File size: 5,965 Bytes
cf2a15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Package for histogram compression."""


import dataclasses
import numpy as np

from typing import Tuple

# Normal CDF for std_devs: (-Inf, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, Inf)
# naturally gives bands around median of width 1 std dev, 2 std dev, 3 std dev,
# and then the long tail.
NORMAL_HISTOGRAM_BPS = (0, 668, 1587, 3085, 5000, 6915, 8413, 9332, 10000)


@dataclasses.dataclass(frozen=True)
class CompressedHistogramValue:
    """Represents a value in a compressed histogram.

    Attributes:
      basis_point: Compression point represented in basis point, 1/100th of a
        percent.
      value: Cumulative weight at the basis point.
    """

    basis_point: float
    value: float

    def as_tuple(self) -> Tuple[float, float]:
        """Returns the basis point and the value as a tuple."""
        return (self.basis_point, self.value)


# TODO(@jart): Unfork these methods.
def compress_histogram_proto(histo, bps=NORMAL_HISTOGRAM_BPS):
    """Creates fixed size histogram by adding compression to accumulated state.

    This routine transforms a histogram at a particular step by interpolating its
    variable number of buckets to represent their cumulative weight at a constant
    number of compression points. This significantly reduces the size of the
    histogram and makes it suitable for a two-dimensional area plot where the
    output of this routine constitutes the ranges for a single x coordinate.

    Args:
      histo: A HistogramProto object.
      bps: Compression points represented in basis points, 1/100ths of a percent.
          Defaults to normal distribution.

    Returns:
      List of values for each basis point.
    """
    # See also: Histogram::Percentile() in core/lib/histogram/histogram.cc
    if not histo.num:
        return [CompressedHistogramValue(b, 0.0).as_tuple() for b in bps]
    bucket = np.array(histo.bucket)
    bucket_limit = list(histo.bucket_limit)
    weights = (bucket * bps[-1] / (bucket.sum() or 1.0)).cumsum()
    values = []
    j = 0
    while j < len(bps):
        i = np.searchsorted(weights, bps[j], side="right")
        while i < len(weights):
            cumsum = weights[i]
            cumsum_prev = weights[i - 1] if i > 0 else 0.0
            if cumsum == cumsum_prev:  # prevent lerp divide by zero
                i += 1
                continue
            if not i or not cumsum_prev:
                lhs = histo.min
            else:
                lhs = max(bucket_limit[i - 1], histo.min)
            rhs = min(bucket_limit[i], histo.max)
            weight = _lerp(bps[j], cumsum_prev, cumsum, lhs, rhs)
            values.append(CompressedHistogramValue(bps[j], weight).as_tuple())
            j += 1
            break
        else:
            break
    while j < len(bps):
        values.append(CompressedHistogramValue(bps[j], histo.max).as_tuple())
        j += 1
    return values


def compress_histogram(buckets, bps=NORMAL_HISTOGRAM_BPS):
    """Creates fixed size histogram by adding compression to accumulated state.

    This routine transforms a histogram at a particular step by linearly
    interpolating its variable number of buckets to represent their cumulative
    weight at a constant number of compression points. This significantly reduces
    the size of the histogram and makes it suitable for a two-dimensional area
    plot where the output of this routine constitutes the ranges for a single x
    coordinate.

    Args:
      buckets: A list of buckets, each of which is a 3-tuple of the form
        `(min, max, count)`.
      bps: Compression points represented in basis points, 1/100ths of a percent.
          Defaults to normal distribution.

    Returns:
      List of values for each basis point.
    """
    # See also: Histogram::Percentile() in core/lib/histogram/histogram.cc
    buckets = np.array(buckets)
    if not buckets.size:
        return [CompressedHistogramValue(b, 0.0).as_tuple() for b in bps]
    (minmin, maxmax) = (buckets[0][0], buckets[-1][1])
    counts = buckets[:, 2]
    right_edges = list(buckets[:, 1])
    weights = (counts * bps[-1] / (counts.sum() or 1.0)).cumsum()

    result = []
    bp_index = 0
    while bp_index < len(bps):
        i = np.searchsorted(weights, bps[bp_index], side="right")
        while i < len(weights):
            cumsum = weights[i]
            cumsum_prev = weights[i - 1] if i > 0 else 0.0
            if cumsum == cumsum_prev:  # prevent division-by-zero in `_lerp`
                i += 1
                continue
            if not i or not cumsum_prev:
                lhs = minmin
            else:
                lhs = max(right_edges[i - 1], minmin)
            rhs = min(right_edges[i], maxmax)
            weight = _lerp(bps[bp_index], cumsum_prev, cumsum, lhs, rhs)
            result.append(
                CompressedHistogramValue(bps[bp_index], weight).as_tuple()
            )
            bp_index += 1
            break
        else:
            break
    while bp_index < len(bps):
        result.append(
            CompressedHistogramValue(bps[bp_index], maxmax).as_tuple()
        )
        bp_index += 1
    return result


def _lerp(x, x0, x1, y0, y1):
    """Affinely map from [x0, x1] onto [y0, y1]."""
    return y0 + (x - x0) * float(y1 - y0) / (x1 - x0)