File size: 11,589 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
from torch import Tensor

from .optimizer import (Optimizer, _use_grad_for_differentiable, _default_to_fused_or_foreach,
                        _differentiable_doc, _foreach_doc, _maximize_doc, _view_as_real)
from typing import List, Optional

__all__ = ["Adadelta", "adadelta"]


class Adadelta(Optimizer):
    def __init__(

        self,

        params,

        lr=1.0,

        rho=0.9,

        eps=1e-6,

        weight_decay=0,

        foreach: Optional[bool] = None,

        *,

        maximize: bool = False,

        differentiable: bool = False,

    ):
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= rho <= 1.0:
            raise ValueError(f"Invalid rho value: {rho}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")

        defaults = dict(
            lr=lr,
            rho=rho,
            eps=eps,
            weight_decay=weight_decay,
            maximize=maximize,
            foreach=foreach,
            differentiable=differentiable,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("foreach", None)
            group.setdefault("maximize", False)
            group.setdefault("differentiable", False)

    def _init_group(self, group, params_with_grad, grads, square_avgs, acc_deltas):
        has_complex = False
        for p in group["params"]:
            if p.grad is None:
                continue
            has_complex |= torch.is_complex(p)
            params_with_grad.append(p)
            if p.grad.is_sparse:
                raise RuntimeError("Adadelta does not support sparse gradients")
            grads.append(p.grad)

            state = self.state[p]

            # Lazy state initialization
            if len(state) == 0:
                state["step"] = 0
                state["square_avg"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )
                state["acc_delta"] = torch.zeros_like(
                    p, memory_format=torch.preserve_format
                )

            square_avgs.append(state["square_avg"])
            acc_deltas.append(state["acc_delta"])

            state["step"] += 1
        return has_complex

    @_use_grad_for_differentiable
    def step(self, closure=None):
        """Perform a single optimization step.



        Args:

            closure (Callable, optional): A closure that reevaluates the model

                and returns the loss.

        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            square_avgs = []
            acc_deltas = []
            lr, rho, eps, weight_decay, foreach, maximize, differentiable = (
                group["lr"],
                group["rho"],
                group["eps"],
                group["weight_decay"],
                group["foreach"],
                group["maximize"],
                group["differentiable"],
            )

            has_complex = self._init_group(group, params_with_grad, grads, square_avgs, acc_deltas)

            adadelta(
                params_with_grad,
                grads,
                square_avgs,
                acc_deltas,
                lr=lr,
                rho=rho,
                eps=eps,
                weight_decay=weight_decay,
                foreach=foreach,
                maximize=maximize,
                differentiable=differentiable,
                has_complex=has_complex,
            )

        return loss


Adadelta.__doc__ = r"""Implements Adadelta algorithm.



    .. math::

       \begin{aligned}

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},

                \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},

                \: \lambda \text{ (weight decay)}                                                \\

            &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)},

                \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\

            &\hspace{5mm}if \: \lambda \neq 0                                                    \\

            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\

            &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\

            &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} +

                \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\

            &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho +

                 \Delta x^2_t  (1 - \rho)                                                        \\

            &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

            &\bf{return} \:  \theta_t                                                     \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

       \end{aligned}



    For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.

    """ + fr"""

    Args:

        params (iterable): iterable of parameters to optimize or dicts defining

            parameter groups

        rho (float, optional): coefficient used for computing a running average

            of squared gradients (default: 0.9). A higher value of `rho` will

            result in a slower average, which can be helpful for preventing

            oscillations in the learning process.

        eps (float, optional): term added to the denominator to improve

            numerical stability (default: 1e-6).

        lr (float, optional): coefficient that scale delta before it is applied

            to the parameters (default: 1.0)

        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

        {_foreach_doc}

        {_maximize_doc}

        {_differentiable_doc}



    .. _ADADELTA\: An Adaptive Learning Rate Method:

        https://arxiv.org/abs/1212.5701



    """


def adadelta(

    params: List[Tensor],

    grads: List[Tensor],

    square_avgs: List[Tensor],

    acc_deltas: List[Tensor],

    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627

    # setting this as kwarg for now as functional API is compiled by torch/distributed/optim

    foreach: Optional[bool] = None,

    differentiable: bool = False,

    has_complex: bool = False,

    *,

    lr: float,

    rho: float,

    eps: float,

    weight_decay: float,

    maximize: bool,

):
    r"""Functional API that performs Adadelta algorithm computation.



    See :class:`~torch.optim.Adadelta` for details.

    """
    # We still respect when the user inputs False for foreach.
    if foreach is None:
        _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)

    if foreach and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with foreach optimizers")

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_adadelta
    else:
        func = _single_tensor_adadelta

    func(
        params,
        grads,
        square_avgs,
        acc_deltas,
        lr=lr,
        rho=rho,
        eps=eps,
        weight_decay=weight_decay,
        maximize=maximize,
        differentiable=differentiable,
        has_complex=has_complex,
    )


def _single_tensor_adadelta(

    params: List[Tensor],

    grads: List[Tensor],

    square_avgs: List[Tensor],

    acc_deltas: List[Tensor],

    *,

    lr: float,

    rho: float,

    eps: float,

    weight_decay: float,

    maximize: bool,

    differentiable: bool,

    has_complex: bool,

):

    for (param, grad, square_avg, acc_delta) in zip(
        params, grads, square_avgs, acc_deltas
    ):
        grad = grad if not maximize else -grad

        if weight_decay != 0:
            grad = grad.add(param, alpha=weight_decay)

        if torch.is_complex(param):
            square_avg = torch.view_as_real(square_avg)
            acc_delta = torch.view_as_real(acc_delta)
            grad = torch.view_as_real(grad)

        square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho)
        std = square_avg.add(eps).sqrt_()
        delta = acc_delta.add(eps).sqrt_()
        if differentiable:
            delta = delta.clone()
        delta.div_(std).mul_(grad)
        acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho)

        if torch.is_complex(param):
            delta = torch.view_as_complex(delta)
        param.add_(delta, alpha=-lr)


def _multi_tensor_adadelta(

    params: List[Tensor],

    grads: List[Tensor],

    square_avgs: List[Tensor],

    acc_deltas: List[Tensor],

    *,

    lr: float,

    weight_decay: float,

    rho: float,

    eps: float,

    maximize: bool,

    differentiable: bool,

    has_complex: bool,

):

    assert not differentiable, "_foreach ops don't support autograd"

    if len(params) == 0:
        return

    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, square_avgs, acc_deltas])
    for ((device_params, device_grads, device_square_avgs, device_acc_deltas), _) in grouped_tensors.values():
        if has_complex:
            _view_as_real(device_params, device_grads, device_square_avgs, device_acc_deltas)

        if maximize:
            device_grads = torch._foreach_neg(device_grads)

        if weight_decay != 0:
            # Re-use the intermediate memory (device_grads) already allocated for maximize
            if maximize:
                torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
            else:
                device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)

        torch._foreach_mul_(device_square_avgs, rho)
        torch._foreach_addcmul_(device_square_avgs, device_grads, device_grads, value=1 - rho)

        std = torch._foreach_add(device_square_avgs, eps)
        torch._foreach_sqrt_(std)

        deltas = torch._foreach_add(device_acc_deltas, eps)
        torch._foreach_sqrt_(deltas)
        torch._foreach_div_(deltas, std)
        torch._foreach_mul_(deltas, device_grads)

        torch._foreach_add_(device_params, deltas, alpha=-lr)

        torch._foreach_mul_(device_acc_deltas, rho)
        torch._foreach_addcmul_(device_acc_deltas, deltas, deltas, value=1 - rho)