File size: 39,697 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
import functools
import math
import operator

import torch
from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention

from .nested_tensor import NestedTensor
from typing import *  # noqa: F403
import torch.nn.functional as F
from torch.fx.operator_schemas import normalize_function

__all__: List[Any] = []

JAGGED_OPS_TABLE: Dict[Any, Any] = {}


# Simplifying assumption: we assume that the batch dim is always the left-most
# dim, and the ragged dim is always the second dim.
def _outer_to_inner_dim(ndim, dim):
    assert dim >= 0 and dim < ndim
    return 0 if dim < 2 else dim - 1


def _wrap_jagged_dim(

    ndim, dim, op_name, convert_to_inner_dim=True, allow_batch_dim=False

):
    from torch._prims_common import canonicalize_dims

    wrapped = canonicalize_dims(ndim, dim)
    if wrapped == 1:
        raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=1")
    elif wrapped == 0 and not allow_batch_dim:
        raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0")
    return _outer_to_inner_dim(ndim, wrapped) if convert_to_inner_dim else wrapped


def _wrap_jagged_dims(ndim, dims, op_name):
    # ex: (2, 3, 4) -> (1, 2, 3)
    # ex: (0, 1, 4) -> (0, 3)
    from torch._prims_common import canonicalize_dims

    wrapped_dims = [canonicalize_dims(ndim, d) for d in dims]
    # This logic needs to be done after we canonicalize dims but before we
    # map to inner dims so we can print a nicer error message.
    zero_in_dims = 0 in wrapped_dims
    one_in_dims = 1 in wrapped_dims
    if zero_in_dims ^ one_in_dims:
        apply, not_apply = ("batch", "ragged") if zero_in_dims else ("ragged", "batch")
        raise RuntimeError(
            f"{op_name}(): applying over the {apply} dimension, but not the {not_apply}"
            " dimension is not supported for NestedTensor"
        )
    return (
        tuple(_outer_to_inner_dim(ndim, d) for d in dims if d != 0),
        zero_in_dims,
    )


def check_schema(schema_str: str, func, *args, **kwargs) -> None:
    named_arg_types = schema_str.split(", ")
    num_optional_args = sum([x.endswith("?") for x in named_arg_types])
    min_args = len(named_arg_types) - num_optional_args

    # special case: ellipses allows for any number of unchecked args at the end
    if named_arg_types[-1] == "...":
        named_arg_types = named_arg_types[:-1]
    else:
        if not (len(args) >= min_args and len(args) <= len(named_arg_types)):
            raise ValueError(
                f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} "
                f"arguments and at most {len(named_arg_types)} arguments, but got: "
                f"{len(args)} arguments"
            )

    arg_type_check_fns = {
        "t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor),
        "jt": lambda x: isinstance(x, NestedTensor)
        and x._lengths is None
        and x._ragged_idx == 1,  # ops with "jt" require contiguous JT only
        "jt_all": lambda x: isinstance(
            x, NestedTensor
        ),  # ops with "jt_all" can accept all kinds of JT
        "any": lambda x: True,
    }
    for i, named_arg_type in enumerate(named_arg_types):
        name, arg_type = named_arg_type.split(": ")
        is_optional = arg_type.endswith("?")
        normalized_arg_type = arg_type[:-1] if is_optional else arg_type
        if normalized_arg_type not in arg_type_check_fns.keys():
            raise AssertionError(f"Unknown arg type: {normalized_arg_type}")

        if i >= len(args):
            if not is_optional:
                raise ValueError(
                    f"NestedTensor {func.__name__}({schema_str}) "
                    f"missing required argument: {name}"
                )
            continue

        _check_fn = arg_type_check_fns[normalized_arg_type]

        def check_fn(x, is_optional=is_optional):
            if is_optional:
                return x is None or _check_fn(x)
            else:
                return _check_fn(x)

        if not check_fn(args[i]):
            type_to_desc = {
                "t": "tensor",
                "t?": "optional tensor",
                "jt": "contiguous jagged layout NestedTensor",
                "jt_all": "jagged layout NestedTensor",
                "any": "<any type>",
            }

            raise ValueError(
                f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a "
                f"{type_to_desc[arg_type]}"
            )


def check_ragged_dim_same(

    func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str

) -> None:
    # Calling into .shape here
    if a._size[a._ragged_idx] != b._size[b._ragged_idx]:
        raise RuntimeError(
            f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the "
            "same exact offsets tensor."
        )


# returns True if the raggedness-relevant portions of the NT shape
# match those of the specified size
def raggedness_matches(nt, size):
    end = nt._ragged_idx + 1
    nt_ragged = nt._size[:end]
    size_ragged = size[:end]
    return len(nt_ragged) == len(size_ragged) and (
        all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged))
    )


def squeeze_leading_ones(t):
    # Note: [ Squeezing leading ones ]
    #
    # Squeeze leading ones from t.
    #
    # We want:
    #   (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
    #   (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?)  (not yet supported)
    #
    # 1) Squeeze extra ones and grab values from NT
    #   (1, 1, ?, ?) -> (?, ?)   and   (sum(*), ?, ?) -> (B, j0, ?, ?)
    # 2) Do dense broadcasting:
    #   (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?)
    # 3) Construct nested tensor
    #   (sum(*), ?, ?) -> (B, j0, ?, ?)
    #
    # If unsqueezing on the 0th dim becomes supported, we would unsqueeze
    # at step (4) and we would need to update this function to record how
    # many ones we unsqueezed.
    while t.shape[0] == 1:
        t = t.squeeze(0)
    return t


def register_func(tables, aten_ops, schema_str):
    if not isinstance(aten_ops, list):
        aten_ops = [aten_ops]
    if not isinstance(tables, list):
        tables = [tables]

    def wrapper(func):
        for aten_op in aten_ops:

            def get_inner(aten_op):
                def inner(*args, **kwargs):
                    check_schema(schema_str, func, *args, **kwargs)
                    return func(aten_op, *args, **kwargs)

                return inner

            for table in tables:
                table[aten_op] = get_inner(aten_op)
        return func

    return wrapper


register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE)


def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]:
    dispatch_func = JAGGED_OPS_TABLE.get(func, None)
    if dispatch_func is not None:
        return dispatch_func

    # Handle pointwise fallbacks
    if torch.Tag.pointwise in func.tags:
        # Assume there aren't additional tensors that aren't the "unary/binary" args
        num_tensor_args = sum([isinstance(x, torch.Tensor) for x in args])
        if num_tensor_args == 1:
            check_schema("self: jt_all, ...", func, *args, **kwargs)
            return functools.partial(jagged_unary_pointwise, func)
        elif num_tensor_args == 2:
            check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs)
            return functools.partial(jagged_binary_pointwise, func)

    return None


def extract_kwargs(arg):
    kwargs = {
        "offsets": arg.offsets(),
        "_metadata_cache": arg._metadata_cache,
        "_ragged_idx": arg._ragged_idx,
    }
    return kwargs


def jagged_unary_pointwise(func, *args, **kwargs):
    return NestedTensor(
        func(args[0]._values, *args[1:], **kwargs), **extract_kwargs(args[0])
    )


def jagged_binary_pointwise(func, *args, **kwargs):
    a, b = args[0], args[1]
    assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor)

    mismatch_error_msg = (
        "cannot call binary pointwise function {} with inputs of shapes {} and {}"
    )
    # a is NT, b is NT
    if isinstance(a, NestedTensor) and isinstance(b, NestedTensor):
        # ex: (B, j0, D) + (B, j0, D)
        # ex: (B, j0, D) + (B, j0, 1)
        if raggedness_matches(a, b._size):
            return NestedTensor(
                func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a)
            )
        raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size))
    # either a is NT or b is NT at this point
    a_is_nt = isinstance(a, NestedTensor)
    extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b)

    # === Handle broadcasting across the batch / ragged dims ===

    # Easy case: take advantage of pre-existing broadcasting logic
    # ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
    # ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
    # ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
    nt, t = (a, b) if a_is_nt else (b, a)
    # See Note: [ Squeezing leading ones ]
    if t.dim() > nt.dim():
        raise NotImplementedError("NYI: broadcasting NT with T with larger dim")
    t_squeezed = squeeze_leading_ones(t)
    if nt.dim() >= t_squeezed.dim() + 2:
        lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values)
        return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs)

    # Harder case: do manual broadcasting over unbound components
    # when NT dim == non-NT dim
    # ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1)
    if a.dim() == b.dim():
        # ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should
        # be (B, j0, D_0, D_1) but not yet supported
        if a.shape[0] != b.shape[0]:
            raise RuntimeError(
                mismatch_error_msg.format(func.__name__, a.shape, b.shape)
            )

        # need to use offsets to broadcast across ragged dim properly
        # NB: inefficient fallback here; Triton codegen can help this
        # TODO: Make this work with autograd
        outputs = []
        for a_comp, b_comp in zip(a.unbind(), b.unbind()):
            outputs.append(func(a_comp, b_comp, *args[2:], **kwargs))
        new_values = torch.cat(outputs, dim=0)
        return NestedTensor(new_values, **extracted_kwargs)

    # ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant
    # that ragged dim is wrt left-most batch dim
    raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape))


def jagged_torch_function(func, *args, **kwargs):
    # SDPA has special kernels that handle nested tensors.
    # Dispatch to the correct implementation here
    if func is torch._C._nn.scaled_dot_product_attention:
        return jagged_scaled_dot_product_attention(*args, **kwargs)

    # Handle flatten() here because it's CompositeImplicit.
    if func.__name__ == "flatten":

        def _flatten_sig(input, start_dim=0, end_dim=-1):
            pass

        _, new_kwargs = normalize_function(
            _flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
        )

        inp = new_kwargs.pop("input")

        # NB: stay in outer dim space because we're going to redispatch on a NT input
        start_dim = _wrap_jagged_dim(
            inp.dim(), new_kwargs["start_dim"], "flatten", convert_to_inner_dim=False
        )
        end_dim = _wrap_jagged_dim(
            inp.dim(), new_kwargs["end_dim"], "flatten", convert_to_inner_dim=False
        )

        if start_dim == end_dim:
            return inp

        product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1])
        new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :])

        return inp.reshape(*new_shape)

    raise NotImplementedError(func)


@register_jagged_func(

    [

        torch.ops.aten.is_non_overlapping_and_dense.default,

        torch.ops.aten.sym_size.default,

        torch.ops.aten.dim.default,

        torch.ops.aten.sym_numel.default,

        torch.ops.aten.sym_stride.default,

        torch.ops.aten.sym_storage_offset.default,

    ],

    "self: jt_all",

)
def tensor_attr_supported_getter(func, *args, **kwargs):
    if func == torch.ops.aten.is_non_overlapping_and_dense.default:
        return False

    if func == torch.ops.aten.sym_size.default:
        return args[0]._size

    if func == torch.ops.aten.dim.default:
        return len(args[0]._size)

    if func == torch.ops.aten.sym_numel.default:
        if args[0]._lengths is not None:
            return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:]))
        return args[0]._values.numel()

    if func == torch.ops.aten.sym_stride.default:
        return args[0]._strides

    if func == torch.ops.aten.sym_storage_offset.default:
        return args[0]._values.storage_offset()


@register_jagged_func(torch.ops.prim.layout.default, "self: jt_all")
def prim_layout_default(func, *args, **kwargs):
    return torch.jagged


@register_jagged_func(

    [torch.ops.aten.size.default],

    "self: jt_all",

)
def tensor_attr_unsupported_getter(func, *args, **kwargs):
    if func == torch.ops.aten.size.default:
        raise RuntimeError(
            "NestedTensors does not support directly calling torch.ops.aten.size "
            "please use `nested_tensor.size()` instead."
        )


@register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all")
def is_contiguous_general(func, *args, **kwargs):
    from torch._prims_common import is_contiguous_for_memory_format

    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")

    # If created from narrow() check for lengths
    if inp.lengths() is not None:
        return False

    new_kwargs["memory_format"] = new_kwargs.get(
        "memory_format", torch.contiguous_format
    )
    if new_kwargs["memory_format"] == torch.preserve_format:
        return True
    return is_contiguous_for_memory_format(inp._values, **new_kwargs)


register_jagged_func(
    torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?"
)(is_contiguous_general)


@register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?")
def linear_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(

    torch.ops.aten.linear_backward.default,

    "self: jt, grad_output: jt, weight: t, output_mask: any",

)
def linear_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    grad_output = new_kwargs.pop("grad_output")
    weight = new_kwargs.pop("weight")

    check_ragged_dim_same(func, inp, "self", grad_output, "grad_output")
    ds = NestedTensor(
        torch.mm(grad_output._values, weight), **extract_kwargs(grad_output)
    )
    dw = torch.mm(grad_output._values.T, inp._values)
    db = None  # NYI: gradient for bias, need to reduce over ragged dim
    return (ds, dw, db)


@register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all")
def to_copy_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    # don't change layout
    new_kwargs.pop("layout")

    new_values = func(inp._values, **new_kwargs)
    # NB: Purposefully keep offsets on the old device.
    return NestedTensor(new_values, **extract_kwargs(inp))


register_jagged_func(
    [
        torch.ops.aten.empty_like.default,
        torch.ops.aten.ones_like.default,
        torch.ops.aten.zeros_like.default,
        torch.ops.aten.randn_like.default,
        torch.ops.aten.detach.default,
    ],
    "self: jt_all",
)(jagged_unary_pointwise)


register_jagged_func(
    torch.ops.aten._softmax.default, "self: jt, dim: any, half_to_float: any"
)(jagged_unary_pointwise)


@register_jagged_func(

    torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?"

)
def native_dropout_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    out1, out2 = func(inp._values, **new_kwargs)
    return (
        NestedTensor(out1, **extract_kwargs(inp)),
        NestedTensor(out2, **extract_kwargs(inp)),
    )


@register_jagged_func(

    torch.ops.aten.native_dropout_backward.default,

    "grad_output: jt, mask: jt, scale: any",

)
def native_dropout_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    grad_output = new_kwargs.pop("grad_output")
    mask = new_kwargs.pop("mask")
    return NestedTensor(
        func(grad_output._values, mask._values, **new_kwargs),
        **extract_kwargs(grad_output),
    )


@register_jagged_func(torch.ops.aten.prod.dim_int, "self: jt, dim: any, keepdim: any?")
def prod_dim_int(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    # TODO: Figure out how to handle this better
    # keep_dim is required to keep it in jagged format
    if not new_kwargs["keepdim"]:
        raise RuntimeError("prod(): keepdim=True must be set for NestedTensor")
    dim = new_kwargs["dim"]
    new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), dim, "prod")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(args[0]))


@register_jagged_func(

    torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any"

)
def split_tensor(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "split")

    return tuple(
        NestedTensor(values=x, **extract_kwargs(inp))
        for x in func(inp._values, **new_kwargs)
    )


@register_jagged_func(

    torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any"

)
def split_with_sizes_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], "split_with_sizes"
    )

    return [
        NestedTensor(values=x, **extract_kwargs(inp))
        for x in func(inp._values, **new_kwargs)
    ]


@register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?")
def chunk_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    new_kwargs["dim"] = _wrap_jagged_dim(
        inp.dim(), new_kwargs["dim"], "chunk", allow_batch_dim=True
    )

    if new_kwargs["dim"] == 0:
        chunks = new_kwargs["chunks"]
        dim0_size = inp._size[0]
        chunk_size = math.ceil(dim0_size / chunks)

        # get _offsets of the chunks
        lengths = inp._offsets.diff()
        chunked_lengths = lengths.chunk(chunks)
        chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths]
        chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets]
        nested_kwargs = [
            {"offsets": per_offsets, "_ragged_idx": inp._ragged_idx}
            for per_offsets in chunked_offsets
        ]

        # get _values of the chunks
        split_sizes = [x.sum().item() for x in chunked_lengths]
        chunk_values = inp._values.split(split_sizes)

        return [
            NestedTensor(values=chunk_values[i], **(nested_kwargs[i]))
            for i in range(0, chunk_size)
        ]
    else:
        return [
            NestedTensor(values=x, **extract_kwargs(inp))
            for x in func(inp._values, **new_kwargs)
        ]


@register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?")
def unbind_int(func, *args, **kwargs):
    # Note that this specializes on the length of the offsets
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    dim = new_kwargs["dim"]
    if dim != 0:
        raise RuntimeError("unbind(): only supported for NestedTensor on dim=0")

    inp = new_kwargs.pop("input")
    values = inp.values()
    offsets = inp.offsets()
    lengths = inp.lengths()

    if inp._ragged_idx != 1:
        raise RuntimeError(
            "unbind(): only supported for NestedTensor when jagged dimension is 1"
        )

    if lengths is None:
        return torch.split(values, offsets.diff().tolist())
    return [
        values[offsets[i] : (offsets[i] + lengths[i])] for i in range(lengths.shape[0])
    ]


@register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any")
def squeeze_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    values = inp._values

    new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), new_kwargs["dim"], "squeeze")
    return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt, dim: any")
def unsqueeze_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    values = inp._values

    # Account for collapsed jagged dim
    dim = new_kwargs["dim"]
    new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size) + 1, dim, "unsqueeze")
    return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any")
def cat_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    tensors = new_kwargs.pop("tensors")

    # Convert any non-nested to nested
    nested = [t for t in tensors if t.is_nested]
    assert len(nested) > 0
    first = nested[0]
    tensors = [t if t.is_nested else t.expand_as(first) for t in tensors]

    # Account for collapsed jagged dim
    dim = new_kwargs["dim"]
    new_kwargs["dim"] = _wrap_jagged_dim(len(first.shape), dim, "cat")

    return NestedTensor(
        func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
    )


@register_jagged_func(torch.ops.aten.matmul.default, "self: jt, other: any")
def matmul_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    if inp.is_nested and not other.is_nested:
        return NestedTensor(
            func(inp._values, other, **new_kwargs), **extract_kwargs(inp)
        )
    elif inp.is_nested and other.is_nested:
        # BMM with equivalent ragged dims between the two inputs
        if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size):
            return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp))

    raise RuntimeError(
        f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}"
    )


@register_jagged_func(

    torch.ops.aten.expand.default, "self: jt, size: any, implicit: any?"

)
def expand_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    size = new_kwargs["size"]

    assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit"))
    if not raggedness_matches(inp, size):
        raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}")

    expand_arg = [-1, *size[2:]]
    return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt")
def expand_as_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    return NestedTensor(func(inp, other._values), **extract_kwargs(other))


@register_jagged_func(torch.ops.aten.where.self, "condition: jt, self: jt, other: jt")
def where_self(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    condition = new_kwargs.pop("condition")
    inp = new_kwargs.pop("input")
    other = new_kwargs.pop("other")

    assert condition._size == other._size == inp._size

    return NestedTensor(
        func(condition._values, inp._values, other._values, **new_kwargs),
        **extract_kwargs(condition),
    )


@register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?")
def _pin_memory_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?")
def is_pinned_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return func(inp._values, **new_kwargs)


@register_jagged_func(

    torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all"

)
def is_same_size_default(func, *args, **kwargs):
    return args[0]._size == args[1]._size


@register_jagged_func(

    torch.ops.aten.sum.dim_IntList, "self: jt, dim: any?, keepdim: any?, dtype: any?"

)
def sum_dim_IntList(func, *args, **kwargs):
    # sum_dim_IntList can produce a NT or a T depending on whether the ragged dims
    # are reduced away.
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    inp = new_kwargs.pop("input")
    assert inp._ragged_idx == 1
    new_kwargs["dim"], ragged_reduced_away = _wrap_jagged_dims(
        inp.dim(), new_kwargs["dim"], "sum"
    )

    if not ragged_reduced_away:
        return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
    else:
        # Don't wrap because we reduced away the raggedness
        out = func(inp._values, **new_kwargs)
        if new_kwargs["keepdim"]:
            out = out.unsqueeze(0)
        return out


@register_jagged_func(

    torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any"

)
def transpose_int(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    from torch._prims_common import canonicalize_dims

    inp = new_kwargs.pop("input")
    dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"]))

    if inp._lengths is not None:
        raise ValueError(
            "transpose(): not supported on jagged layout nested tensor with holes"
        )

    # To support the SDPA API, inputs need to have the ragged idx transposed to dim 2
    # instead of 1, although the internal Flash and mem-effn implementations will
    # use the inputs with raggedness in dim 1.
    if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx:
        if dim0 == 0 or dim1 == 0:
            raise ValueError(
                "Transpose is not supported on the batch dimension for jagged NT"
            )
        if dim0 == inp._ragged_idx:
            to_dim = dim1
        else:
            to_dim = dim0
        inp_kwargs = extract_kwargs(inp)
        inp_kwargs["_ragged_idx"] = to_dim
        return NestedTensor(
            inp.values().transpose(
                _outer_to_inner_dim(len(inp._size), dim0),
                _outer_to_inner_dim(len(inp._size), dim1),
            ),
            **inp_kwargs,
        )

    new_kwargs["dim0"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim0"], "transpose")
    new_kwargs["dim1"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim1"], "transpose")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(

    [torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default],

    "self: jt_all, size: any",

)
def view_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    size = new_kwargs.pop("size")

    if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size):
        raise RuntimeError(
            f"view(): does not support ragged_idx != 1 except when inp._size == size. "
            f"inp._size is ({inp._size}) and size is ({size})."
        )

    # Ensure specified size still includes batch and ragged dims
    if len(size) < 3 or not raggedness_matches(inp, size):
        raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}")

    # outer size: the size of the NT, e.g. [3, j0, 10]
    # inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8])
    # this function gets inner_size[inner_idx] for a given inner_idx.
    #
    # example: for outer size [a, b, c, j0, d, e, f]
    #                         assume that j0 is ragged, other are concrete integers
    #                         and ragged_idx=3
    # inner size will be      [b, c, inp._values.size(ragged_idx), d, e, f]
    # therefore:
    #    inner_size[0] = outer_size[1]
    #    inner_size[1] = outer_size[2]
    #    inner_size[0] = inp._values.size(ragged_idx - 1)
    #    inner_size[3] = outer_size[4]
    #    inner_size[4] = outer_size[5]
    def get_inner_size(inner_idx):
        nonlocal inp, size
        if inner_idx == inp._ragged_idx - 1:
            return inp._values.size(inner_idx)
        else:
            return size[inner_idx + 1]

    inner_size = [get_inner_size(i) for i in range(len(size) - 1)]

    return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp))


@register_jagged_func(

    torch.ops.aten.native_layer_norm.default,

    "input: jt, normalized_shape: any, weight: any?, bias: any?, eps: any",

)
def native_layer_norm_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    normalized_shape = new_kwargs["normalized_shape"]

    # Ensure we're not trying to normalize over the ragged dim
    if inp.dim() < 3 or (inp.dim() - len(normalized_shape)) < 2:
        raise RuntimeError(
            "layer_norm(): normalizing over ragged dim not supported for nested tensors"
        )

    output, mean, std = func(inp._values, **new_kwargs)
    return (NestedTensor(output, **extract_kwargs(inp)), mean, std)


@register_jagged_func(

    torch.ops.aten.native_layer_norm_backward.default,

    "grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any",

)
def native_layer_norm_backward_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    grad_out = new_kwargs.pop("grad_out")
    inp = new_kwargs.pop("input")
    d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs)
    if d_input is None:
        return (None, d_gamma, d_beta)

    return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta)


@register_jagged_func(torch.ops.aten.select.int, "self: jt, dim: any, index: any")
def select_int(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "select")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(

    torch.ops.aten.slice.Tensor,

    "self: jt, dim: any?, start: any?, end: any?, step: any?",

)
def slice_tensor(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "slice")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(

    torch.ops.aten.convolution.default,

    "input: jt, weight: t, bias: t?, stride: any, padding: any, "

    "dilation: any, transposed: any, output_padding: any, groups: any",

)
def convolution_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(

    torch.ops.aten.mean.dim, "self: jt, dim: any?, keepdim: any, dtype: any?"

)
def mean_dim(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    # NB: mean expects dim as a single item list of ints for some reason
    new_kwargs["dim"] = [_wrap_jagged_dim(inp.dim(), new_kwargs["dim"][0], "mean")]

    return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))


@register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any")
def stack_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # guaranteed this is non-empty if we got here
    tensors = new_kwargs.pop("tensors")
    for t in tensors:
        if not isinstance(t, NestedTensor):
            raise RuntimeError("stack(): expected all nested tensors inputs")

        if t.dim() != tensors[0].dim():
            raise RuntimeError(
                "stack(): expected all nested tensors to have the same dim"
            )

        if not raggedness_matches(t, tensors[0].shape):
            raise RuntimeError(
                "stack(): expected all nested tensors to have the same nested structure"
            )

    new_kwargs["dim"] = _wrap_jagged_dim(
        tensors[0].dim() + 1, new_kwargs["dim"], "stack"
    )

    return NestedTensor(
        func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
    )


@register_jagged_func(

    torch.ops.aten.embedding.default,

    "weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?",

)
def embedding_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    # guaranteed this is non-empty if we got here
    indices = new_kwargs.pop("indices")
    weight = new_kwargs.pop("weight")

    return NestedTensor(
        func(weight, indices._values, **new_kwargs), **extract_kwargs(indices)
    )


@register_jagged_func(

    [

        torch.ops.aten.values.default,

        torch.ops.aten._nested_get_values.default,

    ],

    "self: jt_all",

)
def values_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")

    # TODO: Handle inference mode properly.
    # See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292
    return inp._values.detach()


@register_jagged_func(

    torch.ops.aten._nested_view_from_jagged.default,

    "values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?",

)
def _nested_view_from_jagged_default(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    values, offsets, lengths = (
        new_kwargs["input"],
        new_kwargs["offsets"],
        new_kwargs["lengths"],
    )
    ragged_idx = new_kwargs["ragged_idx"]

    return NestedTensor(values, offsets, lengths=lengths, _ragged_idx=ragged_idx)


@register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all")
def _nested_get_offsets(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._offsets


@register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all")
def _nested_get_lengths(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._lengths


@register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all")
def _nested_get_ragged_idx(func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    inp = new_kwargs.pop("input")
    return inp._ragged_idx


# Make the dummy available on the C++ side.
@register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any")
def _nested_get_jagged_dummy(func, *args, **kwargs):
    from torch.nested._internal.nested_tensor import _nt_view_dummy

    return _nt_view_dummy


with torch.library._scoped_library("aten", "IMPL") as aten:
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU")
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA")
    aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")