File size: 21,723 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
from typing import List, Optional

import torch
from torch import Tensor

from .optimizer import (
    Optimizer,
    _default_to_fused_or_foreach,
    _differentiable_doc,
    _capturable_doc,
    _dispatch_sqrt,
    _foreach_doc,
    _get_scalar_dtype,
    _get_value,
    _use_grad_for_differentiable,
    _view_as_real,
)

__all__ = ["RAdam", "radam"]


class RAdam(Optimizer):
    def __init__(

        self,

        params,

        lr=1e-3,

        betas=(0.9, 0.999),

        eps=1e-8,

        weight_decay=0,

        decoupled_weight_decay: bool = False,

        *,

        foreach: Optional[bool] = None,

        capturable: bool = False,

        differentiable: bool = False,

    ):
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")

        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            foreach=foreach,
            capturable=capturable,
            decoupled_weight_decay=decoupled_weight_decay,
            differentiable=differentiable,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("foreach", None)
            group.setdefault("differentiable", False)
            group.setdefault("decoupled_weight_decay", False)
            group.setdefault("capturable", False)
            for p in group["params"]:
                p_state = self.state.get(p, [])
                if len(p_state) != 0 and not torch.is_tensor(p_state['step']):
                    step_val = float(p_state["step"])
                    p_state["step"] = (torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device) if group['capturable']
                                       else torch.tensor(step_val, dtype=_get_scalar_dtype()))

    def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps):
        has_complex = False
        for p in group["params"]:
            if p.grad is not None:
                has_complex |= torch.is_complex(p)
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError("RAdam does not support sparse gradients")
                grads.append(p.grad)

                state = self.state[p]
                # Lazy state initialization
                if len(state) == 0:
                    state['step'] = (
                        torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
                        if group['capturable']
                        else torch.tensor(0.0, dtype=_get_scalar_dtype())
                    )
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )

                exp_avgs.append(state["exp_avg"])
                exp_avg_sqs.append(state["exp_avg_sq"])
                state_steps.append(state["step"])

        return has_complex

    @_use_grad_for_differentiable
    def step(self, closure=None):
        """Performs a single optimization step.



        Args:

            closure (Callable, optional): A closure that reevaluates the model

                and returns the loss.

        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            state_steps = []
            beta1, beta2 = group["betas"]

            has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps)

            radam(
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                state_steps,
                beta1=beta1,
                beta2=beta2,
                lr=group["lr"],
                weight_decay=group["weight_decay"],
                eps=group["eps"],
                foreach=group["foreach"],
                capturable=group["capturable"],
                differentiable=group["differentiable"],
                decoupled_weight_decay=group["decoupled_weight_decay"],
                has_complex=has_complex,
            )

        return loss


RAdam.__doc__ = r"""Implements RAdam algorithm.



    .. math::

       \begin{aligned}

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2

                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:

                \lambda \text{ (weightdecay)},                                                   \\

            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\

            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},

                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\

            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]

            &\rule{110mm}{0.4pt}  \\

            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1})                      \\

            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\

            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\

            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\

            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\

            &\hspace{12mm}\textbf{else}                                                          \\

            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\

            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\

            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\

            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\

            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -

                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]

            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\

            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\

            &\hspace{12mm} r_t \leftarrow

      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\

            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\

            &\hspace{6mm}\textbf{else}                                                           \\

            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

            &\bf{return} \:  \theta_t                                                     \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

       \end{aligned}



    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.



    This implementation provides an option to use either the original weight_decay implementation as in Adam

    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied

    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False

    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which

    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information

    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.



    """ + fr"""

    Args:

        params (iterable): iterable of parameters to optimize or dicts defining

            parameter groups

        lr (float, optional): learning rate (default: 1e-3)

        betas (Tuple[float, float], optional): coefficients used for computing

            running averages of gradient and its square (default: (0.9, 0.999))

        eps (float, optional): term added to the denominator to improve

            numerical stability (default: 1e-8)

        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

        decoupled_weight_decay (bool, optional): whether to use decoupled weight

            decay as in AdamW to obtain RAdamW (default: False)

        {_foreach_doc}

        {_differentiable_doc}

        {_capturable_doc}



    .. _On the variance of the adaptive learning rate and beyond:

        https://arxiv.org/abs/1908.03265

    .. _author's implementation:

        https://github.com/LiyuanLucasLiu/RAdam

    .. _Decoupled Weight Decay Regularization:

        https://arxiv.org/abs/1711.05101



    """


def radam(

    params: List[Tensor],

    grads: List[Tensor],

    exp_avgs: List[Tensor],

    exp_avg_sqs: List[Tensor],

    state_steps: List[Tensor],

    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627

    # setting this as kwarg for now as functional API is compiled by torch/distributed/optim

    decoupled_weight_decay: bool = False,

    foreach: Optional[bool] = None,

    differentiable: bool = False,

    capturable: bool = False,

    has_complex: bool = False,

    *,

    beta1: float,

    beta2: float,

    lr: float,

    weight_decay: float,

    eps: float,

):
    r"""Functional API that performs RAdam algorithm computation.



    See :class:`~torch.optim.RAdam` for details.

    """

    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError(
            "API has changed, `state_steps` argument must contain a list of singleton tensors"
        )

    if foreach is None:
        _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)

    if foreach and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with foreach optimizers")

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_radam
    else:
        func = _single_tensor_radam

    func(
        params,
        grads,
        exp_avgs,
        exp_avg_sqs,
        state_steps,
        beta1=beta1,
        beta2=beta2,
        lr=lr,
        weight_decay=weight_decay,
        eps=eps,
        decoupled_weight_decay=decoupled_weight_decay,
        differentiable=differentiable,
        capturable=capturable,
        has_complex=has_complex,
    )


def _single_tensor_radam(

    params: List[Tensor],

    grads: List[Tensor],

    exp_avgs: List[Tensor],

    exp_avg_sqs: List[Tensor],

    state_steps: List[Tensor],

    *,

    beta1: float,

    beta2: float,

    lr: float,

    weight_decay: float,

    eps: float,

    differentiable: bool,

    decoupled_weight_decay: bool,

    capturable: bool,

    has_complex: bool,

):
    for i, param in enumerate(params):
        grad = grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]

        # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
        if not torch._utils.is_compiling() and capturable:
            assert (param.is_cuda and step_t.is_cuda) or (
                param.is_xla and step_t.is_xla
            ), "If capturable=True, params and state_steps must be CUDA or XLA tensors."

        if torch.is_complex(param):
            param = torch.view_as_real(param)
            grad = torch.view_as_real(grad)
            exp_avg = torch.view_as_real(exp_avg)
            exp_avg_sq = torch.view_as_real(exp_avg_sq)

        # update step
        step_t += 1
        step = step_t if capturable else _get_value(step_t)

        if weight_decay != 0:
            if decoupled_weight_decay:
                param.mul_(1 - lr * weight_decay)
            else:
                grad = grad.add(param, alpha=weight_decay)

        # Decay the first and second moment running average coefficient
        exp_avg.lerp_(grad, 1 - beta1)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

        bias_correction1 = 1 - beta1 ** step
        bias_correction2 = 1 - beta2 ** step

        # correcting bias for the first moving moment
        bias_corrected_exp_avg = exp_avg / bias_correction1

        # maximum length of the approximated SMA
        rho_inf = 2 / (1 - beta2) - 1
        # compute the length of the approximated SMA
        rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2

        def _compute_rect():
            return (
                (rho_t - 4)
                * (rho_t - 2)
                * rho_inf
                / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
            ) ** 0.5

        def _compute_adaptive_lr():
            exp_avg_sq_sqrt = exp_avg_sq.sqrt()
            if differentiable:
                exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
            else:
                exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)

            return (bias_correction2 ** 0.5) / exp_avg_sq_sqrt

        # Compute the variance rectification term and update parameters accordingly
        if capturable:
            update = torch.where(rho_t > 5.0, _compute_rect() * _compute_adaptive_lr(), 1.0)
            param.add_(bias_corrected_exp_avg * lr * update, alpha=-1.0)
        else:
            if rho_t > 5.0:
                param.add_(bias_corrected_exp_avg * lr * _compute_adaptive_lr() * _compute_rect(), alpha=-1.0)
            else:
                param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)


def _multi_tensor_radam(

    params: List[Tensor],

    grads: List[Tensor],

    exp_avgs: List[Tensor],

    exp_avg_sqs: List[Tensor],

    state_steps: List[Tensor],

    *,

    beta1: float,

    beta2: float,

    lr: float,

    weight_decay: float,

    eps: float,

    decoupled_weight_decay: bool,

    differentiable: bool,

    capturable: bool,

    has_complex: bool,

):

    if len(params) == 0:
        return

    assert not differentiable, "_foreach ops don't support autograd"

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch._utils.is_compiling() and capturable:
        assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
            "If capturable=True, params and state_steps must be CUDA tensors."

    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, state_steps])
    for ((
        grouped_params,
        grouped_grads,
        grouped_exp_avgs,
        grouped_exp_avg_sqs,
        grouped_state_steps,
    ), _) in grouped_tensors.values():
        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if grouped_state_steps[0].is_cpu:
            torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
        else:
            torch._foreach_add_(grouped_state_steps, 1)

        if has_complex:
            _view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)

        # maximum length of the approximated SMA
        rho_inf = 2 / (1 - beta2) - 1
        # compute the length of the approximated SMA
        if capturable:
            bias_correction1 = torch._foreach_pow(beta2, grouped_state_steps)
            torch._foreach_neg_(bias_correction1)
            torch._foreach_add_(bias_correction1, 1)
            bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
            torch._foreach_mul_(bias_correction2, grouped_state_steps)
            torch._foreach_mul_(bias_correction2, 2)
            torch._foreach_div_(bias_correction2, bias_correction1)
            torch._foreach_neg_(bias_correction2)
            torch._foreach_add_(bias_correction2, rho_inf)
            rho_t_list = bias_correction2
        else:
            rho_t_list = [rho_inf - 2 * _get_value(step) * (beta2 ** _get_value(step)) /
                          (1 - beta2 ** _get_value(step)) for step in grouped_state_steps]


        if weight_decay != 0:
            if decoupled_weight_decay:
                torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
            else:
                grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)

        # Decay the first and second moment running average coefficient
        torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)

        torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
        torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)

        # Delete the local intermediate since it won't be used anymore to save on peak memory
        del grouped_grads

        if capturable:
            num = torch._foreach_sub(rho_t_list, 4)
            sub2 = torch._foreach_sub(rho_t_list, 2)
            torch._foreach_mul_(num, sub2)
            del sub2
            torch._foreach_mul_(num, rho_inf)
            rho_inf = ((rho_inf - 4) * (rho_inf - 2))
            denom = torch._foreach_mul(rho_t_list, rho_inf)
            torch._foreach_div_(num, denom)
            del denom
            torch._foreach_sqrt_(num)

            # TODO(mlazos): we should try and get a foreach_where op https://github.com/pytorch/pytorch/issues/117884
            rect = [torch.where(rho_t > 5.0, n, 0.0) for n, rho_t in zip(num, rho_t_list)]
            del num
            del rho_t_list
            unrect_step_size = [torch.where(rect > 0, 0.0, 1.0) for rect in rect]
            torch._foreach_mul_(unrect_step_size, lr)

            bias_correction1 = torch._foreach_pow(beta1, grouped_state_steps)
            torch._foreach_neg_(bias_correction1)
            torch._foreach_add_(bias_correction1, 1)

            torch._foreach_div_(unrect_step_size, bias_correction1)
            torch._foreach_neg_(unrect_step_size)

            bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
            torch._foreach_neg_(bias_correction2)
            torch._foreach_add_(bias_correction2, 1)
            torch._foreach_sqrt_(bias_correction2)
            torch._foreach_mul_(bias_correction2, lr)
            torch._foreach_mul_(bias_correction2, rect)
            del rect
            torch._foreach_neg_(bias_correction2)
            torch._foreach_div_(bias_correction2, bias_correction1)
            del bias_correction1
        else:
            rect = [
                _dispatch_sqrt(
                    (rho_t - 4)
                    * (rho_t - 2)
                    * rho_inf
                    / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
                )
                if rho_t > 5
                else 0
                for rho_t in rho_t_list
            ]
            unrectified = [0 if rect > 0 else 1.0 for rect in rect]

            bias_correction1 = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
            unrect_step_size = [(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)]
            bias_correction2 = [
                _dispatch_sqrt(1 - beta2 ** _get_value(step)) * (lr * rect / bc) * -1
                for step, rect, bc in zip(grouped_state_steps, rect, bias_correction1)
            ]


        buffer = torch._foreach_sqrt(grouped_exp_avg_sqs)
        torch._foreach_add_(buffer, eps)
        torch._foreach_div_(buffer, bias_correction2)
        torch._foreach_reciprocal_(buffer)
        torch._foreach_add_(buffer, unrect_step_size)

        # Here, buffer = sqrt(1 - beta2^t) * rect_step_size / (sqrt(v) + eps) + unrect_step_size
        torch._foreach_addcmul_(grouped_params, grouped_exp_avgs, buffer)