Spaces:
Running
Running
File size: 5,965 Bytes
cf2a15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Package for histogram compression."""
import dataclasses
import numpy as np
from typing import Tuple
# Normal CDF for std_devs: (-Inf, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, Inf)
# naturally gives bands around median of width 1 std dev, 2 std dev, 3 std dev,
# and then the long tail.
NORMAL_HISTOGRAM_BPS = (0, 668, 1587, 3085, 5000, 6915, 8413, 9332, 10000)
@dataclasses.dataclass(frozen=True)
class CompressedHistogramValue:
"""Represents a value in a compressed histogram.
Attributes:
basis_point: Compression point represented in basis point, 1/100th of a
percent.
value: Cumulative weight at the basis point.
"""
basis_point: float
value: float
def as_tuple(self) -> Tuple[float, float]:
"""Returns the basis point and the value as a tuple."""
return (self.basis_point, self.value)
# TODO(@jart): Unfork these methods.
def compress_histogram_proto(histo, bps=NORMAL_HISTOGRAM_BPS):
"""Creates fixed size histogram by adding compression to accumulated state.
This routine transforms a histogram at a particular step by interpolating its
variable number of buckets to represent their cumulative weight at a constant
number of compression points. This significantly reduces the size of the
histogram and makes it suitable for a two-dimensional area plot where the
output of this routine constitutes the ranges for a single x coordinate.
Args:
histo: A HistogramProto object.
bps: Compression points represented in basis points, 1/100ths of a percent.
Defaults to normal distribution.
Returns:
List of values for each basis point.
"""
# See also: Histogram::Percentile() in core/lib/histogram/histogram.cc
if not histo.num:
return [CompressedHistogramValue(b, 0.0).as_tuple() for b in bps]
bucket = np.array(histo.bucket)
bucket_limit = list(histo.bucket_limit)
weights = (bucket * bps[-1] / (bucket.sum() or 1.0)).cumsum()
values = []
j = 0
while j < len(bps):
i = np.searchsorted(weights, bps[j], side="right")
while i < len(weights):
cumsum = weights[i]
cumsum_prev = weights[i - 1] if i > 0 else 0.0
if cumsum == cumsum_prev: # prevent lerp divide by zero
i += 1
continue
if not i or not cumsum_prev:
lhs = histo.min
else:
lhs = max(bucket_limit[i - 1], histo.min)
rhs = min(bucket_limit[i], histo.max)
weight = _lerp(bps[j], cumsum_prev, cumsum, lhs, rhs)
values.append(CompressedHistogramValue(bps[j], weight).as_tuple())
j += 1
break
else:
break
while j < len(bps):
values.append(CompressedHistogramValue(bps[j], histo.max).as_tuple())
j += 1
return values
def compress_histogram(buckets, bps=NORMAL_HISTOGRAM_BPS):
"""Creates fixed size histogram by adding compression to accumulated state.
This routine transforms a histogram at a particular step by linearly
interpolating its variable number of buckets to represent their cumulative
weight at a constant number of compression points. This significantly reduces
the size of the histogram and makes it suitable for a two-dimensional area
plot where the output of this routine constitutes the ranges for a single x
coordinate.
Args:
buckets: A list of buckets, each of which is a 3-tuple of the form
`(min, max, count)`.
bps: Compression points represented in basis points, 1/100ths of a percent.
Defaults to normal distribution.
Returns:
List of values for each basis point.
"""
# See also: Histogram::Percentile() in core/lib/histogram/histogram.cc
buckets = np.array(buckets)
if not buckets.size:
return [CompressedHistogramValue(b, 0.0).as_tuple() for b in bps]
(minmin, maxmax) = (buckets[0][0], buckets[-1][1])
counts = buckets[:, 2]
right_edges = list(buckets[:, 1])
weights = (counts * bps[-1] / (counts.sum() or 1.0)).cumsum()
result = []
bp_index = 0
while bp_index < len(bps):
i = np.searchsorted(weights, bps[bp_index], side="right")
while i < len(weights):
cumsum = weights[i]
cumsum_prev = weights[i - 1] if i > 0 else 0.0
if cumsum == cumsum_prev: # prevent division-by-zero in `_lerp`
i += 1
continue
if not i or not cumsum_prev:
lhs = minmin
else:
lhs = max(right_edges[i - 1], minmin)
rhs = min(right_edges[i], maxmax)
weight = _lerp(bps[bp_index], cumsum_prev, cumsum, lhs, rhs)
result.append(
CompressedHistogramValue(bps[bp_index], weight).as_tuple()
)
bp_index += 1
break
else:
break
while bp_index < len(bps):
result.append(
CompressedHistogramValue(bps[bp_index], maxmax).as_tuple()
)
bp_index += 1
return result
def _lerp(x, x0, x1, y0, y1):
"""Affinely map from [x0, x1] onto [y0, y1]."""
return y0 + (x - x0) * float(y1 - y0) / (x1 - x0)
|