x_shape_alldims = Shape (input_data)").Add("x_shape = Gather (x_shape_alldims, axes_input)");
} else { // axes not provided, assuming all dims
builder.Add("x_shape = Shape (input_data)");
}
// First: Pad step
builder.Add("padded_sh = Max(x_shape, shape)")
.Add("pad_amount = Sub(padded_sh, x_shape)")
.Add("pad_amount_left = Div(pad_amount, k2)")
.Add("pad_amount_right = Sub(pad_amount, pad_amount_left)")
.Add("pads = Concat <axis = 0> (pad_amount_left, pad_amount_right)");
if (axes_attr)
builder.Add("padded_input = Pad (input_data, pads, , axes_input)");
else
builder.Add("padded_input = Pad (input_data, pads)");
// Second: Slice step
if (axes_attr) {
builder.Add("x_shape_alldims2 = Shape (padded_input)")
.Add("x_shape2 = Gather (x_shape_alldims2, axes_input)");
} else {
builder.Add("x_shape2 = Shape (padded_input)");
}
builder.Add("sh_diff = Sub (x_shape2, shape)")
.Add("start_dims = Div (sh_diff, k2)")
.Add("end_dims = Add (start_dims, shape)");
if (axes_attr)
builder.Add("output_data = Slice (padded_input, start_dims, end_dims, axes_input)");
else
builder.Add("output_data = Slice (padded_input, start_dims, end_dims)");
schema.BuildFunction(functionProto);
return true;
}));
} // namespace ONNX_NAMESPACE
|