Spaces:
Running
Running
File size: 59,206 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
r"""Pruning methods."""
import numbers
from abc import ABC, abstractmethod
from collections.abc import Iterable
from typing import Tuple
import torch
class BasePruningMethod(ABC):
r"""Abstract base class for creation of new pruning techniques.
Provides a skeleton for customization requiring the overriding of methods
such as :meth:`compute_mask` and :meth:`apply`.
"""
_tensor_name: str
def __call__(self, module, inputs):
r"""Multiply the mask into original tensor and store the result.
Multiplies the mask (stored in ``module[name + '_mask']``)
into the original tensor (stored in ``module[name + '_orig']``)
and stores the result into ``module[name]`` by using :meth:`apply_mask`.
Args:
module (nn.Module): module containing the tensor to prune
inputs: not used.
"""
setattr(module, self._tensor_name, self.apply_mask(module))
@abstractmethod
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a random mask to
apply on top of the ``default_mask`` according to the specific pruning
method recipe.
Args:
t (torch.Tensor): tensor representing the importance scores of the
parameter to prune.
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
"""
pass
def apply_mask(self, module):
r"""Simply handles the multiplication between the parameter being pruned and the generated mask.
Fetches the mask and the original tensor from the module
and returns the pruned version of the tensor.
Args:
module (nn.Module): module containing the tensor to prune
Returns:
pruned_tensor (torch.Tensor): pruned version of the input tensor
"""
# to carry out the multiplication, the mask needs to have been computed,
# so the pruning method must know what tensor it's operating on
assert self._tensor_name is not None, f"Module {module} has to be pruned" # this gets set in apply()
mask = getattr(module, self._tensor_name + "_mask")
orig = getattr(module, self._tensor_name + "_orig")
pruned_tensor = mask.to(dtype=orig.dtype) * orig
return pruned_tensor
@classmethod
def apply(cls, module, name, *args, importance_scores=None, **kwargs):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
args: arguments passed on to a subclass of
:class:`BasePruningMethod`
importance_scores (torch.Tensor): tensor of importance scores (of
same shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the
corresponding elements in the parameter being pruned.
If unspecified or None, the parameter will be used in its place.
kwargs: keyword arguments passed on to a subclass of a
:class:`BasePruningMethod`
"""
def _get_composite_method(cls, module, name, *args, **kwargs):
# Check if a pruning method has already been applied to
# `module[name]`. If so, store that in `old_method`.
old_method = None
found = 0
# there should technically be only 1 hook with hook.name == name
# assert this using `found`
hooks_to_remove = []
for k, hook in module._forward_pre_hooks.items():
# if it exists, take existing thing, remove hook, then
# go through normal thing
if isinstance(hook, BasePruningMethod) and hook._tensor_name == name:
old_method = hook
hooks_to_remove.append(k)
found += 1
assert (
found <= 1
), f"Avoid adding multiple pruning hooks to the\
same tensor {name} of module {module}. Use a PruningContainer."
for k in hooks_to_remove:
del module._forward_pre_hooks[k]
# Apply the new pruning method, either from scratch or on top of
# the previous one.
method = cls(*args, **kwargs) # new pruning
# Have the pruning method remember what tensor it's been applied to
method._tensor_name = name
# combine `methods` with `old_method`, if `old_method` exists
if old_method is not None: # meaning that there was a hook
# if the hook is already a pruning container, just add the
# new pruning method to the container
if isinstance(old_method, PruningContainer):
old_method.add_pruning_method(method)
method = old_method # rename old_method --> method
# if the hook is simply a single pruning method, create a
# container, add the old pruning method and the new one
elif isinstance(old_method, BasePruningMethod):
container = PruningContainer(old_method)
# Have the pruning method remember the name of its tensor
# setattr(container, '_tensor_name', name)
container.add_pruning_method(method)
method = container # rename container --> method
return method
method = _get_composite_method(cls, module, name, *args, **kwargs)
# at this point we have no forward_pre_hooks but we could have an
# active reparametrization of the tensor if another pruning method
# had been applied (in which case `method` would be a PruningContainer
# and not a simple pruning method).
# Pruning is to be applied to the module's tensor named `name`,
# starting from the state it is found in prior to this iteration of
# pruning. The pruning mask is calculated based on importances scores.
orig = getattr(module, name)
if importance_scores is not None:
assert (
importance_scores.shape == orig.shape
), f"importance_scores should have the same shape as parameter {name} of {module}"
else:
importance_scores = orig
# If this is the first time pruning is applied, take care of moving
# the original tensor to a new parameter called name + '_orig' and
# and deleting the original parameter
if not isinstance(method, PruningContainer):
# copy `module[name]` to `module[name + '_orig']`
module.register_parameter(name + "_orig", orig)
# temporarily delete `module[name]`
del module._parameters[name]
default_mask = torch.ones_like(orig) # temp
# If this is not the first time pruning is applied, all of the above
# has been done before in a previous pruning iteration, so we're good
# to go
else:
default_mask = (
getattr(module, name + "_mask")
.detach()
.clone(memory_format=torch.contiguous_format)
)
# Use try/except because if anything goes wrong with the mask
# computation etc., you'd want to roll back.
try:
# get the final mask, computed according to the specific method
mask = method.compute_mask(importance_scores, default_mask=default_mask)
# reparameterize by saving mask to `module[name + '_mask']`...
module.register_buffer(name + "_mask", mask)
# ... and the new pruned tensor to `module[name]`
setattr(module, name, method.apply_mask(module))
# associate the pruning method to the module via a hook to
# compute the function before every forward() (compile by run)
module.register_forward_pre_hook(method)
except Exception as e:
if not isinstance(method, PruningContainer):
orig = getattr(module, name + "_orig")
module.register_parameter(name, orig)
del module._parameters[name + "_orig"]
raise e
return method
def prune(self, t, default_mask=None, importance_scores=None):
r"""Compute and returns a pruned version of input tensor ``t``.
According to the pruning rule specified in :meth:`compute_mask`.
Args:
t (torch.Tensor): tensor to prune (of same dimensions as
``default_mask``).
importance_scores (torch.Tensor): tensor of importance scores (of
same shape as ``t``) used to compute mask for pruning ``t``.
The values in this tensor indicate the importance of the
corresponding elements in the ``t`` that is being pruned.
If unspecified or None, the tensor ``t`` will be used in its place.
default_mask (torch.Tensor, optional): mask from previous pruning
iteration, if any. To be considered when determining what
portion of the tensor that pruning should act on. If None,
default to a mask of ones.
Returns:
pruned version of tensor ``t``.
"""
if importance_scores is not None:
assert (
importance_scores.shape == t.shape
), "importance_scores should have the same shape as tensor t"
else:
importance_scores = t
default_mask = default_mask if default_mask is not None else torch.ones_like(t)
return t * self.compute_mask(importance_scores, default_mask=default_mask)
def remove(self, module):
r"""Remove the pruning reparameterization from a module.
The pruned parameter named ``name`` remains permanently pruned,
and the parameter named ``name+'_orig'`` is removed from the parameter list.
Similarly, the buffer named ``name+'_mask'`` is removed from the buffers.
Note:
Pruning itself is NOT undone or reversed!
"""
# before removing pruning from a tensor, it has to have been applied
assert (
self._tensor_name is not None
), f"Module {module} has to be pruned before pruning can be removed" # this gets set in apply()
# to update module[name] to latest trained weights
weight = self.apply_mask(module) # masked weights
# delete and reset
if hasattr(module, self._tensor_name):
delattr(module, self._tensor_name)
orig = module._parameters[self._tensor_name + "_orig"]
orig.data = weight.data
del module._parameters[self._tensor_name + "_orig"]
del module._buffers[self._tensor_name + "_mask"]
setattr(module, self._tensor_name, orig)
class PruningContainer(BasePruningMethod):
"""Container holding a sequence of pruning methods for iterative pruning.
Keeps track of the order in which pruning methods are applied and handles
combining successive pruning calls.
Accepts as argument an instance of a BasePruningMethod or an iterable of
them.
"""
def __init__(self, *args):
self._pruning_methods: Tuple[BasePruningMethod, ...] = tuple()
if not isinstance(args, Iterable): # only 1 item
self._tensor_name = args._tensor_name
self.add_pruning_method(args)
elif len(args) == 1: # only 1 item in a tuple
self._tensor_name = args[0]._tensor_name
self.add_pruning_method(args[0])
else: # manual construction from list or other iterable (or no args)
for method in args:
self.add_pruning_method(method)
def add_pruning_method(self, method):
r"""Add a child pruning ``method`` to the container.
Args:
method (subclass of BasePruningMethod): child pruning method
to be added to the container.
"""
# check that we're adding a pruning method to the container
if not isinstance(method, BasePruningMethod) and method is not None:
raise TypeError(
f"{type(method)} is not a BasePruningMethod subclass"
)
elif method is not None and self._tensor_name != method._tensor_name:
raise ValueError(
"Can only add pruning methods acting on "
f"the parameter named '{self._tensor_name}' to PruningContainer {self}."
+ f" Found '{method._tensor_name}'"
)
# if all checks passed, add to _pruning_methods tuple
self._pruning_methods += (method,) # type: ignore[operator]
def __len__(self):
return len(self._pruning_methods)
def __iter__(self):
return iter(self._pruning_methods)
def __getitem__(self, idx):
return self._pruning_methods[idx]
def compute_mask(self, t, default_mask):
r"""Apply the latest ``method`` by computing the new partial masks and returning its combination with the ``default_mask``.
The new partial mask should be computed on the entries or channels
that were not zeroed out by the ``default_mask``.
Which portions of the tensor ``t`` the new mask will be calculated from
depends on the ``PRUNING_TYPE`` (handled by the type handler):
* for 'unstructured', the mask will be computed from the raveled
list of nonmasked entries;
* for 'structured', the mask will be computed from the nonmasked
channels in the tensor;
* for 'global', the mask will be computed across all entries.
Args:
t (torch.Tensor): tensor representing the parameter to prune
(of same dimensions as ``default_mask``).
default_mask (torch.Tensor): mask from previous pruning iteration.
Returns:
mask (torch.Tensor): new mask that combines the effects
of the ``default_mask`` and the new mask from the current
pruning ``method`` (of same dimensions as ``default_mask`` and
``t``).
"""
def _combine_masks(method, t, mask):
r"""Combine the masks from all pruning methods and returns a new mask.
Args:
method (a BasePruningMethod subclass): pruning method
currently being applied.
t (torch.Tensor): tensor representing the parameter to prune
(of same dimensions as mask).
mask (torch.Tensor): mask from previous pruning iteration
Returns:
new_mask (torch.Tensor): new mask that combines the effects
of the old mask and the new mask from the current
pruning method (of same dimensions as mask and t).
"""
new_mask = mask # start off from existing mask
new_mask = new_mask.to(dtype=t.dtype)
# compute a slice of t onto which the new pruning method will operate
if method.PRUNING_TYPE == "unstructured":
# prune entries of t where the mask is 1
slc = mask == 1
# for struct pruning, exclude channels that have already been
# entirely pruned
elif method.PRUNING_TYPE == "structured":
if not hasattr(method, "dim"):
raise AttributeError(
"Pruning methods of PRUNING_TYPE "
'"structured" need to have the attribute `dim` defined.'
)
# find the channels to keep by removing the ones that have been
# zeroed out already (i.e. where sum(entries) == 0)
n_dims = t.dim() # "is this a 2D tensor? 3D? ..."
dim = method.dim
# convert negative indexing
if dim < 0:
dim = n_dims + dim
# if dim is still negative after subtracting it from n_dims
if dim < 0:
raise IndexError(
f"Index is out of bounds for tensor with dimensions {n_dims}"
)
# find channels along dim = dim that aren't already tots 0ed out
keep_channel = mask.sum(dim=[d for d in range(n_dims) if d != dim]) != 0
# create slice to identify what to prune
slc = [slice(None)] * n_dims
slc[dim] = keep_channel
elif method.PRUNING_TYPE == "global":
n_dims = len(t.shape) # "is this a 2D tensor? 3D? ..."
slc = [slice(None)] * n_dims
else:
raise ValueError(
f"Unrecognized PRUNING_TYPE {method.PRUNING_TYPE}"
)
# compute the new mask on the unpruned slice of the tensor t
partial_mask = method.compute_mask(t[slc], default_mask=mask[slc])
new_mask[slc] = partial_mask.to(dtype=new_mask.dtype)
return new_mask
method = self._pruning_methods[-1]
mask = _combine_masks(method, t, default_mask)
return mask
class Identity(BasePruningMethod):
r"""Utility pruning method that does not prune any units but generates the pruning parametrization with a mask of ones."""
PRUNING_TYPE = "unstructured"
def compute_mask(self, t, default_mask):
mask = default_mask
return mask
@classmethod
def apply(cls, module, name):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
"""
return super().apply(module, name)
class RandomUnstructured(BasePruningMethod):
r"""Prune (currently unpruned) units in a tensor at random.
Args:
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
PRUNING_TYPE = "unstructured"
def __init__(self, amount):
# Check range of validity of pruning amount
_validate_pruning_amount_init(amount)
self.amount = amount
def compute_mask(self, t, default_mask):
# Check that the amount of units to prune is not > than the number of
# parameters in t
tensor_size = t.nelement()
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
mask = default_mask.clone(memory_format=torch.contiguous_format)
if nparams_toprune != 0: # k=0 not supported by torch.kthvalue
prob = torch.rand_like(t)
topk = torch.topk(prob.view(-1), k=nparams_toprune)
mask.view(-1)[topk.indices] = 0
return mask
@classmethod
def apply(cls, module, name, amount):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
return super().apply(module, name, amount=amount)
class L1Unstructured(BasePruningMethod):
r"""Prune (currently unpruned) units in a tensor by zeroing out the ones with the lowest L1-norm.
Args:
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
PRUNING_TYPE = "unstructured"
def __init__(self, amount):
# Check range of validity of pruning amount
_validate_pruning_amount_init(amount)
self.amount = amount
def compute_mask(self, t, default_mask):
# Check that the amount of units to prune is not > than the number of
# parameters in t
tensor_size = t.nelement()
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
mask = default_mask.clone(memory_format=torch.contiguous_format)
if nparams_toprune != 0: # k=0 not supported by torch.kthvalue
# largest=True --> top k; largest=False --> bottom k
# Prune the smallest k
topk = torch.topk(torch.abs(t).view(-1), k=nparams_toprune, largest=False)
# topk will have .indices and .values
mask.view(-1)[topk.indices] = 0
return mask
@classmethod
def apply(cls, module, name, amount, importance_scores=None):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
"""
return super().apply(
module, name, amount=amount, importance_scores=importance_scores
)
class RandomStructured(BasePruningMethod):
r"""Prune entire (currently unpruned) channels in a tensor at random.
Args:
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
PRUNING_TYPE = "structured"
def __init__(self, amount, dim=-1):
# Check range of validity of amount
_validate_pruning_amount_init(amount)
self.amount = amount
self.dim = dim
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a random mask to
apply on top of the ``default_mask`` by randomly zeroing out channels
along the specified dim of the tensor.
Args:
t (torch.Tensor): tensor representing the parameter to prune
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
Raises:
IndexError: if ``self.dim >= len(t.shape)``
"""
# Check that tensor has structure (i.e. more than 1 dimension) such
# that the concept of "channels" makes sense
_validate_structured_pruning(t)
# Check that self.dim is a valid dim to index t, else raise IndexError
_validate_pruning_dim(t, self.dim)
# Check that the amount of channels to prune is not > than the number of
# channels in t along the dim to prune
tensor_size = t.shape[self.dim]
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
# Compute binary mask by initializing it to all 0s and then filling in
# 1s wherever topk.indices indicates, along self.dim.
# mask has the same shape as tensor t
def make_mask(t, dim, nchannels, nchannels_toprune):
# generate a random number in [0, 1] to associate to each channel
prob = torch.rand(nchannels)
# generate mask for each channel by 0ing out the channels that
# got assigned the k = nchannels_toprune lowest values in prob
threshold = torch.kthvalue(prob, k=nchannels_toprune).values
channel_mask = prob > threshold
mask = torch.zeros_like(t)
slc = [slice(None)] * len(t.shape)
slc[dim] = channel_mask
mask[slc] = 1
return mask
if nparams_toprune == 0: # k=0 not supported by torch.kthvalue
mask = default_mask
else:
# apply the new structured mask on top of prior (potentially
# unstructured) mask
mask = make_mask(t, self.dim, tensor_size, nparams_toprune)
mask *= default_mask.to(dtype=mask.dtype)
return mask
@classmethod
def apply(cls, module, name, amount, dim=-1):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
return super().apply(module, name, amount=amount, dim=dim)
class LnStructured(BasePruningMethod):
r"""Prune entire (currently unpruned) channels in a tensor based on their L\ ``n``-norm.
Args:
amount (int or float): quantity of channels to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
PRUNING_TYPE = "structured"
def __init__(self, amount, n, dim=-1):
# Check range of validity of amount
_validate_pruning_amount_init(amount)
self.amount = amount
self.n = n
self.dim = dim
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a mask to apply on
top of the ``default_mask`` by zeroing out the channels along the
specified dim with the lowest L\ ``n``-norm.
Args:
t (torch.Tensor): tensor representing the parameter to prune
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
Raises:
IndexError: if ``self.dim >= len(t.shape)``
"""
# Check that tensor has structure (i.e. more than 1 dimension) such
# that the concept of "channels" makes sense
_validate_structured_pruning(t)
# Check that self.dim is a valid dim to index t, else raise IndexError
_validate_pruning_dim(t, self.dim)
# Check that the amount of channels to prune is not > than the number of
# channels in t along the dim to prune
tensor_size = t.shape[self.dim]
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
nparams_tokeep = tensor_size - nparams_toprune
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
# Structured pruning prunes entire channels so we need to know the
# L_n norm along each channel to then find the topk based on this
# metric
norm = _compute_norm(t, self.n, self.dim)
# largest=True --> top k; largest=False --> bottom k
# Keep the largest k channels along dim=self.dim
topk = torch.topk(norm, k=nparams_tokeep, largest=True)
# topk will have .indices and .values
# Compute binary mask by initializing it to all 0s and then filling in
# 1s wherever topk.indices indicates, along self.dim.
# mask has the same shape as tensor t
def make_mask(t, dim, indices):
# init mask to 0
mask = torch.zeros_like(t)
# e.g.: slc = [None, None, None], if len(t.shape) = 3
slc = [slice(None)] * len(t.shape)
# replace a None at position=dim with indices
# e.g.: slc = [None, None, [0, 2, 3]] if dim=2 & indices=[0,2,3]
slc[dim] = indices
# use slc to slice mask and replace all its entries with 1s
# e.g.: mask[:, :, [0, 2, 3]] = 1
mask[slc] = 1
return mask
if nparams_toprune == 0: # k=0 not supported by torch.kthvalue
mask = default_mask
else:
mask = make_mask(t, self.dim, topk.indices)
mask *= default_mask.to(dtype=mask.dtype)
return mask
@classmethod
def apply(cls, module, name, amount, n, dim, importance_scores=None):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int): index of the dim along which we define channels to
prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
"""
return super().apply(
module,
name,
amount=amount,
n=n,
dim=dim,
importance_scores=importance_scores,
)
class CustomFromMask(BasePruningMethod):
PRUNING_TYPE = "global"
def __init__(self, mask):
self.mask = mask
def compute_mask(self, t, default_mask):
assert default_mask.shape == self.mask.shape
mask = default_mask * self.mask.to(dtype=default_mask.dtype)
return mask
@classmethod
def apply(cls, module, name, mask):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
"""
return super().apply(module, name, mask=mask)
def identity(module, name):
r"""Apply pruning reparametrization without pruning any units.
Applies pruning reparametrization to the tensor corresponding to the
parameter called ``name`` in ``module`` without actually pruning any
units. Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Note:
The mask is a tensor of ones.
Args:
module (nn.Module): module containing the tensor to prune.
name (str): parameter name within ``module`` on which pruning
will act.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.identity(nn.Linear(2, 3), 'bias')
>>> print(m.bias_mask)
tensor([1., 1., 1.])
"""
Identity.apply(module, name)
return module
def random_unstructured(module, name, amount):
r"""Prune tensor by removing random (currently unpruned) units.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) units
selected at random.
Modifies module in place (and also return the modified module) by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.random_unstructured(nn.Linear(2, 3), 'weight', amount=1)
>>> torch.sum(m.weight_mask == 0)
tensor(1)
"""
RandomUnstructured.apply(module, name, amount)
return module
def l1_unstructured(module, name, amount, importance_scores=None):
r"""Prune tensor by removing units with the lowest L1-norm.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified `amount` of (currently unpruned) units with the
lowest L1-norm.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.l1_unstructured(nn.Linear(2, 3), 'weight', amount=0.2)
>>> m.state_dict().keys()
odict_keys(['bias', 'weight_orig', 'weight_mask'])
"""
L1Unstructured.apply(
module, name, amount=amount, importance_scores=importance_scores
)
return module
def random_structured(module, name, amount, dim):
r"""Prune tensor by removing random channels along the specified dimension.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) channels
along the specified ``dim`` selected at random.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int): index of the dim along which we define channels to prune.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.random_structured(
... nn.Linear(5, 3), 'weight', amount=3, dim=1
... )
>>> columns_pruned = int(sum(torch.sum(m.weight, dim=0) == 0))
>>> print(columns_pruned)
3
"""
RandomStructured.apply(module, name, amount, dim)
return module
def ln_structured(module, name, amount, n, dim, importance_scores=None):
r"""Prune tensor by removing channels with the lowest L\ ``n``-norm along the specified dimension.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) channels
along the specified ``dim`` with the lowest L\ ``n``-norm.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int): index of the dim along which we define channels to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> from torch.nn.utils import prune
>>> m = prune.ln_structured(
... nn.Conv2d(5, 3, 2), 'weight', amount=0.3, dim=1, n=float('-inf')
... )
"""
LnStructured.apply(
module, name, amount, n, dim, importance_scores=importance_scores
)
return module
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):
r"""
Globally prunes tensors corresponding to all parameters in ``parameters`` by applying the specified ``pruning_method``.
Modifies modules in place by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
parameters (Iterable of (module, name) tuples): parameters of
the model to prune in a global fashion, i.e. by aggregating all
weights prior to deciding which ones to prune. module must be of
type :class:`nn.Module`, and name must be a string.
pruning_method (function): a valid pruning function from this module,
or a custom one implemented by the user that satisfies the
implementation guidelines and has ``PRUNING_TYPE='unstructured'``.
importance_scores (dict): a dictionary mapping (module, name) tuples to
the corresponding parameter's importance scores tensor. The tensor
should be the same shape as the parameter, and is used for computing
mask for pruning.
If unspecified or None, the parameter will be used in place of its
importance scores.
kwargs: other keyword arguments such as:
amount (int or float): quantity of parameters to prune across the
specified parameters.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
Raises:
TypeError: if ``PRUNING_TYPE != 'unstructured'``
Note:
Since global structured pruning doesn't make much sense unless the
norm is normalized by the size of the parameter, we now limit the
scope of global pruning to unstructured methods.
Examples:
>>> from torch.nn.utils import prune
>>> from collections import OrderedDict
>>> net = nn.Sequential(OrderedDict([
... ('first', nn.Linear(10, 4)),
... ('second', nn.Linear(4, 1)),
... ]))
>>> parameters_to_prune = (
... (net.first, 'weight'),
... (net.second, 'weight'),
... )
>>> prune.global_unstructured(
... parameters_to_prune,
... pruning_method=prune.L1Unstructured,
... amount=10,
... )
>>> print(sum(torch.nn.utils.parameters_to_vector(net.buffers()) == 0))
tensor(10)
"""
# ensure parameters is a list or generator of tuples
if not isinstance(parameters, Iterable):
raise TypeError("global_unstructured(): parameters is not an Iterable")
importance_scores = importance_scores if importance_scores is not None else {}
if not isinstance(importance_scores, dict):
raise TypeError("global_unstructured(): importance_scores must be of type dict")
# flatten importance scores to consider them all at once in global pruning
relevant_importance_scores = torch.nn.utils.parameters_to_vector(
[
importance_scores.get((module, name), getattr(module, name))
for (module, name) in parameters
]
)
# similarly, flatten the masks (if they exist), or use a flattened vector
# of 1s of the same dimensions as t
default_mask = torch.nn.utils.parameters_to_vector(
[
getattr(module, name + "_mask", torch.ones_like(getattr(module, name)))
for (module, name) in parameters
]
)
# use the canonical pruning methods to compute the new mask, even if the
# parameter is now a flattened out version of `parameters`
container = PruningContainer()
container._tensor_name = "temp" # to make it match that of `method`
method = pruning_method(**kwargs)
method._tensor_name = "temp" # to make it match that of `container`
if method.PRUNING_TYPE != "unstructured":
raise TypeError(
'Only "unstructured" PRUNING_TYPE supported for '
f"the `pruning_method`. Found method {pruning_method} of type {method.PRUNING_TYPE}"
)
container.add_pruning_method(method)
# use the `compute_mask` method from `PruningContainer` to combine the
# mask computed by the new method with the pre-existing mask
final_mask = container.compute_mask(relevant_importance_scores, default_mask)
# Pointer for slicing the mask to match the shape of each parameter
pointer = 0
for module, name in parameters:
param = getattr(module, name)
# The length of the parameter
num_param = param.numel()
# Slice the mask, reshape it
param_mask = final_mask[pointer : pointer + num_param].view_as(param)
# Assign the correct pre-computed mask to each parameter and add it
# to the forward_pre_hooks like any other pruning method
custom_from_mask(module, name, mask=param_mask)
# Increment the pointer to continue slicing the final_mask
pointer += num_param
def custom_from_mask(module, name, mask):
r"""Prune tensor corresponding to parameter called ``name`` in ``module`` by applying the pre-computed mask in ``mask``.
Modifies module in place (and also return the modified module) by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
mask (Tensor): binary mask to be applied to the parameter.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> from torch.nn.utils import prune
>>> m = prune.custom_from_mask(
... nn.Linear(5, 3), name='bias', mask=torch.tensor([0, 1, 0])
... )
>>> print(m.bias_mask)
tensor([0., 1., 0.])
"""
CustomFromMask.apply(module, name, mask)
return module
def remove(module, name):
r"""Remove the pruning reparameterization from a module and the pruning method from the forward hook.
The pruned parameter named ``name`` remains permanently pruned, and the parameter
named ``name+'_orig'`` is removed from the parameter list. Similarly,
the buffer named ``name+'_mask'`` is removed from the buffers.
Note:
Pruning itself is NOT undone or reversed!
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
Examples:
>>> m = random_unstructured(nn.Linear(5, 7), name='weight', amount=0.2)
>>> m = remove(m, name='weight')
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, BasePruningMethod) and hook._tensor_name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError(
f"Parameter '{name}' of module {module} has to be pruned before pruning can be removed"
)
def is_pruned(module):
r"""Check if a module is pruned by looking for pruning pre-hooks.
Check whether ``module`` is pruned by looking for
``forward_pre_hooks`` in its modules that inherit from the
:class:`BasePruningMethod`.
Args:
module (nn.Module): object that is either pruned or unpruned
Returns:
binary answer to whether ``module`` is pruned.
Examples:
>>> from torch.nn.utils import prune
>>> m = nn.Linear(5, 7)
>>> print(prune.is_pruned(m))
False
>>> prune.random_unstructured(m, name='weight', amount=0.2)
>>> print(prune.is_pruned(m))
True
"""
for _, submodule in module.named_modules():
for hook in submodule._forward_pre_hooks.values():
if isinstance(hook, BasePruningMethod):
return True
return False
def _validate_pruning_amount_init(amount):
r"""Validate helper to check the range of amount at init.
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
Raises:
ValueError: if amount is a float not in [0, 1], or if it's a negative
integer.
TypeError: if amount is neither a float nor an integer.
Note:
This does not take into account the number of parameters in the
tensor to be pruned, which is known only at prune.
"""
if not isinstance(amount, numbers.Real):
raise TypeError(
f"Invalid type for amount: {amount}. Must be int or float."
)
if (isinstance(amount, numbers.Integral) and amount < 0) or (
not isinstance(amount, numbers.Integral) # so it's a float
and (float(amount) > 1.0 or float(amount) < 0.0)
):
raise ValueError(
f"amount={amount} should either be a float in the range [0, 1] or a non-negative integer"
)
def _validate_pruning_amount(amount, tensor_size):
r"""Validate that the pruning amount is meaningful wrt to the size of the data.
Validation helper to check that the amount of parameters to prune
is meaningful wrt to the size of the data (`tensor_size`).
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
tensor_size (int): absolute number of parameters in the tensor
to prune.
"""
# TODO: consider removing this check and allowing users to specify
# a number of units to prune that is greater than the number of units
# left to prune. In this case, the tensor will just be fully pruned.
if isinstance(amount, numbers.Integral) and amount > tensor_size:
raise ValueError(
f"amount={amount} should be smaller than the number of parameters to prune={tensor_size}"
)
def _validate_structured_pruning(t):
r"""Validate that the tensor to be pruned is at least 2-Dimensional.
Validation helper to check that the tensor to be pruned is multi-
dimensional, such that the concept of "channels" is well-defined.
Args:
t (torch.Tensor): tensor representing the parameter to prune
Raises:
ValueError: if the tensor `t` is not at least 2D.
"""
shape = t.shape
if len(shape) <= 1:
raise ValueError(
"Structured pruning can only be applied to "
"multidimensional tensors. Found tensor of shape "
f"{shape} with {len(shape)} dims"
)
def _compute_nparams_toprune(amount, tensor_size):
r"""Convert the pruning amount from a percentage to absolute value.
Since amount can be expressed either in absolute value or as a
percentage of the number of units/channels in a tensor, this utility
function converts the percentage to absolute value to standardize
the handling of pruning.
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
tensor_size (int): absolute number of parameters in the tensor
to prune.
Returns:
int: the number of units to prune in the tensor
"""
# incorrect type already checked in _validate_pruning_amount_init
if isinstance(amount, numbers.Integral):
return amount
else:
return round(amount * tensor_size)
def _validate_pruning_dim(t, dim):
r"""Validate that the pruning dimension is within the bounds of the tensor dimension.
Args:
t (torch.Tensor): tensor representing the parameter to prune
dim (int): index of the dim along which we define channels to prune
"""
if dim >= t.dim():
raise IndexError(f"Invalid index {dim} for tensor of size {t.shape}")
def _compute_norm(t, n, dim):
r"""Compute the L_n-norm of a tensor along all dimensions except for the specified dimension.
The L_n-norm will be computed across all entries in tensor `t` along all dimension
except for the one identified by dim.
Example: if `t` is of shape, say, 3x2x4 and dim=2 (the last dim),
then norm will have Size [4], and each entry will represent the
`L_n`-norm computed using the 3x2=6 entries for each of the 4 channels.
Args:
t (torch.Tensor): tensor representing the parameter to prune
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument p in torch.norm
dim (int): dim identifying the channels to prune
Returns:
norm (torch.Tensor): L_n norm computed across all dimensions except
for `dim`. By construction, `norm.shape = t.shape[-1]`.
"""
# dims = all axes, except for the one identified by `dim`
dims = list(range(t.dim()))
# convert negative indexing
if dim < 0:
dim = dims[dim]
dims.remove(dim)
norm = torch.norm(t, p=n, dim=dims)
return norm
|