Spaces:
Running
Running
File size: 21,723 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
from typing import List, Optional
import torch
from torch import Tensor
from .optimizer import (
Optimizer,
_default_to_fused_or_foreach,
_differentiable_doc,
_capturable_doc,
_dispatch_sqrt,
_foreach_doc,
_get_scalar_dtype,
_get_value,
_use_grad_for_differentiable,
_view_as_real,
)
__all__ = ["RAdam", "radam"]
class RAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
decoupled_weight_decay: bool = False,
*,
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
foreach=foreach,
capturable=capturable,
decoupled_weight_decay=decoupled_weight_decay,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("differentiable", False)
group.setdefault("decoupled_weight_decay", False)
group.setdefault("capturable", False)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0 and not torch.is_tensor(p_state['step']):
step_val = float(p_state["step"])
p_state["step"] = (torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device) if group['capturable']
else torch.tensor(step_val, dtype=_get_scalar_dtype()))
def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps):
has_complex = False
for p in group["params"]:
if p.grad is not None:
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("RAdam does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
state['step'] = (
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
if group['capturable']
else torch.tensor(0.0, dtype=_get_scalar_dtype())
)
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
state_steps.append(state["step"])
return has_complex
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
state_steps = []
beta1, beta2 = group["betas"]
has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps)
radam(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
eps=group["eps"],
foreach=group["foreach"],
capturable=group["capturable"],
differentiable=group["differentiable"],
decoupled_weight_decay=group["decoupled_weight_decay"],
has_complex=has_complex,
)
return loss
RAdam.__doc__ = r"""Implements RAdam algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2
\text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
\lambda \text{ (weightdecay)}, \\
&\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
v_0 \leftarrow 0 \text{ ( second moment)}, \\
&\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{6mm} \theta_t \leftarrow \theta_{t-1} \\
&\hspace{6mm} \textbf{if} \: \lambda \neq 0 \\
&\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\
&\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t} \\
&\hspace{12mm}\textbf{else} \\
&\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t} \\
&\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
&\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
2 t \beta^t_2 /\big(1-\beta_2^t \big) \\[0.1.ex]
&\hspace{6mm}\textbf{if} \: \rho_t > 5 \\
&\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon } \\
&\hspace{12mm} r_t \leftarrow
\sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
&\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t \\
&\hspace{6mm}\textbf{else} \\
&\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.
This implementation provides an option to use either the original weight_decay implementation as in Adam
(where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
(default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.
""" + fr"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
decoupled_weight_decay (bool, optional): whether to use decoupled weight
decay as in AdamW to obtain RAdamW (default: False)
{_foreach_doc}
{_differentiable_doc}
{_capturable_doc}
.. _On the variance of the adaptive learning rate and beyond:
https://arxiv.org/abs/1908.03265
.. _author's implementation:
https://github.com/LiyuanLucasLiu/RAdam
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
def radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
decoupled_weight_decay: bool = False,
foreach: Optional[bool] = None,
differentiable: bool = False,
capturable: bool = False,
has_complex: bool = False,
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
):
r"""Functional API that performs RAdam algorithm computation.
See :class:`~torch.optim.RAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_radam
else:
func = _single_tensor_radam
func(
params,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
eps=eps,
decoupled_weight_decay=decoupled_weight_decay,
differentiable=differentiable,
capturable=capturable,
has_complex=has_complex,
)
def _single_tensor_radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
differentiable: bool,
decoupled_weight_decay: bool,
capturable: bool,
has_complex: bool,
):
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
step_t = state_steps[i]
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
assert (param.is_cuda and step_t.is_cuda) or (
param.is_xla and step_t.is_xla
), "If capturable=True, params and state_steps must be CUDA or XLA tensors."
if torch.is_complex(param):
param = torch.view_as_real(param)
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_avg_sq = torch.view_as_real(exp_avg_sq)
# update step
step_t += 1
step = step_t if capturable else _get_value(step_t)
if weight_decay != 0:
if decoupled_weight_decay:
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.lerp_(grad, 1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
bias_correction1 = 1 - beta1 ** step
bias_correction2 = 1 - beta2 ** step
# correcting bias for the first moving moment
bias_corrected_exp_avg = exp_avg / bias_correction1
# maximum length of the approximated SMA
rho_inf = 2 / (1 - beta2) - 1
# compute the length of the approximated SMA
rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2
def _compute_rect():
return (
(rho_t - 4)
* (rho_t - 2)
* rho_inf
/ ((rho_inf - 4) * (rho_inf - 2) * rho_t)
) ** 0.5
def _compute_adaptive_lr():
exp_avg_sq_sqrt = exp_avg_sq.sqrt()
if differentiable:
exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
else:
exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)
return (bias_correction2 ** 0.5) / exp_avg_sq_sqrt
# Compute the variance rectification term and update parameters accordingly
if capturable:
update = torch.where(rho_t > 5.0, _compute_rect() * _compute_adaptive_lr(), 1.0)
param.add_(bias_corrected_exp_avg * lr * update, alpha=-1.0)
else:
if rho_t > 5.0:
param.add_(bias_corrected_exp_avg * lr * _compute_adaptive_lr() * _compute_rect(), alpha=-1.0)
else:
param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)
def _multi_tensor_radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
decoupled_weight_decay: bool,
differentiable: bool,
capturable: bool,
has_complex: bool,
):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
"If capturable=True, params and state_steps must be CUDA tensors."
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, state_steps])
for ((
grouped_params,
grouped_grads,
grouped_exp_avgs,
grouped_exp_avg_sqs,
grouped_state_steps,
), _) in grouped_tensors.values():
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if grouped_state_steps[0].is_cpu:
torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
else:
torch._foreach_add_(grouped_state_steps, 1)
if has_complex:
_view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)
# maximum length of the approximated SMA
rho_inf = 2 / (1 - beta2) - 1
# compute the length of the approximated SMA
if capturable:
bias_correction1 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_neg_(bias_correction1)
torch._foreach_add_(bias_correction1, 1)
bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_mul_(bias_correction2, grouped_state_steps)
torch._foreach_mul_(bias_correction2, 2)
torch._foreach_div_(bias_correction2, bias_correction1)
torch._foreach_neg_(bias_correction2)
torch._foreach_add_(bias_correction2, rho_inf)
rho_t_list = bias_correction2
else:
rho_t_list = [rho_inf - 2 * _get_value(step) * (beta2 ** _get_value(step)) /
(1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
if weight_decay != 0:
if decoupled_weight_decay:
torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
else:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# Decay the first and second moment running average coefficient
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
# Delete the local intermediate since it won't be used anymore to save on peak memory
del grouped_grads
if capturable:
num = torch._foreach_sub(rho_t_list, 4)
sub2 = torch._foreach_sub(rho_t_list, 2)
torch._foreach_mul_(num, sub2)
del sub2
torch._foreach_mul_(num, rho_inf)
rho_inf = ((rho_inf - 4) * (rho_inf - 2))
denom = torch._foreach_mul(rho_t_list, rho_inf)
torch._foreach_div_(num, denom)
del denom
torch._foreach_sqrt_(num)
# TODO(mlazos): we should try and get a foreach_where op https://github.com/pytorch/pytorch/issues/117884
rect = [torch.where(rho_t > 5.0, n, 0.0) for n, rho_t in zip(num, rho_t_list)]
del num
del rho_t_list
unrect_step_size = [torch.where(rect > 0, 0.0, 1.0) for rect in rect]
torch._foreach_mul_(unrect_step_size, lr)
bias_correction1 = torch._foreach_pow(beta1, grouped_state_steps)
torch._foreach_neg_(bias_correction1)
torch._foreach_add_(bias_correction1, 1)
torch._foreach_div_(unrect_step_size, bias_correction1)
torch._foreach_neg_(unrect_step_size)
bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_neg_(bias_correction2)
torch._foreach_add_(bias_correction2, 1)
torch._foreach_sqrt_(bias_correction2)
torch._foreach_mul_(bias_correction2, lr)
torch._foreach_mul_(bias_correction2, rect)
del rect
torch._foreach_neg_(bias_correction2)
torch._foreach_div_(bias_correction2, bias_correction1)
del bias_correction1
else:
rect = [
_dispatch_sqrt(
(rho_t - 4)
* (rho_t - 2)
* rho_inf
/ ((rho_inf - 4) * (rho_inf - 2) * rho_t)
)
if rho_t > 5
else 0
for rho_t in rho_t_list
]
unrectified = [0 if rect > 0 else 1.0 for rect in rect]
bias_correction1 = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
unrect_step_size = [(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)]
bias_correction2 = [
_dispatch_sqrt(1 - beta2 ** _get_value(step)) * (lr * rect / bc) * -1
for step, rect, bc in zip(grouped_state_steps, rect, bias_correction1)
]
buffer = torch._foreach_sqrt(grouped_exp_avg_sqs)
torch._foreach_add_(buffer, eps)
torch._foreach_div_(buffer, bias_correction2)
torch._foreach_reciprocal_(buffer)
torch._foreach_add_(buffer, unrect_step_size)
# Here, buffer = sqrt(1 - beta2^t) * rect_step_size / (sqrt(v) + eps) + unrect_step_size
torch._foreach_addcmul_(grouped_params, grouped_exp_avgs, buffer)
|