File size: 52,049 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
import collections
import importlib.machinery
import io
import linecache
import pickletools
import platform
import types
from collections import defaultdict, OrderedDict
from dataclasses import dataclass
from enum import Enum
from importlib.machinery import SourceFileLoader
from pathlib import Path
from typing import (
    Any,
    BinaryIO,
    Callable,
    cast,
    DefaultDict,
    Dict,
    List,
    Optional,
    Sequence,
    Set,
    Union,
)

import torch
from torch.serialization import location_tag, normalize_storage_type
from torch.types import Storage
from torch.utils.hooks import RemovableHandle

from ._digraph import DiGraph
from ._importlib import _normalize_path
from ._mangling import demangle, is_mangled
from ._package_pickler import create_pickler
from ._stdlib import is_stdlib_module
from .find_file_dependencies import find_files_source_depends_on
from .glob_group import GlobGroup, GlobPattern
from .importer import Importer, OrderedImporter, sys_importer

__all__ = [
    "PackagingErrorReason",
    "EmptyMatchError",
    "PackagingError",
    "PackageExporter",
]

_gate_torchscript_serialization = True

ActionHook = Callable[["PackageExporter", str], None]


class _ModuleProviderAction(Enum):
    """Represents one of the actions that :class:`PackageExporter` can take on a module.



    See :meth:`PackageExporter.extern` and friends for a description of what the actions do.

    """

    INTERN = 1
    EXTERN = 2
    MOCK = 3
    DENY = 4
    # Special case: when a module is mocked, PackageExporter writes out a
    # `_mock` module that implements our mocking stubs. If we re-package code,
    # we may encounter a `_mock` module from the original package. If we do,
    # just ignore it and write a `_mock` module once.
    REPACKAGED_MOCK_MODULE = 5
    # Special case: PackageImporter adds a fake module
    # (`torch_package_importer`) that allows packaged code to access it. Don't
    # re-export this.
    SKIP = 6


class PackagingErrorReason(Enum):
    """Listing of different reasons a dependency may fail to package.



    This enum is used to provide good error messages when

    :class:`PackagingError` is raised.

    """

    def __repr__(self):
        return f"<{self.__class__.__name__}.{self.name}>"

    IS_EXTENSION_MODULE = (
        "Module is a C extension module. torch.package supports Python modules only."
    )
    NO_DUNDER_FILE = "Module had no __file__ defined."
    SOURCE_FILE_NOT_FOUND = (
        "Module had a __file__, but we could not find it in your filesystem."
    )
    DEPENDENCY_RESOLUTION_FAILED = "Dependency resolution failed."
    NO_ACTION = (
        "Module did not match against any action pattern. Extern, mock, or intern it."
    )
    DENIED = "Module was denied by a pattern."
    MOCKED_BUT_STILL_USED = (
        "Module was mocked out, but is still being used in the package. "
        "Please intern or extern the mocked modules if objects are supposed to be in "
        "the package."
    )


@dataclass
class _PatternInfo:
    """Holds :class:`PackageExporter`-specific info about how to execute matches against"""

    # What action to take on a module that matches this pattern.
    action: _ModuleProviderAction
    # The value of `allow_empty` the user gave when specifying the pattern.
    allow_empty: bool
    # Whether this pattern has been matched during packaging.
    was_matched: bool

    def __init__(self, action, allow_empty):
        self.action = action
        self.allow_empty = allow_empty
        self.was_matched = False


class EmptyMatchError(Exception):
    """This is an exception that is thrown when a mock or extern is marked as

    ``allow_empty=False``, and is not matched with any module during packaging.

    """

    pass


class PackagingError(Exception):
    """This exception is raised when there is an issue with exporting a package.

    ``PackageExporter`` will attempt to gather up all the errors and present

    them to you at once.

    """

    def __init__(self, dependency_graph: DiGraph, debug=False):
        # Group errors by reason.
        broken: Dict[PackagingErrorReason, List[str]] = defaultdict(list)
        for module_name, attrs in dependency_graph.nodes.items():
            error = attrs.get("error")
            if error is None:
                continue
            if error == PackagingErrorReason.NO_ACTION:
                assert "action" not in attrs
            broken[error].append(module_name)

        message = io.StringIO()
        message.write("\n")

        for reason, module_names in broken.items():
            message.write(f"* {reason.value}\n")
            for module_name in module_names:
                message.write(f"    {module_name}\n")

                # Print additional context if it's provided.
                error_context = dependency_graph.nodes[module_name].get("error_context")
                if error_context is not None:
                    message.write(f"      Context: {error_context}\n")
                if module_name in _DISALLOWED_MODULES:
                    message.write(
                        "      Note: While we usually use modules in the python standard library "
                        f"from the local environment, `{module_name}` has a lot of system "
                        "level access and therefore can pose a security risk. We heavily "
                        f"recommend removing `{module_name}` from your packaged code. However, if that "
                        "is not possible, add it to the extern list by calling "
                        f'PackageExporter.extern("`{module_name}`")\n'
                    )
                if debug:
                    module_path = dependency_graph.first_path(module_name)
                    message.write(
                        f"      A path to {module_name}: {' -> '.join(module_path)}"
                    )
        if not debug:
            message.write("\n")
            message.write(
                "Set debug=True when invoking PackageExporter for a visualization of where "
                "broken modules are coming from!\n"
            )
        # Save the dependency graph so that tooling can get at it.
        self.dependency_graph = dependency_graph
        super().__init__(message.getvalue())


class PackageExporter:
    """Exporters allow you to write packages of code, pickled Python data, and

    arbitrary binary and text resources into a self-contained package.



    Imports can load this code in a hermetic way, such that code is loaded

    from the package rather than the normal Python import system. This allows

    for the packaging of PyTorch model code and data so that it can be run

    on a server or used in the future for transfer learning.



    The code contained in packages is copied file-by-file from the original

    source when it is created, and the file format is a specially organized

    zip file. Future users of the package can unzip the package, and edit the code

    in order to perform custom modifications to it.



    The importer for packages ensures that code in the module can only be loaded from

    within the package, except for modules explicitly listed as external using :meth:`extern`.

    The file ``extern_modules`` in the zip archive lists all the modules that a package externally depends on.

    This prevents "implicit" dependencies where the package runs locally because it is importing

    a locally-installed package, but then fails when the package is copied to another machine.



    When source code is added to the package, the exporter can optionally scan it

    for further code dependencies (``dependencies=True``). It looks for import statements,

    resolves relative references to qualified module names, and performs an action specified by the user

    (See: :meth:`extern`, :meth:`mock`, and :meth:`intern`).

    """

    """A importer that will be searched in order to find the modules referenced by other modules or by

    pickled objects. The default module environment just uses sys_importer, which searches the Python environment.

    """
    importer: Importer

    def __init__(

        self,

        f: Union[str, Path, BinaryIO],

        importer: Union[Importer, Sequence[Importer]] = sys_importer,

        debug: bool = False,

    ):
        """

        Create an exporter.



        Args:

            f: The location to export to. Can be a  ``string``/``Path`` object containing a filename

                or a binary I/O object.

            importer: If a single Importer is passed, use that to search for modules.

                If a sequence of importers are passed, an ``OrderedImporter`` will be constructed out of them.

            debug: If set to True, add path of broken modules to PackagingErrors.

        """
        torch._C._log_api_usage_once("torch.package.PackageExporter")
        self.debug = debug
        if isinstance(f, (Path, str)):
            f = str(f)
            self.buffer: Optional[BinaryIO] = None
        else:  # is a byte buffer
            self.buffer = f

        self.zip_file = torch._C.PyTorchFileWriter(f)
        self.zip_file.set_min_version(6)
        self._written_files: Set[str] = set()

        self.serialized_reduces: Dict[int, Any] = {}

        # A graph tracking all the modules and pickle objects added to this
        # package and the dependencies between them.
        # - Each node is a module name (or a pickle name that looks like '<foo.obj.pkl>')
        # - Each directed edge (u, v) means u depends on v.
        # - Nodes may contain metadata that describe how to write the thing to the zipfile.
        self.dependency_graph = DiGraph()
        self.script_module_serializer = torch._C.ScriptModuleSerializer(self.zip_file)
        self.storage_context = self.script_module_serializer.storage_context()

        # These are OrderedDicts for compatibility with RemovableHandle.
        # Generic OrderedDict type annotations are not present until 3.7.
        # The real type signature is OrderedDict[int, Callable[[PackageExporter, str], None]]
        self._extern_hooks: OrderedDict = OrderedDict()
        self._mock_hooks: OrderedDict = OrderedDict()
        self._intern_hooks: OrderedDict = OrderedDict()

        if isinstance(importer, Importer):
            self.importer = importer
        else:
            if not isinstance(importer, collections.abc.Sequence):
                raise TypeError(
                    "importer arg should be an Importer or a sequence of Importers, "
                    f"got {type(importer)} instead."
                )
            self.importer = OrderedImporter(*importer)

        self.patterns: Dict[GlobGroup, _PatternInfo] = {}
        self._unique_id = 0

    def save_source_file(

        self, module_name: str, file_or_directory: str, dependencies=True

    ):
        """Adds the local file system ``file_or_directory`` to the source package to provide the code

        for ``module_name``.



        Args:

            module_name (str): e.g. ``"my_package.my_subpackage"``, code will be saved to provide code for this package.

            file_or_directory (str): the path to a file or directory of code. When a directory, all python files in the directory

                are recursively copied using :meth:`save_source_file`. If a file is named ``"/__init__.py"`` the code is treated

                as a package.

            dependencies (bool, optional): If ``True``, we scan the source for dependencies.

        """
        path = Path(file_or_directory)
        if path.is_dir():
            to_save = []  # list of tuples with arguments to save_source_string
            module_path = module_name.replace(".", "/")
            for filename in path.glob("**/*.py"):
                relative_path = filename.relative_to(path).as_posix()
                archivename = module_path + "/" + relative_path
                submodule_name = None
                if filename.name == "__init__.py":
                    submodule_name = archivename[: -len("/__init__.py")].replace(
                        "/", "."
                    )
                    is_package = True
                else:
                    submodule_name = archivename[: -len(".py")].replace("/", ".")
                    is_package = False

                # we delay the call to save_source_string so that we record all the source files
                # being provided by this directory structure _before_ attempting to resolve the dependencies
                # on the source. This makes sure we don't try to copy over modules that will just get
                # overwritten by this directory blob
                to_save.append(
                    (
                        submodule_name,
                        _read_file(str(filename)),
                        is_package,
                        dependencies,
                    )
                )

            for item in to_save:
                self.save_source_string(*item)
        else:
            is_package = path.name == "__init__.py"
            self.save_source_string(
                module_name,
                _read_file(file_or_directory),
                is_package,
                dependencies,
            )

    def get_unique_id(self) -> str:
        """Get an id. This id is guaranteed to only be handed out once for this package."""
        ret = str(self._unique_id)
        self._unique_id += 1
        return ret

    def _get_dependencies(

        self, src: str, module_name: str, is_package: bool

    ) -> List[str]:
        """Return all modules that this source code depends on.



        Dependencies are found by scanning the source code for import-like statements.



        Arguments:

            src: The Python source code to analyze for dependencies.

            module_name: The name of the module that ``src`` corresponds to.

            is_package: Whether this module should be treated as a package.

                See :py:meth:`save_source_string` for more info.



        Returns:

            A list containing modules detected as direct dependencies in

            ``src``.  The items in the list are guaranteed to be unique.

        """
        package_name = (
            module_name if is_package else module_name.rsplit(".", maxsplit=1)[0]
        )
        try:
            dep_pairs = find_files_source_depends_on(src, package_name)
        except Exception as e:
            self.dependency_graph.add_node(
                module_name,
                error=PackagingErrorReason.DEPENDENCY_RESOLUTION_FAILED,
                error_context=str(e),
            )
            return []

        # Use a dict to get uniquing but also deterministic order
        dependencies = {}
        for dep_module_name, dep_module_obj in dep_pairs:
            # handle the case where someone did something like `from pack import sub`
            # where `sub` is a submodule. In this case we don't have to save pack, just sub.
            # this ensures we don't pick up additional dependencies on pack.
            # However, in the case where `sub` is not a submodule but an object, then we do have
            # to save pack.
            if dep_module_obj is not None:
                possible_submodule = f"{dep_module_name}.{dep_module_obj}"
                if self._module_exists(possible_submodule):
                    dependencies[possible_submodule] = True
                    # we don't need to save `pack`
                    continue
            if self._module_exists(dep_module_name):
                dependencies[dep_module_name] = True

        return list(dependencies.keys())

    def save_source_string(

        self,

        module_name: str,

        src: str,

        is_package: bool = False,

        dependencies: bool = True,

    ):
        """Adds ``src`` as the source code for ``module_name`` in the exported package.



        Args:

            module_name (str): e.g. ``my_package.my_subpackage``, code will be saved to provide code for this package.

            src (str): The Python source code to save for this package.

            is_package (bool, optional): If ``True``, this module is treated as a package. Packages are allowed to have submodules

                (e.g. ``my_package.my_subpackage.my_subsubpackage``), and resources can be saved inside them. Defaults to ``False``.

            dependencies (bool, optional): If ``True``, we scan the source for dependencies.

        """
        self.dependency_graph.add_node(
            module_name,
            source=src,
            is_package=is_package,
            provided=True,
            action=_ModuleProviderAction.INTERN,
        )

        if dependencies:
            deps = self._get_dependencies(src, module_name, is_package)

            for dep in deps:
                self.dependency_graph.add_edge(module_name, dep)
                self.add_dependency(dep)

    def _write_source_string(

        self,

        module_name: str,

        src: str,

        is_package: bool = False,

    ):
        """Write ``src`` as the source code for ``module_name`` in the zip archive.



        Arguments are otherwise the same as for :meth:`save_source_string`.

        """
        extension = "/__init__.py" if is_package else ".py"
        filename = module_name.replace(".", "/") + extension

        self._write(filename, src)

    def _import_module(self, module_name: str):
        try:
            return self.importer.import_module(module_name)
        except ModuleNotFoundError as e:
            if not is_mangled(module_name):
                raise
            msg = (
                f"Module not found: '{module_name}'. Make sure the PackageImporter that "
                "created this module is present in `self.importer`"
            )
            raise ModuleNotFoundError(msg) from None

    def _module_exists(self, module_name: str) -> bool:
        try:
            self._import_module(module_name)
            return True
        except Exception:
            return False

    def _get_source_of_module(self, module: types.ModuleType) -> Optional[str]:
        filename = None
        spec = getattr(module, "__spec__", None)
        if spec is not None:
            loader = getattr(spec, "loader", None)
            if loader is not None and isinstance(loader, SourceFileLoader):
                try:
                    filename = loader.get_filename(module.__name__)
                except ImportError:
                    pass
        if filename is None:
            filename = getattr(module, "__file__", None)
        if isinstance(filename, str) and filename.endswith(".py"):
            return "".join(linecache.getlines(filename, module.__dict__))
        return None

    def add_dependency(self, module_name: str, dependencies=True):
        """Given a module, add it to the dependency graph according to patterns

        specified by the user.

        """
        if (
            module_name in self.dependency_graph
            and self.dependency_graph.nodes[module_name].get("provided") is True
        ):
            return

        # Special case: PackageImporter provides a special module called
        # `torch_package_importer` that allows packaged modules to reference
        # their PackageImporter. We don't want to re-export this.
        if module_name == "torch_package_importer":
            self.dependency_graph.add_node(
                module_name,
                action=_ModuleProviderAction.SKIP,
                provided=True,
            )
            return

        if module_name == "_mock":
            self.dependency_graph.add_node(
                module_name,
                action=_ModuleProviderAction.REPACKAGED_MOCK_MODULE,
                provided=True,
            )
            return

        if self._can_implicitly_extern(module_name):
            self.dependency_graph.add_node(
                module_name, action=_ModuleProviderAction.EXTERN, provided=True
            )
            return

        for pattern, pattern_info in self.patterns.items():
            if pattern.matches(module_name):
                pattern_info.was_matched = True
                self.dependency_graph.add_node(
                    module_name, action=pattern_info.action, provided=True
                )

                if pattern_info.action == _ModuleProviderAction.DENY:
                    # Requiring a denied module just adds an error to the graph.
                    self.dependency_graph.add_node(
                        module_name, error=PackagingErrorReason.DENIED
                    )

                # If we are interning this module, we need to retrieve its
                # dependencies and package those as well.
                if pattern_info.action == _ModuleProviderAction.INTERN:
                    self._intern_module(module_name, dependencies)
                return

        # No patterns have matched. Explicitly add this as an error.
        self.dependency_graph.add_node(
            module_name, error=PackagingErrorReason.NO_ACTION
        )

    def save_module(self, module_name: str, dependencies=True):
        """Save the code for ``module`` into the package. Code for the module is resolved using the ``importers`` path to find the

        module object, and then using its ``__file__`` attribute to find the source code.



        Args:

            module_name (str): e.g. ``my_package.my_subpackage``, code will be saved to provide code

                for this package.

            dependencies (bool, optional): If ``True``, we scan the source for dependencies.

        """
        if not isinstance(module_name, str):
            raise TypeError(
                "save_module() expects a string input, did you perhaps mean to pass `__name__`?"
            )

        self._intern_module(module_name, dependencies)

    def _intern_module(

        self,

        module_name: str,

        dependencies: bool,

    ):
        """Adds the module to the dependency graph as an interned module,

        along with any metadata needed to write it out to the zipfile at serialization time.

        """
        module_obj = self._import_module(module_name)
        # Subtle: if the import above succeeded, either:
        #   1. The module name is not mangled, and this was just a regular import, or
        #   2. The module name is mangled, but one of the importers was able to
        #      recognize the mangling and import it.
        # Either way, it is now safe to demangle this name so that we don't
        # serialize the mangled version to the package.
        module_name = demangle(module_name)

        # Find dependencies of this module and require them as well.
        is_package = hasattr(module_obj, "__path__")
        source = self._get_source_of_module(module_obj)
        if source is None:
            # Couldn't find a source!  Add it to our dependency graph as broken
            # and continue.
            filename = getattr(module_obj, "__file__", None)
            error_context = None
            if filename is None:
                packaging_error = PackagingErrorReason.NO_DUNDER_FILE
            elif filename.endswith(tuple(importlib.machinery.EXTENSION_SUFFIXES)):
                packaging_error = PackagingErrorReason.IS_EXTENSION_MODULE
            else:
                packaging_error = PackagingErrorReason.SOURCE_FILE_NOT_FOUND
                error_context = f"filename: {filename}"
            self.dependency_graph.add_node(
                module_name,
                action=_ModuleProviderAction.INTERN,
                is_package=is_package,
                error=packaging_error,
                error_context=error_context,
                provided=True,
            )
            return

        self.dependency_graph.add_node(
            module_name,
            action=_ModuleProviderAction.INTERN,
            is_package=is_package,
            source=source,
            provided=True,
        )

        if dependencies:
            deps = self._get_dependencies(source, module_name, is_package)
            for dep in deps:
                self.dependency_graph.add_edge(module_name, dep)
                self.add_dependency(dep)

    def save_pickle(

        self,

        package: str,

        resource: str,

        obj: Any,

        dependencies: bool = True,

        pickle_protocol: int = 3,

    ):
        """Save a python object to the archive using pickle. Equivalent to :func:`torch.save` but saving into

        the archive rather than a stand-alone file. Standard pickle does not save the code, only the objects.

        If ``dependencies`` is true, this method will also scan the pickled objects for which modules are required

        to reconstruct them and save the relevant code.



        To be able to save an object where ``type(obj).__name__`` is ``my_module.MyObject``,

        ``my_module.MyObject`` must resolve to the class of the object according to the ``importer`` order. When saving objects that

        have previously been packaged, the importer's ``import_module`` method will need to be present in the ``importer`` list

        for this to work.



        Args:

            package (str): The name of module package this resource should go in (e.g. ``"my_package.my_subpackage"``).

            resource (str): A unique name for the resource, used to identify it to load.

            obj (Any): The object to save, must be picklable.

            dependencies (bool, optional): If ``True``, we scan the source for dependencies.

        """

        assert (pickle_protocol == 4) or (
            pickle_protocol == 3
        ), "torch.package only supports pickle protocols 3 and 4"

        filename = self._filename(package, resource)
        # Write the pickle data for `obj`
        data_buf = io.BytesIO()
        pickler = create_pickler(data_buf, self.importer, protocol=pickle_protocol)
        pickler.persistent_id = self._persistent_id
        pickler.dump(obj)
        data_value = data_buf.getvalue()
        mocked_modules = defaultdict(list)
        name_in_dependency_graph = f"<{package}.{resource}>"
        self.dependency_graph.add_node(
            name_in_dependency_graph,
            action=_ModuleProviderAction.INTERN,
            provided=True,
            is_pickle=True,
        )

        def _check_mocked_error(module: Optional[str], field: Optional[str]):
            """

            checks if an object (field) comes from a mocked module and then adds

            the pair to mocked_modules which contains mocked modules paired with their

            list of mocked objects present in the pickle.



            We also hold the invariant that the first user defined rule that applies

            to the module is the one we use.

            """

            assert isinstance(module, str)
            assert isinstance(field, str)
            if self._can_implicitly_extern(module):
                return
            for pattern, pattern_info in self.patterns.items():
                if pattern.matches(module):
                    if pattern_info.action == _ModuleProviderAction.MOCK:
                        mocked_modules[module].append(field)
                    return

        if dependencies:
            all_dependencies = []
            module = None
            field = None
            memo: DefaultDict[int, str] = defaultdict(None)
            memo_count = 0
            # pickletools.dis(data_value)
            for opcode, arg, pos in pickletools.genops(data_value):
                if pickle_protocol == 4:
                    if (
                        opcode.name == "SHORT_BINUNICODE"
                        or opcode.name == "BINUNICODE"
                        or opcode.name == "BINUNICODE8"
                    ):
                        assert isinstance(arg, str)
                        module = field
                        field = arg
                        memo[memo_count] = arg
                    elif (
                        opcode.name == "LONG_BINGET"
                        or opcode.name == "BINGET"
                        or opcode.name == "GET"
                    ):
                        assert isinstance(arg, int)
                        module = field
                        field = memo.get(arg, None)
                    elif opcode.name == "MEMOIZE":
                        memo_count += 1
                    elif opcode.name == "STACK_GLOBAL":
                        if module is None:
                            # If not module was passed on in the entries preceeding this one, continue.
                            continue
                        assert isinstance(module, str)
                        if module not in all_dependencies:
                            all_dependencies.append(module)
                        _check_mocked_error(module, field)
                elif (
                    pickle_protocol == 3 and opcode.name == "GLOBAL"
                ):  # a global reference
                    assert isinstance(arg, str)
                    module, field = arg.split(" ")
                    if module not in all_dependencies:
                        all_dependencies.append(module)
                    _check_mocked_error(module, field)
            for module_name in all_dependencies:
                self.dependency_graph.add_edge(name_in_dependency_graph, module_name)

                """ If an object happens to come from a mocked module, then we collect these errors and spit them

                    out with the other errors found by package exporter.

                """
                if module in mocked_modules:
                    assert isinstance(module, str)
                    fields = mocked_modules[module]
                    self.dependency_graph.add_node(
                        module_name,
                        action=_ModuleProviderAction.MOCK,
                        error=PackagingErrorReason.MOCKED_BUT_STILL_USED,
                        error_context=f"Object(s) '{fields}' from module `{module_name}` was mocked out during packaging "
                        f"but is being used in resource - `{resource}` in package `{package}`. ",
                        provided=True,
                    )
                else:
                    self.add_dependency(module_name)

        self._write(filename, data_value)

    def save_text(self, package: str, resource: str, text: str):
        """Save text data to the package.



        Args:

            package (str): The name of module package this resource should go it (e.g. ``"my_package.my_subpackage"``).

            resource (str): A unique name for the resource, used to identify it to load.

            text (str): The contents to save.

        """
        return self.save_binary(package, resource, text.encode("utf-8"))

    def save_binary(self, package, resource, binary: bytes):
        """Save raw bytes to the package.



        Args:

            package (str): The name of module package this resource should go it (e.g. ``"my_package.my_subpackage"``).

            resource (str): A unique name for the resource, used to identify it to load.

            binary (str): The data to save.

        """
        filename = self._filename(package, resource)
        self._write(filename, binary)

    def register_extern_hook(self, hook: ActionHook) -> RemovableHandle:
        """Registers an extern hook on the exporter.



        The hook will be called each time a module matches against an :meth:`extern` pattern.

        It should have the following signature::



            hook(exporter: PackageExporter, module_name: str) -> None



        Hooks will be called in order of registration.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                A handle that can be used to remove the added hook by calling

                ``handle.remove()``.

        """
        handle = RemovableHandle(self._extern_hooks)
        self._extern_hooks[handle.id] = hook
        return handle

    def register_mock_hook(self, hook: ActionHook) -> RemovableHandle:
        """Registers a mock hook on the exporter.



        The hook will be called each time a module matches against a :meth:`mock` pattern.

        It should have the following signature::



            hook(exporter: PackageExporter, module_name: str) -> None



        Hooks will be called in order of registration.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                A handle that can be used to remove the added hook by calling

                ``handle.remove()``.

        """
        handle = RemovableHandle(self._mock_hooks)
        self._mock_hooks[handle.id] = hook
        return handle

    def register_intern_hook(self, hook: ActionHook) -> RemovableHandle:
        """Registers an intern hook on the exporter.



        The hook will be called each time a module matches against an :meth:`intern` pattern.

        It should have the following signature::



            hook(exporter: PackageExporter, module_name: str) -> None



        Hooks will be called in order of registration.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                A handle that can be used to remove the added hook by calling

                ``handle.remove()``.

        """
        handle = RemovableHandle(self._intern_hooks)
        self._intern_hooks[handle.id] = hook
        return handle

    def intern(

        self,

        include: "GlobPattern",

        *,

        exclude: "GlobPattern" = (),

        allow_empty: bool = True,

    ):
        """Specify modules that should be packaged. A module must match some ``intern`` pattern in order to be

        included in the package and have its dependencies processed recursively.



        Args:

            include (Union[List[str], str]): A string e.g. "my_package.my_subpackage", or list of strings

                for the names of the modules to be externed. This can also be a glob-style pattern, as described in :meth:`mock`.



            exclude (Union[List[str], str]): An optional pattern that excludes some patterns that match the include string.



            allow_empty (bool): An optional flag that specifies whether the intern modules specified by this call

                to the ``intern`` method must be matched to some module during packaging. If an ``intern`` module glob

                pattern is added with ``allow_empty=False``, and :meth:`close` is called (either explicitly or via ``__exit__``)

                before any modules match that pattern, an exception is thrown. If ``allow_empty=True``, no such exception is thrown.



        """
        self.patterns[GlobGroup(include, exclude=exclude)] = _PatternInfo(
            _ModuleProviderAction.INTERN, allow_empty
        )

    def mock(

        self,

        include: "GlobPattern",

        *,

        exclude: "GlobPattern" = (),

        allow_empty: bool = True,

    ):
        """Replace some required modules with a mock implementation.  Mocked modules will return a fake

        object for any attribute accessed from it. Because we copy file-by-file, the dependency resolution will sometimes

        find files that are imported by model files but whose functionality is never used

        (e.g. custom serialization code or training helpers).

        Use this function to mock this functionality out without having to modify the original code.



        Args:

            include (Union[List[str], str]): A string e.g. ``"my_package.my_subpackage"``, or list of strings

                for the names of the modules to be mocked out. Strings can also be a glob-style pattern

                string that may match multiple modules. Any required dependencies that match this pattern

                string will be mocked out automatically.



                Examples :

                    ``'torch.**'`` -- matches ``torch`` and all submodules of torch, e.g. ``'torch.nn'``

                    and ``'torch.nn.functional'``



                    ``'torch.*'`` -- matches ``'torch.nn'`` or ``'torch.functional'``, but not

                    ``'torch.nn.functional'``



            exclude (Union[List[str], str]): An optional pattern that excludes some patterns that match the include string.

                e.g. ``include='torch.**', exclude='torch.foo'`` will mock all torch packages except ``'torch.foo'``,

                Default: is ``[]``.



            allow_empty (bool): An optional flag that specifies whether the mock implementation(s) specified by this call

                to the :meth:`mock` method must be matched to some module during packaging. If a mock is added with

                ``allow_empty=False``, and :meth:`close` is called (either explicitly or via ``__exit__``) and the mock has

                not been matched to a module used by the package being exported, an exception is thrown.

                If ``allow_empty=True``, no such exception is thrown.



        """
        self.patterns[GlobGroup(include, exclude=exclude)] = _PatternInfo(
            _ModuleProviderAction.MOCK, allow_empty
        )

    def extern(

        self,

        include: "GlobPattern",

        *,

        exclude: "GlobPattern" = (),

        allow_empty: bool = True,

    ):
        """Include ``module`` in the list of external modules the package can import.

        This will prevent dependency discovery from saving

        it in the package. The importer will load an external module directly from the standard import system.

        Code for extern modules must also exist in the process loading the package.



        Args:

            include (Union[List[str], str]): A string e.g. ``"my_package.my_subpackage"``, or list of strings

                for the names of the modules to be externed. This can also be a glob-style pattern, as

                described in :meth:`mock`.



            exclude (Union[List[str], str]): An optional pattern that excludes some patterns that match the

                include string.



            allow_empty (bool): An optional flag that specifies whether the extern modules specified by this call

                to the ``extern`` method must be matched to some module during packaging. If an extern module glob

                pattern is added with ``allow_empty=False``, and :meth:`close` is called (either explicitly or via

                ``__exit__``) before any modules match that pattern, an exception is thrown. If ``allow_empty=True``,

                no such exception is thrown.



        """
        self.patterns[GlobGroup(include, exclude=exclude)] = _PatternInfo(
            _ModuleProviderAction.EXTERN, allow_empty
        )

    def deny(self, include: "GlobPattern", *, exclude: "GlobPattern" = ()):
        """Blocklist modules who names match the given glob patterns from the list of modules the package can import.

        If a dependency on any matching packages is found, a :class:`PackagingError` is raised.



        Args:

            include (Union[List[str], str]): A string e.g. ``"my_package.my_subpackage"``, or list of strings

                for the names of the modules to be externed. This can also be a glob-style pattern, as described in :meth:`mock`.



            exclude (Union[List[str], str]): An optional pattern that excludes some patterns that match the include string.

        """
        self.patterns[GlobGroup(include, exclude=exclude)] = _PatternInfo(
            _ModuleProviderAction.DENY, allow_empty=True
        )

    def _persistent_id(self, obj):
        if torch.is_storage(obj) or isinstance(obj, torch.storage.TypedStorage):
            storage: Storage
            if isinstance(obj, torch.storage.TypedStorage):
                # TODO: Once we decide to break serialization FC, we can
                # remove this case
                untyped_storage = obj._untyped_storage
                storage_type_str = obj.pickle_storage_type()
                storage_type = getattr(torch, storage_type_str)
                storage = cast(Storage, untyped_storage)
                storage_numel = obj.size()

            elif isinstance(obj, torch.UntypedStorage):
                untyped_storage = obj
                storage = cast(Storage, untyped_storage)
                storage_type = normalize_storage_type(type(storage))
                storage_numel = storage.nbytes()
            else:
                raise RuntimeError(f"storage type not recognized: {type(obj)}")

            location = location_tag(storage)

            # serialize storage if not already written
            storage_present = self.storage_context.has_storage(storage)
            storage_id = self.storage_context.get_or_add_storage(storage)
            if not storage_present:
                if storage.device.type != "cpu":
                    storage = storage.cpu()
                num_bytes = storage.nbytes()
                self.zip_file.write_record(
                    f".data/{storage_id}.storage", storage, num_bytes
                )
            return ("storage", storage_type, storage_id, location, storage_numel)

        if hasattr(obj, "__reduce_package__"):
            if _gate_torchscript_serialization and isinstance(
                obj, torch.jit.RecursiveScriptModule
            ):
                raise Exception(
                    "Serializing ScriptModules directly into a package is a beta feature. "
                    "To use, set global "
                    "`torch.package.package_exporter._gate_torchscript_serialization` to `False`."
                )
            if self.serialized_reduces.get(id(obj)) is None:
                self.serialized_reduces[id(obj)] = (
                    "reduce_package",
                    id(obj),
                    *obj.__reduce_package__(self),
                )

            return self.serialized_reduces[id(obj)]

        return None

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        # If __exit__ was called because an exception was raised, we do not
        # attempt to finalize the package. Instead, control is returned to the
        # caller to continue raising the exception.
        if exc_type is not None:
            # Do the bare minimum to leave the open buffer in a valid state.
            self._finalize_zip()
            return

        self.close()

    def _write(self, filename, str_or_bytes):
        if filename in self._written_files:
            raise AssertionError(
                f"Tried to write file '{filename}', but it already exists in this archive. "
                "Please file a bug."
            )
        self._written_files.add(filename)

        if is_mangled(filename):
            raise AssertionError(
                f"Tried to save a torch.package'd module as '{filename}'. "
                "Directly saving torch.package'd modules is not allowed."
            )
        if isinstance(str_or_bytes, str):
            str_or_bytes = str_or_bytes.encode("utf-8")
        self.zip_file.write_record(filename, str_or_bytes, len(str_or_bytes))

    def _validate_dependency_graph(self):
        # 1. Check the graph for any errors inserted during dependency analysis.
        for attrs in self.dependency_graph.nodes.values():
            if "error" in attrs:
                raise PackagingError(self.dependency_graph, debug=self.debug)

        # 2. Check that all patterns for which allow_empty=False have been matched at least once.
        for pattern, pattern_info in self.patterns.items():
            if not pattern_info.allow_empty and not pattern_info.was_matched:
                raise EmptyMatchError(
                    f"Exporter did not match any modules to {pattern}, which was marked as allow_empty=False"
                )

    def _write_mock_file(self):
        if "_mock.py" not in self._written_files:
            mock_file = str(Path(__file__).parent / "_mock.py")
            self._write_source_string("_mock", _read_file(mock_file), is_package=False)

    def _execute_dependency_graph(self):
        """Takes a finalized dependency graph describing how to package all

        modules and executes it, writing to the ZIP archive.

        """
        self._validate_dependency_graph()

        extern_modules = []
        for module_name, attrs in self.dependency_graph.nodes.items():
            action = attrs["action"]

            if action == _ModuleProviderAction.EXTERN:
                for hook in self._extern_hooks.values():
                    hook(self, module_name)

                extern_modules.append(module_name)

            elif action == _ModuleProviderAction.MOCK:
                for hook in self._mock_hooks.values():
                    hook(self, module_name)

                self._write_mock_file()

                is_package = hasattr(self._import_module(module_name), "__path__")
                self._write_source_string(module_name, _MOCK_IMPL, is_package)

            elif action == _ModuleProviderAction.INTERN:
                for hook in self._intern_hooks.values():
                    hook(self, module_name)

                # The node in the dependency graph contains metadata that tells us
                # how to intern the module.
                if "provided" not in attrs:
                    raise AssertionError(
                        f"Module was marked `intern` but not provided: {module_name}"
                    )

                if attrs.get("is_pickle") is True:
                    # This node came from save_pickle, we don't need to write any source for it.
                    continue

                is_package = attrs["is_package"]
                source = attrs["source"]
                self._write_source_string(module_name, source, is_package)

            elif action == _ModuleProviderAction.REPACKAGED_MOCK_MODULE:
                self._write_mock_file()
            elif action == _ModuleProviderAction.SKIP:
                continue
            else:
                raise AssertionError(
                    f"Invalid action: {module_name}, {action}. Please report a bug to PyTorch."
                )

        extern_file_contents = "\n".join(extern_modules) + "\n"
        self._write(".data/extern_modules", extern_file_contents)

    def _write_python_version(self):
        """Writes the python version that the package was created with to .data/python_version"""
        self._write(".data/python_version", platform.python_version())

    def close(self):
        """Write the package to the filesystem. Any calls after :meth:`close` are now invalid.

        It is preferable to use resource guard syntax instead::



            with PackageExporter("file.zip") as e:

                ...

        """
        self._execute_dependency_graph()
        self._write_python_version()

        self.script_module_serializer.write_files()
        self._finalize_zip()

    def _finalize_zip(self):
        """Called at the very end of packaging to leave the zipfile in a closed but valid state."""
        del self.zip_file
        if self.buffer:
            self.buffer.flush()

    def _filename(self, package, resource):
        package_path = package.replace(".", "/")
        resource = _normalize_path(resource)
        return f"{package_path}/{resource}"

    def _can_implicitly_extern(self, module_name: str):
        top_level_package_name = module_name.partition(".")[0]
        return top_level_package_name == "torch" or (
            top_level_package_name not in _DISALLOWED_MODULES
            and is_stdlib_module(top_level_package_name)
        )

    def dependency_graph_string(self) -> str:
        """Returns digraph string representation of dependencies in package.



        Returns:

            A string representation of dependencies in package.

        """
        return self.dependency_graph.to_dot()

    def _nodes_with_action_type(

        self, action: Optional[_ModuleProviderAction]

    ) -> List[str]:
        result = []
        for name, node_dict in self.dependency_graph.nodes.items():
            node_action = node_dict.get("action", None)
            if node_action == action and "is_pickle" not in node_dict:
                result.append(name)
        result.sort()
        return result

    def externed_modules(self) -> List[str]:
        """Return all modules that are currently externed.



        Returns:

            A list containing the names of modules which will be

            externed in this package.

        """
        return self._nodes_with_action_type(_ModuleProviderAction.EXTERN)

    def interned_modules(self) -> List[str]:
        """Return all modules that are currently interned.



        Returns:

            A list containing the names of modules which will be

            interned in this package.

        """
        return self._nodes_with_action_type(_ModuleProviderAction.INTERN)

    def mocked_modules(self) -> List[str]:
        """Return all modules that are currently mocked.



        Returns:

            A list containing the names of modules which will be

            mocked in this package.

        """
        return self._nodes_with_action_type(_ModuleProviderAction.MOCK)

    def denied_modules(self) -> List[str]:
        """Return all modules that are currently denied.



        Returns:

            A list containing the names of modules which will be

            denied in this package.

        """
        return self._nodes_with_action_type(_ModuleProviderAction.DENY)

    def get_rdeps(self, module_name: str) -> List[str]:
        """Return a list of all modules which depend on the module ``module_name``.



        Returns:

            A list containing the names of modules which depend on ``module_name``.

        """
        if module_name in self.dependency_graph._pred.keys():
            return list(self.dependency_graph._pred[module_name].keys())
        else:
            return []

    def all_paths(self, src: str, dst: str) -> str:
        """Return a dot representation of the subgraph

           that has all paths from src to dst.



        Returns:

            A dot representation containing all paths from src to dst.

            (https://graphviz.org/doc/info/lang.html)

        """
        return self.dependency_graph.all_paths(src, dst)


# even though these are in the standard library, we do not allow them to be
# automatically externed since they offer a lot of system level access
_DISALLOWED_MODULES = ["sys", "io"]

_MOCK_IMPL = """\

from _mock import MockedObject

def __getattr__(attr: str):

    return MockedObject(__name__ + '.' + attr, _suppress_err=True)

"""


def _read_file(filename: str) -> str:
    with open(filename, "rb") as f:
        b = f.read()
        return b.decode("utf-8")