File size: 12,076 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.distributed as dist

from torch.autograd.function import Function

class SyncBatchNorm(Function):

    @staticmethod
    def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):
        if not (
            input.is_contiguous(memory_format=torch.channels_last) or
            input.is_contiguous(memory_format=torch.channels_last_3d)
        ):
            input = input.contiguous()
        if weight is not None:
            weight = weight.contiguous()

        size = int(input.numel() // input.size(1))
        if size == 1 and world_size < 2:
            raise ValueError(f'Expected more than 1 value per channel when training, got input size {size}')

        num_channels = input.shape[1]
        if input.numel() > 0:
            # calculate mean/invstd for input.
            mean, invstd = torch.batch_norm_stats(input, eps)

            count = torch.full(
                (1,),
                input.numel() // input.size(1),
                dtype=mean.dtype,
                device=mean.device
            )

            # C, C, 1 -> (2C + 1)
            combined = torch.cat([mean, invstd, count], dim=0)
        else:
            # for empty input, set stats and the count to zero. The stats with
            # zero count will be filtered out later when computing global mean
            # & invstd, but they still needs to participate the all_gather
            # collective communication to unblock other peer processes.
            combined = torch.zeros(
                2 * num_channels + 1,
                dtype=input.dtype,
                device=input.device
            )

        # Use allgather instead of allreduce because count could be different across
        # ranks, simple all reduce op can not give correct results.
        # batch_norm_gather_stats_with_counts calculates global mean & invstd based on
        # all gathered mean, invstd and count.
        # for nccl backend, use the optimized version of all gather.
        # The Gloo backend does not support `all_gather_into_tensor`.
        if process_group._get_backend_name() != "gloo":
            # world_size * (2C + 1)
            combined_size = combined.numel()
            combined_flat = torch.empty(1,
                                        combined_size * world_size,
                                        dtype=combined.dtype,
                                        device=combined.device)
            dist.all_gather_into_tensor(combined_flat, combined, process_group, async_op=False)
            combined = torch.reshape(combined_flat, (world_size, combined_size))
            # world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
            mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)
        else:
            # world_size * (2C + 1)
            combined_list = [
                torch.empty_like(combined) for _ in range(world_size)
            ]
            dist.all_gather(combined_list, combined, process_group, async_op=False)
            combined = torch.stack(combined_list, dim=0)
            # world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
            mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)

        if not (torch.cuda.is_available() and torch.cuda.is_current_stream_capturing()):
            # The lines below force a synchronization between CUDA and CPU, because
            # the shape of the result count_all depends on the values in mask tensor.
            # Such synchronizations break CUDA Graph capturing.
            # See https://github.com/pytorch/pytorch/issues/78549
            # FIXME: https://github.com/pytorch/pytorch/issues/78656 describes
            # a better longer-term solution.

            # remove stats from empty inputs
            mask = count_all.squeeze(-1) >= 1
            count_all = count_all[mask]
            mean_all = mean_all[mask]
            invstd_all = invstd_all[mask]

        # calculate global mean & invstd
        counts = count_all.view(-1)
        if running_mean is not None and counts.dtype != running_mean.dtype:
            counts = counts.to(running_mean.dtype)
        mean, invstd = torch.batch_norm_gather_stats_with_counts(
            input,
            mean_all,
            invstd_all,
            running_mean,
            running_var,
            momentum,
            eps,
            counts,
        )

        self.save_for_backward(input, weight, mean, invstd, count_all.to(torch.int32))
        self.process_group = process_group

        # apply element-wise normalization
        if input.numel() > 0:
            return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
        else:
            return torch.empty_like(input)

    @staticmethod
    def backward(self, grad_output):
        if not (
            grad_output.is_contiguous(memory_format=torch.channels_last) or
            grad_output.is_contiguous(memory_format=torch.channels_last_3d)
        ):
            grad_output = grad_output.contiguous()
        saved_input, weight, mean, invstd, count_tensor = self.saved_tensors
        grad_input = grad_weight = grad_bias = None
        process_group = self.process_group

        if saved_input.numel() > 0:
            # calculate local stats as well as grad_weight / grad_bias
            sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
                grad_output,
                saved_input,
                mean,
                invstd,
                weight,
                self.needs_input_grad[0],
                self.needs_input_grad[1],
                self.needs_input_grad[2]
            )

            if self.needs_input_grad[0]:
                # synchronizing stats used to calculate input gradient.
                num_channels = sum_dy.shape[0]
                combined = torch.cat([sum_dy, sum_dy_xmu], dim=0)
                torch.distributed.all_reduce(
                    combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)
                sum_dy, sum_dy_xmu = torch.split(combined, num_channels)

                # backward pass for gradient calculation
                if weight is not None and weight.dtype != mean.dtype:
                    weight = weight.to(mean.dtype)
                grad_input = torch.batch_norm_backward_elemt(
                    grad_output,
                    saved_input,
                    mean,
                    invstd,
                    weight,
                    sum_dy,
                    sum_dy_xmu,
                    count_tensor
                )
            # synchronizing of grad_weight / grad_bias is not needed as distributed
            # training would handle all reduce.
            if weight is None or not self.needs_input_grad[1]:
                grad_weight = None

            if weight is None or not self.needs_input_grad[2]:
                grad_bias = None
        else:
            # This process got an empty input tensor in the forward pass.
            # Although this process can directly set grad_input as an empty
            # tensor of zeros, it still needs to participate in the collective
            # communication to unblock its peers, as other peer processes might
            # have received non-empty inputs.
            num_channels = saved_input.shape[1]
            if self.needs_input_grad[0]:
                # launch all_reduce to unblock other peer processes
                combined = torch.zeros(
                    2 * num_channels,
                    dtype=saved_input.dtype,
                    device=saved_input.device
                )
                torch.distributed.all_reduce(
                    combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)

            # Leave grad_input, grad_weight and grad_bias as None, which will be
            # interpreted by the autograd engine as Tensors full of zeros.

        return grad_input, grad_weight, grad_bias, None, None, None, None, None, None

class CrossMapLRN2d(Function):

    @staticmethod
    def forward(ctx, input, size, alpha=1e-4, beta=0.75, k=1):
        ctx.size = size
        ctx.alpha = alpha
        ctx.beta = beta
        ctx.k = k
        ctx.scale = None

        if input.dim() != 4:
            raise ValueError(f"CrossMapLRN2d: Expected input to be 4D, got {input.dim()}D instead.")

        ctx.scale = ctx.scale or input.new()
        output = input.new()

        batch_size = input.size(0)
        channels = input.size(1)
        input_height = input.size(2)
        input_width = input.size(3)

        output.resize_as_(input)
        ctx.scale.resize_as_(input)

        # use output storage as temporary buffer
        input_square = output
        torch.pow(input, 2, out=input_square)

        pre_pad = int((ctx.size - 1) / 2 + 1)
        pre_pad_crop = min(pre_pad, channels)

        scale_first = ctx.scale.select(1, 0)
        scale_first.zero_()
        # compute first feature map normalization
        for c in range(pre_pad_crop):
            scale_first.add_(input_square.select(1, c))

        # reuse computations for next feature maps normalization
        # by adding the next feature map and removing the previous
        for c in range(1, channels):
            scale_previous = ctx.scale.select(1, c - 1)
            scale_current = ctx.scale.select(1, c)
            scale_current.copy_(scale_previous)
            if c < channels - pre_pad + 1:
                square_next = input_square.select(1, c + pre_pad - 1)
                scale_current.add_(square_next, alpha=1)

            if c > pre_pad:
                square_previous = input_square.select(1, c - pre_pad)
                scale_current.add_(square_previous, alpha=-1)

        ctx.scale.mul_(ctx.alpha / ctx.size).add_(ctx.k)

        torch.pow(ctx.scale, -ctx.beta, out=output)
        output.mul_(input)

        ctx.save_for_backward(input, output)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input, output = ctx.saved_tensors
        grad_input = grad_output.new()

        batch_size = input.size(0)
        channels = input.size(1)
        input_height = input.size(2)
        input_width = input.size(3)

        paddded_ratio = input.new(channels + ctx.size - 1, input_height,
                                  input_width)
        accum_ratio = input.new(input_height, input_width)

        cache_ratio_value = 2 * ctx.alpha * ctx.beta / ctx.size
        inversePrePad = int(ctx.size - (ctx.size - 1) / 2)

        grad_input.resize_as_(input)
        torch.pow(ctx.scale, -ctx.beta, out=grad_input).mul_(grad_output)

        paddded_ratio.zero_()
        padded_ratio_center = paddded_ratio.narrow(0, inversePrePad,
                                                   channels)
        for n in range(batch_size):
            torch.mul(grad_output[n], output[n], out=padded_ratio_center)
            padded_ratio_center.div_(ctx.scale[n])
            torch.sum(
                paddded_ratio.narrow(0, 0, ctx.size - 1), 0, keepdim=False, out=accum_ratio)
            for c in range(channels):
                accum_ratio.add_(paddded_ratio[c + ctx.size - 1])
                grad_input[n][c].addcmul_(input[n][c], accum_ratio, value=-cache_ratio_value)
                accum_ratio.add_(paddded_ratio[c], alpha=-1)

        return grad_input, None, None, None, None

class BackwardHookFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, *args):
        ctx.mark_non_differentiable(*[arg for arg in args if not arg.requires_grad])
        return args

    @staticmethod
    def backward(ctx, *args):
        return args