Spaces:
Running
Running
File size: 48,129 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 |
import copy
from typing import Optional, Any, Union, Callable
import torch
import warnings
from torch import Tensor
from .. import functional as F
from .module import Module
from .activation import MultiheadAttention
from .container import ModuleList
from ..init import xavier_uniform_
from .dropout import Dropout
from .linear import Linear
from .normalization import LayerNorm
__all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer']
def _generate_square_subsequent_mask(
sz: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
r"""Generate a square causal mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
"""
if device is None:
device = torch.device('cpu')
if dtype is None:
dtype = torch.float32
return torch.triu(
torch.full((sz, sz), float('-inf'), dtype=dtype, device=device),
diagonal=1,
)
def _get_seq_len(
src: Tensor,
batch_first: bool
) -> Optional[int]:
if src.is_nested:
return None
else:
src_size = src.size()
if len(src_size) == 2:
# unbatched: S, E
return src_size[0]
else:
# batched: B, S, E if batch_first else S, B, E
seq_len_pos = 1 if batch_first else 0
return src_size[seq_len_pos]
class Transformer(Module):
r"""A transformer model.
User is able to modify the attributes as needed. The architecture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of encoder/decoder intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
other attention and feedforward operations, otherwise after. Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
Note: A full example to apply nn.Transformer module for the word language model is available in
https://github.com/pytorch/examples/tree/master/word_language_model
"""
def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6,
num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
if custom_encoder is not None:
self.encoder = custom_encoder
else:
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first, norm_first,
bias, **factory_kwargs)
encoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first, norm_first,
bias, **factory_kwargs)
decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
self.batch_first = batch_first
def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None,
src_is_causal: Optional[bool] = None, tgt_is_causal: Optional[bool] = None,
memory_is_causal: bool = False) -> Tensor:
r"""Take in and process masked source/target sequences.
.. note::
If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
not allowed to participate in the attention,
which is the opposite of the definition for :attr:`attn_mask`
in :func:`torch.nn.functional.scaled_dot_product_attention`.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
src_mask: the additive mask for the src sequence (optional).
tgt_mask: the additive mask for the tgt sequence (optional).
memory_mask: the additive mask for the encoder output (optional).
src_key_padding_mask: the Tensor mask for src keys per batch (optional).
tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
src_is_causal: If specified, applies a causal mask as ``src_mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``src_is_causal`` provides a hint that ``src_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory_mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
- src: :math:`(S, E)` for unbatched input, :math:`(S, N, E)` if `batch_first=False` or
`(N, S, E)` if `batch_first=True`.
- tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
`(N, T, E)` if `batch_first=True`.
- src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
- tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
- memory_mask: :math:`(T, S)`.
- src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
- tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
- memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
positions. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
the attention. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
`(N, T, E)` if `batch_first=True`.
Note: Due to the multi-head attention architecture in the transformer model,
the output sequence length of a transformer is same as the input sequence
(i.e. target) length of the decoder.
where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
batch size, :math:`E` is the feature number
Examples:
>>> # xdoctest: +SKIP
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
"""
is_batched = src.dim() == 3
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask,
is_causal=src_is_causal)
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
return output
@staticmethod
def generate_square_subsequent_mask(
sz: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
r"""Generate a square causal mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
"""
return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)
def _reset_parameters(self):
r"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
class TransformerEncoder(Module):
r"""TransformerEncoder is a stack of N encoder layers.
Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ['norm']
def __init__(
self,
encoder_layer: "TransformerEncoderLayer",
num_layers: int,
norm: Optional[Module] = None,
enable_nested_tensor: bool = True,
mask_check: bool = True
) -> None:
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
# this attribute saves the value providedat object construction
self.enable_nested_tensor = enable_nested_tensor
# this attribute controls whether nested tensors are used
self.use_nested_tensor = enable_nested_tensor
self.mask_check = mask_check
enc_layer = "encoder_layer"
why_not_sparsity_fast_path = ''
if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
elif encoder_layer.norm_first :
why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
elif not encoder_layer.self_attn.batch_first:
why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" +
"(use batch_first for better inference performance)")
elif not encoder_layer.self_attn._qkv_same_embed_dim:
why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
elif encoder_layer.self_attn.in_proj_bias is None:
why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
elif not encoder_layer.activation_relu_or_gelu:
why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True"
elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) :
why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
elif encoder_layer.self_attn.num_heads % 2 == 1:
why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"
if enable_nested_tensor and why_not_sparsity_fast_path:
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
self.use_nested_tensor = False
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: Optional[bool] = None) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
is_causal: If specified, applies a causal mask as ``mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``is_causal`` provides a hint that ``mask`` is the
causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(mask),
other_name="mask",
target_type=src.dtype
)
mask = F._canonical_mask(
mask=mask,
mask_name="mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
output = src
convert_to_nested = False
first_layer = self.layers[0]
src_key_padding_mask_for_layers = src_key_padding_mask
why_not_sparsity_fast_path = ''
str_first_layer = "self.layers[0]"
batch_first = first_layer.self_attn.batch_first
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
if not is_fastpath_enabled:
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
elif not hasattr(self, "use_nested_tensor"):
why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
elif not self.use_nested_tensor:
why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True"
elif first_layer.training:
why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
elif not src.dim() == 3:
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
elif src_key_padding_mask is None:
why_not_sparsity_fast_path = "src_key_padding_mask was None"
elif (((not hasattr(self, "mask_check")) or self.mask_check)
and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
elif output.is_nested:
why_not_sparsity_fast_path = "NestedTensor input is not supported"
elif mask is not None:
why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
elif torch.is_autocast_enabled():
why_not_sparsity_fast_path = "autocast is enabled"
if not why_not_sparsity_fast_path:
tensor_args = (
src,
first_layer.self_attn.in_proj_weight,
first_layer.self_attn.in_proj_bias,
first_layer.self_attn.out_proj.weight,
first_layer.self_attn.out_proj.bias,
first_layer.norm1.weight,
first_layer.norm1.bias,
first_layer.norm2.weight,
first_layer.norm2.bias,
first_layer.linear1.weight,
first_layer.linear1.bias,
first_layer.linear2.weight,
first_layer.linear2.bias,
)
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
if torch.overrides.has_torch_function(tensor_args):
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
elif src.device.type not in _supported_device_type:
why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}"
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad")
if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
convert_to_nested = True
output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
src_key_padding_mask_for_layers = None
seq_len = _get_seq_len(src, batch_first)
is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)
for mod in self.layers:
output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers)
if convert_to_nested:
output = output.to_padded_tensor(0., src.size())
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoder(Module):
r"""TransformerDecoder is a stack of N decoder layers.
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
"""
__constants__ = ['norm']
def __init__(
self,
decoder_layer: "TransformerDecoderLayer",
num_layers: int,
norm: Optional[Module] = None
) -> None:
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None,
memory_is_causal: bool = False) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
output = tgt
seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
for mod in self.layers:
output = mod(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=tgt_is_causal,
memory_is_causal=memory_is_causal)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerEncoderLayer(Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
TransformerEncoderLayer can handle either traditional torch.tensor inputs,
or Nested Tensor inputs. Derived classes are expected to similarly accept
both input formats. (Not all combinations of inputs are currently
supported by TransformerEncoderLayer while Nested Tensor is in prototype
state.)
If you are implementing a custom layer, you may derive it either from
the Module or TransformerEncoderLayer class. If your custom layer
supports both torch.Tensors and Nested Tensors inputs, make its
implementation a derived class of TransformerEncoderLayer. If your custom
Layer supports only torch.Tensor inputs, derive its implementation from
Module.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectively. Otherwise it's done after. Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
Alternatively, when ``batch_first`` is ``True``:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)
Fast path:
forward() will use a special optimized implementation described in
`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
conditions are met:
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
argument ``requires_grad``
- training is disabled (using ``.eval()``)
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
nor ``src_key_padding_mask`` is passed
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
unless the caller has manually modified one without modifying the other)
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
passed for ``src`` to represent padding more efficiently than using a padding
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
returned, and an additional speedup proportional to the fraction of the input that
is padding can be expected.
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
https://arxiv.org/abs/2205.14135
"""
__constants__ = ['norm_first']
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout,
bias=bias, batch_first=batch_first,
**factory_kwargs)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
# We can't test self.activation in forward() in TorchScript,
# so stash some information about it instead.
if activation is F.relu or isinstance(activation, torch.nn.ReLU):
self.activation_relu_or_gelu = 1
elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
self.activation_relu_or_gelu = 2
else:
self.activation_relu_or_gelu = 0
self.activation = activation
def __setstate__(self, state):
super().__setstate__(state)
if not hasattr(self, 'activation'):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: bool = False) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
is_causal: If specified, applies a causal mask as ``src mask``.
Default: ``False``.
Warning:
``is_causal`` provides a hint that ``src_mask`` is the
causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(src_mask),
other_name="src_mask",
target_type=src.dtype
)
src_mask = F._canonical_mask(
mask=src_mask,
mask_name="src_mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
why_not_sparsity_fast_path = ''
if not is_fastpath_enabled:
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
elif not src.dim() == 3:
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
elif self.training:
why_not_sparsity_fast_path = "training is enabled"
elif not self.self_attn.batch_first:
why_not_sparsity_fast_path = "self_attn.batch_first was not True"
elif self.self_attn.in_proj_bias is None:
why_not_sparsity_fast_path = "self_attn was passed bias=False"
elif not self.self_attn._qkv_same_embed_dim:
why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
elif not self.activation_relu_or_gelu:
why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
elif not (self.norm1.eps == self.norm2.eps):
why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None):
why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
elif self.self_attn.num_heads % 2 == 1:
why_not_sparsity_fast_path = "num_head is odd"
elif torch.is_autocast_enabled():
why_not_sparsity_fast_path = "autocast is enabled"
if not why_not_sparsity_fast_path:
tensor_args = (
src,
self.self_attn.in_proj_weight,
self.self_attn.in_proj_bias,
self.self_attn.out_proj.weight,
self.self_attn.out_proj.bias,
self.norm1.weight,
self.norm1.bias,
self.norm2.weight,
self.norm2.bias,
self.linear1.weight,
self.linear1.bias,
self.linear2.weight,
self.linear2.bias,
)
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
if torch.overrides.has_torch_function(tensor_args):
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
elif not all((x.device.type in _supported_device_type) for x in tensor_args):
why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of "
f"{_supported_device_type}")
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad")
if not why_not_sparsity_fast_path:
merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src)
return torch._transformer_encoder_layer_fwd(
src,
self.self_attn.embed_dim,
self.self_attn.num_heads,
self.self_attn.in_proj_weight,
self.self_attn.in_proj_bias,
self.self_attn.out_proj.weight,
self.self_attn.out_proj.bias,
self.activation_relu_or_gelu == 2,
self.norm_first,
self.norm1.eps,
self.norm1.weight,
self.norm1.bias,
self.norm2.weight,
self.norm2.bias,
self.linear1.weight,
self.linear1.bias,
self.linear2.weight,
self.linear2.bias,
merged_mask,
mask_type,
)
x = src
if self.norm_first:
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal)
x = x + self._ff_block(self.norm2(x))
else:
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
x = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False, is_causal=is_causal)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class TransformerDecoderLayer(Module):
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to self attention, multihead
attention and feedforward operations, respectively. Otherwise it's done after.
Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = decoder_layer(tgt, memory)
Alternatively, when ``batch_first`` is ``True``:
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
>>> memory = torch.rand(32, 10, 512)
>>> tgt = torch.rand(32, 20, 512)
>>> out = decoder_layer(tgt, memory)
"""
__constants__ = ['norm_first']
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
bias=bias, **factory_kwargs)
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
bias=bias, **factory_kwargs)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
self.dropout3 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = _get_activation_fn(activation)
else:
self.activation = activation
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super().__setstate__(state)
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
tgt_is_causal: bool = False,
memory_is_causal: bool = False,
) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
Default: ``False``.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = tgt
if self.norm_first:
x = x + self._sa_block(self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal)
x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal)
x = x + self._ff_block(self.norm3(x))
else:
x = self.norm1(x + self._sa_block(x, tgt_mask, tgt_key_padding_mask, tgt_is_causal))
x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal))
x = self.norm3(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
x = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False)[0]
return self.dropout1(x)
# multihead attention block
def _mha_block(self, x: Tensor, mem: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
x = self.multihead_attn(x, mem, mem,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False)[0]
return self.dropout2(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout3(x)
def _get_clones(module, N):
# FIXME: copy.deepcopy() is not defined on nn.module
return ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError(f"activation should be relu/gelu, not {activation}")
def _detect_is_causal_mask(
mask: Optional[Tensor],
is_causal: Optional[bool] = None,
size: Optional[int] = None,
) -> bool:
"""Return whether the given attention mask is causal.
Warning:
If ``is_causal`` is not ``None``, its value will be returned as is. If a
user supplies an incorrect ``is_causal`` hint,
``is_causal=False`` when the mask is in fact a causal attention.mask
may lead to reduced performance relative to what would be achievable
with ``is_causal=True``;
``is_causal=True`` when the mask is in fact not a causal attention.mask
may lead to incorrect and unpredictable execution - in some scenarios,
a causal mask may be applied based on the hint, in other execution
scenarios the specified mask may be used. The choice may not appear
to be deterministic, in that a number of factors like alignment,
hardware SKU, etc influence the decision whether to use a mask or
rely on the hint.
``size`` if not None, check whether the mask is a causal mask of the provided size
Otherwise, checks for any causal mask.
"""
# Prevent type refinement
make_causal = (is_causal is True)
if is_causal is None and mask is not None:
sz = size if size is not None else mask.size(-2)
causal_comparison = _generate_square_subsequent_mask(
sz, device=mask.device, dtype=mask.dtype)
# Do not use `torch.equal` so we handle batched masks by
# broadcasting the comparison.
if mask.size() == causal_comparison.size():
make_causal = bool((mask == causal_comparison).all())
else:
make_causal = False
return make_causal
|