File size: 116,701 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
import sys

import torch
from torch._C import _add_docstr, _linalg  # type: ignore[attr-defined]

LinAlgError = torch._C._LinAlgError  # type: ignore[attr-defined]

Tensor = torch.Tensor

common_notes = {
    "experimental_warning": """This function is "experimental" and it may change in a future PyTorch release.""",
    "sync_note": "When inputs are on a CUDA device, this function synchronizes that device with the CPU.",
    "sync_note_ex": r"When the inputs are on a CUDA device, this function synchronizes only when :attr:`check_errors`\ `= True`.",
    "sync_note_has_ex": ("When inputs are on a CUDA device, this function synchronizes that device with the CPU. "
                         "For a version of this function that does not synchronize, see :func:`{}`.")
}


# Note: This not only adds doc strings for functions in the linalg namespace, but
# also connects the torch.linalg Python namespace to the torch._C._linalg builtins.

cross = _add_docstr(_linalg.linalg_cross, r"""

linalg.cross(input, other, *, dim=-1, out=None) -> Tensor





Computes the cross product of two 3-dimensional vectors.



Supports input of float, double, cfloat and cdouble dtypes. Also supports batches

of vectors, for which it computes the product along the dimension :attr:`dim`.

It broadcasts over the batch dimensions.



Args:

    input (Tensor): the first input tensor.

    other (Tensor): the second input tensor.

    dim  (int, optional): the dimension along which to take the cross-product. Default: `-1`.



Keyword args:

    out (Tensor, optional): the output tensor. Ignored if `None`. Default: `None`.



Example:

    >>> a = torch.randn(4, 3)

    >>> a

    tensor([[-0.3956,  1.1455,  1.6895],

            [-0.5849,  1.3672,  0.3599],

            [-1.1626,  0.7180, -0.0521],

            [-0.1339,  0.9902, -2.0225]])

    >>> b = torch.randn(4, 3)

    >>> b

    tensor([[-0.0257, -1.4725, -1.2251],

            [-1.1479, -0.7005, -1.9757],

            [-1.3904,  0.3726, -1.1836],

            [-0.9688, -0.7153,  0.2159]])

    >>> torch.linalg.cross(a, b)

    tensor([[ 1.0844, -0.5281,  0.6120],

            [-2.4490, -1.5687,  1.9792],

            [-0.8304, -1.3037,  0.5650],

            [-1.2329,  1.9883,  1.0551]])

    >>> a = torch.randn(1, 3)  # a is broadcast to match shape of b

    >>> a

    tensor([[-0.9941, -0.5132,  0.5681]])

    >>> torch.linalg.cross(a, b)

    tensor([[ 1.4653, -1.2325,  1.4507],

            [ 1.4119, -2.6163,  0.1073],

            [ 0.3957, -1.9666, -1.0840],

            [ 0.2956, -0.3357,  0.2139]])

""")

cholesky = _add_docstr(_linalg.linalg_cholesky, r"""

linalg.cholesky(A, *, upper=False, out=None) -> Tensor



Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **Cholesky decomposition** of a complex Hermitian or real symmetric positive-definite matrix

:math:`A \in \mathbb{K}^{n \times n}` is defined as



.. math::



    A = LL^{\text{H}}\mathrlap{\qquad L \in \mathbb{K}^{n \times n}}



where :math:`L` is a lower triangular matrix with real positive diagonal (even in the complex case) and

:math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, and the transpose when :math:`L` is real-valued.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



""" + fr"""

.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.cholesky_ex")}

""" + r"""



.. seealso::



        :func:`torch.linalg.cholesky_ex` for a version of this operation that

        skips the (slow) error checking by default and instead returns the debug

        information. This makes it a faster way to check if a matrix is

        positive-definite.



        :func:`torch.linalg.eigh` for a different decomposition of a Hermitian matrix.

        The eigenvalue decomposition gives more information about the matrix but it

        slower to compute than the Cholesky decomposition.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of symmetric or Hermitian positive-definite matrices.



Keyword args:

    upper (bool, optional): whether to return an upper triangular matrix.

        The tensor returned with upper=True is the conjugate transpose of the tensor

        returned with upper=False.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if the :attr:`A` matrix or any matrix in a batched :attr:`A` is not Hermitian

                  (resp. symmetric) positive-definite. If :attr:`A` is a batch of matrices,

                  the error message will include the batch index of the first matrix that fails

                  to meet this condition.



Examples::



    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> A = A @ A.T.conj() + torch.eye(2) # creates a Hermitian positive-definite matrix

    >>> A

    tensor([[2.5266+0.0000j, 1.9586-2.0626j],

            [1.9586+2.0626j, 9.4160+0.0000j]], dtype=torch.complex128)

    >>> L = torch.linalg.cholesky(A)

    >>> L

    tensor([[1.5895+0.0000j, 0.0000+0.0000j],

            [1.2322+1.2976j, 2.4928+0.0000j]], dtype=torch.complex128)

    >>> torch.dist(L @ L.T.conj(), A)

    tensor(4.4692e-16, dtype=torch.float64)



    >>> A = torch.randn(3, 2, 2, dtype=torch.float64)

    >>> A = A @ A.mT + torch.eye(2)  # batch of symmetric positive-definite matrices

    >>> L = torch.linalg.cholesky(A)

    >>> torch.dist(L @ L.mT, A)

    tensor(5.8747e-16, dtype=torch.float64)

""")

cholesky_ex = _add_docstr(_linalg.linalg_cholesky_ex, r"""

linalg.cholesky_ex(A, *, upper=False, check_errors=False, out=None) -> (Tensor, Tensor)



Computes the Cholesky decomposition of a complex Hermitian or real

symmetric positive-definite matrix.



This function skips the (slow) error checking and error message construction

of :func:`torch.linalg.cholesky`, instead directly returning the LAPACK

error codes as part of a named tuple ``(L, info)``. This makes this function

a faster way to check if a matrix is positive-definite, and it provides an

opportunity to handle decomposition errors more gracefully or performantly

than :func:`torch.linalg.cholesky` does.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



If :attr:`A` is not a Hermitian positive-definite matrix, or if it's a batch of matrices

and one or more of them is not a Hermitian positive-definite matrix,

then ``info`` stores a positive integer for the corresponding matrix.

The positive integer indicates the order of the leading minor that is not positive-definite,

and the decomposition could not be completed.

``info`` filled with zeros indicates that the decomposition was successful.

If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown.



""" + fr"""

.. note:: {common_notes["sync_note_ex"]}



.. warning:: {common_notes["experimental_warning"]}

""" + r"""



.. seealso::

        :func:`torch.linalg.cholesky` is a NumPy compatible variant that always checks for errors.



Args:

    A (Tensor): the Hermitian `n \times n` matrix or the batch of such matrices of size

                    `(*, n, n)` where `*` is one or more batch dimensions.



Keyword args:

    upper (bool, optional): whether to return an upper triangular matrix.

        The tensor returned with upper=True is the conjugate transpose of the tensor

        returned with upper=False.

    check_errors (bool, optional): controls whether to check the content of ``infos``. Default: `False`.

    out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> A = A @ A.t().conj()  # creates a Hermitian positive-definite matrix

    >>> L, info = torch.linalg.cholesky_ex(A)

    >>> A

    tensor([[ 2.3792+0.0000j, -0.9023+0.9831j],

            [-0.9023-0.9831j,  0.8757+0.0000j]], dtype=torch.complex128)

    >>> L

    tensor([[ 1.5425+0.0000j,  0.0000+0.0000j],

            [-0.5850-0.6374j,  0.3567+0.0000j]], dtype=torch.complex128)

    >>> info

    tensor(0, dtype=torch.int32)



""")

inv = _add_docstr(_linalg.linalg_inv, r"""

linalg.inv(A, *, out=None) -> Tensor



Computes the inverse of a square matrix if it exists.

Throws a `RuntimeError` if the matrix is not invertible.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

for a matrix :math:`A \in \mathbb{K}^{n \times n}`,

its **inverse matrix** :math:`A^{-1} \in \mathbb{K}^{n \times n}` (if it exists) is defined as



.. math::



    A^{-1}A = AA^{-1} = \mathrm{I}_n



where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.



The inverse matrix exists if and only if :math:`A` is `invertible`_. In this case,

the inverse is unique.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices

then the output has the same batch dimensions.



""" + fr"""

.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.inv_ex")}

""" + r"""



.. note::

    Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by

    the inverse, as::



        linalg.solve(A, B) == linalg.inv(A) @ B  # When B is a matrix



    It is always preferred to use :func:`~solve` when possible, as it is faster and more

    numerically stable than computing the inverse explicitly.



.. seealso::



        :func:`torch.linalg.pinv` computes the pseudoinverse (Moore-Penrose inverse) of matrices

        of any shape.



        :func:`torch.linalg.solve` computes :attr:`A`\ `.inv() @ \ `:attr:`B` with a

        numerically stable algorithm.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of invertible matrices.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if the matrix :attr:`A` or any matrix in the batch of matrices :attr:`A` is not invertible.



Examples::



    >>> A = torch.randn(4, 4)

    >>> Ainv = torch.linalg.inv(A)

    >>> torch.dist(A @ Ainv, torch.eye(4))

    tensor(1.1921e-07)



    >>> A = torch.randn(2, 3, 4, 4)  # Batch of matrices

    >>> Ainv = torch.linalg.inv(A)

    >>> torch.dist(A @ Ainv, torch.eye(4))

    tensor(1.9073e-06)



    >>> A = torch.randn(4, 4, dtype=torch.complex128)  # Complex matrix

    >>> Ainv = torch.linalg.inv(A)

    >>> torch.dist(A @ Ainv, torch.eye(4))

    tensor(7.5107e-16, dtype=torch.float64)



.. _invertible:

    https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

""")

solve_ex = _add_docstr(_linalg.linalg_solve_ex, r"""

linalg.solve_ex(A, B, *, left=True, check_errors=False, out=None) -> (Tensor, Tensor)



A version of :func:`~solve` that does not perform error checks unless :attr:`check_errors`\ `= True`.

It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_.



""" + fr"""

.. note:: {common_notes["sync_note_ex"]}



.. warning:: {common_notes["experimental_warning"]}

""" + r"""



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.



Keyword args:

    left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.

    check_errors (bool, optional): controls whether to check the content of ``infos`` and raise

                                   an error if it is non-zero. Default: `False`.

    out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(result, info)`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> Ainv, info = torch.linalg.solve_ex(A)

    >>> torch.dist(torch.linalg.inv(A), Ainv)

    tensor(0.)

    >>> info

    tensor(0, dtype=torch.int32)



.. _LAPACK's getrf:

    https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html

""")

inv_ex = _add_docstr(_linalg.linalg_inv_ex, r"""

linalg.inv_ex(A, *, check_errors=False, out=None) -> (Tensor, Tensor)



Computes the inverse of a square matrix if it is invertible.



Returns a namedtuple ``(inverse, info)``. ``inverse`` contains the result of

inverting :attr:`A` and ``info`` stores the LAPACK error codes.



If :attr:`A` is not an invertible matrix, or if it's a batch of matrices

and one or more of them is not an invertible matrix,

then ``info`` stores a positive integer for the corresponding matrix.

The positive integer indicates the diagonal element of the LU decomposition of

the input matrix that is exactly zero.

``info`` filled with zeros indicates that the inversion was successful.

If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



""" + fr"""

.. note:: {common_notes["sync_note_ex"]}



.. warning:: {common_notes["experimental_warning"]}

""" + r"""



.. seealso::



        :func:`torch.linalg.inv` is a NumPy compatible variant that always checks for errors.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                    consisting of square matrices.

    check_errors (bool, optional): controls whether to check the content of ``info``. Default: `False`.



Keyword args:

    out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> Ainv, info = torch.linalg.inv_ex(A)

    >>> torch.dist(torch.linalg.inv(A), Ainv)

    tensor(0.)

    >>> info

    tensor(0, dtype=torch.int32)



""")

det = _add_docstr(_linalg.linalg_det, r"""

linalg.det(A, *, out=None) -> Tensor



Computes the determinant of a square matrix.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



.. seealso::



        :func:`torch.linalg.slogdet` computes the sign and natural logarithm of the absolute

        value of the determinant of square matrices.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> torch.linalg.det(A)

    tensor(0.0934)



    >>> A = torch.randn(3, 2, 2)

    >>> torch.linalg.det(A)

    tensor([1.1990, 0.4099, 0.7386])

""")

slogdet = _add_docstr(_linalg.linalg_slogdet, r"""

linalg.slogdet(A, *, out=None) -> (Tensor, Tensor)



Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix.



For complex :attr:`A`, it returns the sign and the natural logarithm of the modulus of the

determinant, that is, a logarithmic polar decomposition of the determinant.



The determinant can be recovered as `sign * exp(logabsdet)`.

When a matrix has a determinant of zero, it returns `(0, -inf)`.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



.. seealso::



        :func:`torch.linalg.det` computes the determinant of square matrices.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.



Keyword args:

    out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(sign, logabsdet)`.



    `sign` will have the same dtype as :attr:`A`.



    `logabsdet` will always be real-valued, even when :attr:`A` is complex.



Examples::



    >>> A = torch.randn(3, 3)

    >>> A

    tensor([[ 0.0032, -0.2239, -1.1219],

            [-0.6690,  0.1161,  0.4053],

            [-1.6218, -0.9273, -0.0082]])

    >>> torch.linalg.det(A)

    tensor(-0.7576)

    >>> torch.logdet(A)

    tensor(nan)

    >>> torch.linalg.slogdet(A)

    torch.return_types.linalg_slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))

""")

eig = _add_docstr(_linalg.linalg_eig, r"""

linalg.eig(A, *, out=None) -> (Tensor, Tensor)



Computes the eigenvalue decomposition of a square matrix if it exists.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **eigenvalue decomposition** of a square matrix

:math:`A \in \mathbb{K}^{n \times n}` (if it exists) is defined as



.. math::



    A = V \operatorname{diag}(\Lambda) V^{-1}\mathrlap{\qquad V \in \mathbb{C}^{n \times n}, \Lambda \in \mathbb{C}^n}



This decomposition exists if and only if :math:`A` is `diagonalizable`_.

This is the case when all its eigenvalues are different.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



.. note:: The eigenvalues and eigenvectors of a real matrix may be complex.



""" + fr"""

.. note:: {common_notes["sync_note"]}

""" + r"""



.. warning:: This function assumes that :attr:`A` is `diagonalizable`_ (for example, when all the

             eigenvalues are different). If it is not diagonalizable, the returned

             eigenvalues will be correct but :math:`A \neq V \operatorname{diag}(\Lambda)V^{-1}`.



.. warning:: The returned eigenvectors are normalized to have norm `1`.

             Even then, the eigenvectors of a matrix are not unique, nor are they continuous with respect to

             :attr:`A`. Due to this lack of uniqueness, different hardware and software may compute

             different eigenvectors.



             This non-uniqueness is caused by the fact that multiplying an eigenvector by

             by :math:`e^{i \phi}, \phi \in \mathbb{R}` produces another set of valid eigenvectors

             of the matrix.  For this reason, the loss function shall not depend on the phase of the

             eigenvectors, as this quantity is not well-defined.

             This is checked when computing the gradients of this function. As such,

             when inputs are on a CUDA device, the computation of the gradients

             of this function synchronizes that device with the CPU.





.. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when

             :attr:`A` has distinct eigenvalues.

             Furthermore, if the distance between any two eigenvalues is close to zero,

             the gradient will be numerically unstable, as it depends on the eigenvalues

             :math:`\lambda_i` through the computation of

             :math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`.



.. seealso::



        :func:`torch.linalg.eigvals` computes only the eigenvalues.

        Unlike :func:`torch.linalg.eig`, the gradients of :func:`~eigvals` are always

        numerically stable.



        :func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition

        for Hermitian and symmetric matrices.



        :func:`torch.linalg.svd` for a function that computes another type of spectral

        decomposition that works on matrices of any shape.



        :func:`torch.linalg.qr` for another (much faster) decomposition that works on matrices of

        any shape.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of diagonalizable matrices.



Keyword args:

    out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`V` above.



    `eigenvalues` and `eigenvectors` will always be complex-valued, even when :attr:`A` is real. The eigenvectors

    will be given by the columns of `eigenvectors`.



Examples::



    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> A

    tensor([[ 0.9828+0.3889j, -0.4617+0.3010j],

            [ 0.1662-0.7435j, -0.6139+0.0562j]], dtype=torch.complex128)

    >>> L, V = torch.linalg.eig(A)

    >>> L

    tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128)

    >>> V

    tensor([[ 0.9218+0.0000j,  0.1882-0.2220j],

            [-0.0270-0.3867j,  0.9567+0.0000j]], dtype=torch.complex128)

    >>> torch.dist(V @ torch.diag(L) @ torch.linalg.inv(V), A)

    tensor(7.7119e-16, dtype=torch.float64)



    >>> A = torch.randn(3, 2, 2, dtype=torch.float64)

    >>> L, V = torch.linalg.eig(A)

    >>> torch.dist(V @ torch.diag_embed(L) @ torch.linalg.inv(V), A)

    tensor(3.2841e-16, dtype=torch.float64)



.. _diagonalizable:

    https://en.wikipedia.org/wiki/Diagonalizable_matrix#Definition

""")

eigvals = _add_docstr(_linalg.linalg_eigvals, r"""

linalg.eigvals(A, *, out=None) -> Tensor



Computes the eigenvalues of a square matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **eigenvalues** of a square matrix :math:`A \in \mathbb{K}^{n \times n}` are defined

as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by



.. math::



    p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{C}}



where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



.. note:: The eigenvalues of a real matrix may be complex, as the roots of a real polynomial may be complex.



          The eigenvalues of a matrix are always well-defined, even when the matrix is not diagonalizable.



""" + fr"""

.. note:: {common_notes["sync_note"]}

""" + r"""



.. seealso::



        :func:`torch.linalg.eig` computes the full eigenvalue decomposition.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Returns:

    A complex-valued tensor containing the eigenvalues even when :attr:`A` is real.



Examples::



    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> L = torch.linalg.eigvals(A)

    >>> L

    tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128)



    >>> torch.dist(L, torch.linalg.eig(A).eigenvalues)

    tensor(2.4576e-07)

""")

eigh = _add_docstr(_linalg.linalg_eigh, r"""

linalg.eigh(A, UPLO='L', *, out=None) -> (Tensor, Tensor)



Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **eigenvalue decomposition** of a complex Hermitian or real symmetric matrix

:math:`A \in \mathbb{K}^{n \times n}` is defined as



.. math::



    A = Q \operatorname{diag}(\Lambda) Q^{\text{H}}\mathrlap{\qquad Q \in \mathbb{K}^{n \times n}, \Lambda \in \mathbb{R}^n}



where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex, and the transpose when :math:`Q` is real-valued.

:math:`Q` is orthogonal in the real case and unitary in the complex case.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



:attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:



- If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation.

- If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used.



The eigenvalues are returned in ascending order.



""" + fr"""

.. note:: {common_notes["sync_note"]}

""" + r"""



.. note:: The eigenvalues of real symmetric or complex Hermitian matrices are always real.



.. warning:: The eigenvectors of a symmetric matrix are not unique, nor are they continuous with

             respect to :attr:`A`. Due to this lack of uniqueness, different hardware and

             software may compute different eigenvectors.



             This non-uniqueness is caused by the fact that multiplying an eigenvector by

             `-1` in the real case or by :math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex

             case produces another set of valid eigenvectors of the matrix.

             For this reason, the loss function shall not depend on the phase of the eigenvectors, as

             this quantity is not well-defined.

             This is checked for complex inputs when computing the gradients of this function. As such,

             when inputs are complex and are on a CUDA device, the computation of the gradients

             of this function synchronizes that device with the CPU.



.. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when

             :attr:`A` has distinct eigenvalues.

             Furthermore, if the distance between any two eigenvalues is close to zero,

             the gradient will be numerically unstable, as it depends on the eigenvalues

             :math:`\lambda_i` through the computation of

             :math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`.



.. warning:: User may see pytorch crashes if running `eigh` on CUDA devices with CUDA versions before 12.1 update 1

             with large ill-conditioned matrices as inputs.

             Refer to :ref:`Linear Algebra Numerical Stability<Linear Algebra Stability>` for more details.

             If this is the case, user may (1) tune their matrix inputs to be less ill-conditioned,

             or (2) use :func:`torch.backends.cuda.preferred_linalg_library` to

             try other supported backends.



.. seealso::



        :func:`torch.linalg.eigvalsh` computes only the eigenvalues of a Hermitian matrix.

        Unlike :func:`torch.linalg.eigh`, the gradients of :func:`~eigvalsh` are always

        numerically stable.



        :func:`torch.linalg.cholesky` for a different decomposition of a Hermitian matrix.

        The Cholesky decomposition gives less information about the matrix but is much faster

        to compute than the eigenvalue decomposition.



        :func:`torch.linalg.eig` for a (slower) function that computes the eigenvalue decomposition

        of a not necessarily Hermitian square matrix.



        :func:`torch.linalg.svd` for a (slower) function that computes the more general SVD

        decomposition of matrices of any shape.



        :func:`torch.linalg.qr` for another (much faster) decomposition that works on general

        matrices.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of symmetric or Hermitian matrices.

    UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part

                               of :attr:`A` in the computations. Default: `'L'`.



Keyword args:

    out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`Q` above.



    `eigenvalues` will always be real-valued, even when :attr:`A` is complex.

    It will also be ordered in ascending order.



    `eigenvectors` will have the same dtype as :attr:`A` and will contain the eigenvectors as its columns.



Examples::

    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> A = A + A.T.conj()  # creates a Hermitian matrix

    >>> A

    tensor([[2.9228+0.0000j, 0.2029-0.0862j],

            [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)

    >>> L, Q = torch.linalg.eigh(A)

    >>> L

    tensor([0.3277, 2.9415], dtype=torch.float64)

    >>> Q

    tensor([[-0.0846+-0.0000j, -0.9964+0.0000j],

            [ 0.9170+0.3898j, -0.0779-0.0331j]], dtype=torch.complex128)

    >>> torch.dist(Q @ torch.diag(L.cdouble()) @ Q.T.conj(), A)

    tensor(6.1062e-16, dtype=torch.float64)



    >>> A = torch.randn(3, 2, 2, dtype=torch.float64)

    >>> A = A + A.mT  # creates a batch of symmetric matrices

    >>> L, Q = torch.linalg.eigh(A)

    >>> torch.dist(Q @ torch.diag_embed(L) @ Q.mH, A)

    tensor(1.5423e-15, dtype=torch.float64)

""")

eigvalsh = _add_docstr(_linalg.linalg_eigvalsh, r"""

linalg.eigvalsh(A, UPLO='L', *, out=None) -> Tensor



Computes the eigenvalues of a complex Hermitian or real symmetric matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **eigenvalues** of a complex Hermitian or real symmetric  matrix :math:`A \in \mathbb{K}^{n \times n}`

are defined as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by



.. math::



    p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{R}}



where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.

The eigenvalues of a real symmetric or complex Hermitian matrix are always real.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



The eigenvalues are returned in ascending order.



:attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:



- If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation.

- If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used.



""" + fr"""

.. note:: {common_notes["sync_note"]}

""" + r"""



.. seealso::



        :func:`torch.linalg.eigh` computes the full eigenvalue decomposition.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of symmetric or Hermitian matrices.

    UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part

                               of :attr:`A` in the computations. Default: `'L'`.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Returns:

    A real-valued tensor containing the eigenvalues even when :attr:`A` is complex.

    The eigenvalues are returned in ascending order.



Examples::



    >>> A = torch.randn(2, 2, dtype=torch.complex128)

    >>> A = A + A.T.conj()  # creates a Hermitian matrix

    >>> A

    tensor([[2.9228+0.0000j, 0.2029-0.0862j],

            [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)

    >>> torch.linalg.eigvalsh(A)

    tensor([0.3277, 2.9415], dtype=torch.float64)



    >>> A = torch.randn(3, 2, 2, dtype=torch.float64)

    >>> A = A + A.mT  # creates a batch of symmetric matrices

    >>> torch.linalg.eigvalsh(A)

    tensor([[ 2.5797,  3.4629],

            [-4.1605,  1.3780],

            [-3.1113,  2.7381]], dtype=torch.float64)

""")

householder_product = _add_docstr(_linalg.linalg_householder_product, r"""

householder_product(A, tau, *, out=None) -> Tensor



Computes the first `n` columns of a product of Householder matrices.



Let :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, and

let :math:`V \in \mathbb{K}^{m \times n}` be a matrix with columns :math:`v_i \in \mathbb{K}^m`

for :math:`i=1,\ldots,m` with :math:`m \geq n`. Denote by :math:`w_i` the vector resulting from

zeroing out the first :math:`i-1` components of :math:`v_i` and setting to `1` the :math:`i`-th.

For a vector :math:`\tau \in \mathbb{K}^k` with :math:`k \leq n`, this function computes the

first :math:`n` columns of the matrix



.. math::



    H_1H_2 ... H_k \qquad\text{with}\qquad H_i = \mathrm{I}_m - \tau_i w_i w_i^{\text{H}}



where :math:`\mathrm{I}_m` is the `m`-dimensional identity matrix and :math:`w^{\text{H}}` is the

conjugate transpose when :math:`w` is complex, and the transpose when :math:`w` is real-valued.

The output matrix is the same size as the input matrix :attr:`A`.



See `Representation of Orthogonal or Unitary Matrices`_ for further details.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



.. seealso::



        :func:`torch.geqrf` can be used together with this function to form the `Q` from the

        :func:`~qr` decomposition.



        :func:`torch.ormqr` is a related function that computes the matrix multiplication

        of a product of Householder matrices with another matrix.

        However, that function is not supported by autograd.



.. warning::

    Gradient computations are only well-defined if :math:`tau_i \neq \frac{1}{||v_i||^2}`.

    If this condition is not met, no error will be thrown, but the gradient produced may contain `NaN`.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    tau (Tensor): tensor of shape `(*, k)` where `*` is zero or more batch dimensions.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if :attr:`A` doesn't satisfy the requirement `m >= n`,

                  or :attr:`tau` doesn't satisfy the requirement `n >= k`.



Examples::



    >>> A = torch.randn(2, 2)

    >>> h, tau = torch.geqrf(A)

    >>> Q = torch.linalg.householder_product(h, tau)

    >>> torch.dist(Q, torch.linalg.qr(A).Q)

    tensor(0.)



    >>> h = torch.randn(3, 2, 2, dtype=torch.complex128)

    >>> tau = torch.randn(3, 1, dtype=torch.complex128)

    >>> Q = torch.linalg.householder_product(h, tau)

    >>> Q

    tensor([[[ 1.8034+0.4184j,  0.2588-1.0174j],

            [-0.6853+0.7953j,  2.0790+0.5620j]],



            [[ 1.4581+1.6989j, -1.5360+0.1193j],

            [ 1.3877-0.6691j,  1.3512+1.3024j]],



            [[ 1.4766+0.5783j,  0.0361+0.6587j],

            [ 0.6396+0.1612j,  1.3693+0.4481j]]], dtype=torch.complex128)



.. _Representation of Orthogonal or Unitary Matrices:

    https://www.netlib.org/lapack/lug/node128.html

""")

ldl_factor = _add_docstr(_linalg.linalg_ldl_factor, r"""

linalg.ldl_factor(A, *, hermitian=False, out=None) -> (Tensor, Tensor)



Computes a compact representation of the LDL factorization of a Hermitian or symmetric (possibly indefinite) matrix.



When :attr:`A` is complex valued it can be Hermitian (:attr:`hermitian`\ `= True`)

or symmetric (:attr:`hermitian`\ `= False`).



The factorization is of the form the form :math:`A = L D L^T`.

If :attr:`hermitian` is `True` then transpose operation is the conjugate transpose.



:math:`L` (or :math:`U`) and :math:`D` are stored in compact form in ``LD``.

They follow the format specified by `LAPACK's sytrf`_ function.

These tensors may be used in :func:`torch.linalg.ldl_solve` to solve linear systems.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



""" + fr"""

.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.ldl_factor_ex")}

""" + r"""



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of symmetric or Hermitian matrices.



Keyword args:

    hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric.

                                For real-valued matrices, this switch has no effect. Default: `False`.

    out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(LD, pivots)`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> A = A @ A.mT # make symmetric

    >>> A

    tensor([[7.2079, 4.2414, 1.9428],

            [4.2414, 3.4554, 0.3264],

            [1.9428, 0.3264, 1.3823]])

    >>> LD, pivots = torch.linalg.ldl_factor(A)

    >>> LD

    tensor([[ 7.2079,  0.0000,  0.0000],

            [ 0.5884,  0.9595,  0.0000],

            [ 0.2695, -0.8513,  0.1633]])

    >>> pivots

    tensor([1, 2, 3], dtype=torch.int32)



.. _LAPACK's sytrf:

    https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html

""")

ldl_factor_ex = _add_docstr(_linalg.linalg_ldl_factor_ex, r"""

linalg.ldl_factor_ex(A, *, hermitian=False, check_errors=False, out=None) -> (Tensor, Tensor, Tensor)



This is a version of :func:`~ldl_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`.

It also returns the :attr:`info` tensor returned by `LAPACK's sytrf`_.

``info`` stores integer error codes from the backend library.

A positive integer indicates the diagonal element of :math:`D` that is zero.

Division by 0 will occur if the result is used for solving a system of linear equations.

``info`` filled with zeros indicates that the factorization was successful.

If ``check_errors=True`` and ``info`` contains positive integers, then a `RuntimeError` is thrown.



""" + fr"""

.. note:: {common_notes["sync_note_ex"]}



.. warning:: {common_notes["experimental_warning"]}

""" + r"""



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions

                consisting of symmetric or Hermitian matrices.



Keyword args:

    hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric.

                                For real-valued matrices, this switch has no effect. Default: `False`.

    check_errors (bool, optional): controls whether to check the content of ``info`` and raise

                                   an error if it is non-zero. Default: `False`.

    out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(LD, pivots, info)`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> A = A @ A.mT # make symmetric

    >>> A

    tensor([[7.2079, 4.2414, 1.9428],

            [4.2414, 3.4554, 0.3264],

            [1.9428, 0.3264, 1.3823]])

    >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A)

    >>> LD

    tensor([[ 7.2079,  0.0000,  0.0000],

            [ 0.5884,  0.9595,  0.0000],

            [ 0.2695, -0.8513,  0.1633]])

    >>> pivots

    tensor([1, 2, 3], dtype=torch.int32)

    >>> info

    tensor(0, dtype=torch.int32)



.. _LAPACK's sytrf:

    https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html

""")

ldl_solve = _add_docstr(_linalg.linalg_ldl_solve, r"""

linalg.ldl_solve(LD, pivots, B, *, hermitian=False, out=None) -> Tensor



Computes the solution of a system of linear equations using the LDL factorization.



:attr:`LD` and :attr:`pivots` are the compact representation of the LDL factorization and

are expected to be computed by :func:`torch.linalg.ldl_factor_ex`.

:attr:`hermitian` argument to this function should be the same

as the corresponding arguments in :func:`torch.linalg.ldl_factor_ex`.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



""" + fr"""

.. warning:: {common_notes["experimental_warning"]}

""" + r"""



Args:

    LD (Tensor): the `n \times n` matrix or the batch of such matrices of size

                      `(*, n, n)` where `*` is one or more batch dimensions.

    pivots (Tensor): the pivots corresponding to the LDL factorization of :attr:`LD`.

    B (Tensor): right-hand side tensor of shape `(*, n, k)`.



Keyword args:

    hermitian (bool, optional): whether to consider the decomposed matrix to be Hermitian or symmetric.

                                For real-valued matrices, this switch has no effect. Default: `False`.

    out (tuple, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`.

                           Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(2, 3, 3)

    >>> A = A @ A.mT # make symmetric

    >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A)

    >>> B = torch.randn(2, 3, 4)

    >>> X = torch.linalg.ldl_solve(LD, pivots, B)

    >>> torch.linalg.norm(A @ X - B)

    >>> tensor(0.0001)

""")

lstsq = _add_docstr(_linalg.linalg_lstsq, r"""

torch.linalg.lstsq(A, B, rcond=None, *, driver=None) -> (Tensor, Tensor, Tensor, Tensor)



Computes a solution to the least squares problem of a system of linear equations.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **least squares problem** for a linear system :math:`AX = B` with

:math:`A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times k}` is defined as



.. math::



    \min_{X \in \mathbb{K}^{n \times k}} \|AX - B\|_F



where :math:`\|-\|_F` denotes the Frobenius norm.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



:attr:`driver` chooses the backend function that will be used.

For CPU inputs the valid values are `'gels'`, `'gelsy'`, `'gelsd`, `'gelss'`.

To choose the best driver on CPU consider:



- If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss.



  - For a general matrix: `'gelsy'` (QR with pivoting) (default)

  - If :attr:`A` is full-rank: `'gels'` (QR)



- If :attr:`A` is not well-conditioned.



  - `'gelsd'` (tridiagonal reduction and SVD)

  - But if you run into memory issues: `'gelss'` (full SVD).



For CUDA input, the only valid driver is `'gels'`, which assumes that :attr:`A` is full-rank.



See also the `full description of these drivers`_



:attr:`rcond` is used to determine the effective rank of the matrices in :attr:`A`

when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`).

In this case, if :math:`\sigma_i` are the singular values of `A` in decreasing order,

:math:`\sigma_i` will be rounded down to zero if :math:`\sigma_i \leq \text{rcond} \cdot \sigma_1`.

If :attr:`rcond`\ `= None` (default), :attr:`rcond` is set to the machine precision of the dtype of :attr:`A` times `max(m, n)`.



This function returns the solution to the problem and some extra information in a named tuple of

four tensors `(solution, residuals, rank, singular_values)`. For inputs :attr:`A`, :attr:`B`

of shape `(*, m, n)`, `(*, m, k)` respectively, it contains



- `solution`: the least squares solution. It has shape `(*, n, k)`.

- `residuals`: the squared residuals of the solutions, that is, :math:`\|AX - B\|_F^2`.

  It has shape equal to the batch dimensions of :attr:`A`.

  It is computed when `m > n` and every matrix in :attr:`A` is full-rank,

  otherwise, it is an empty tensor.

  If :attr:`A` is a batch of matrices and any matrix in the batch is not full rank,

  then an empty tensor is returned. This behavior may change in a future PyTorch release.

- `rank`: tensor of ranks of the matrices in :attr:`A`.

  It has shape equal to the batch dimensions of :attr:`A`.

  It is computed when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`),

  otherwise it is an empty tensor.

- `singular_values`: tensor of singular values of the matrices in :attr:`A`.

  It has shape `(*, min(m, n))`.

  It is computed when :attr:`driver` is one of (`'gelsd'`, `'gelss'`),

  otherwise it is an empty tensor.



.. note::

    This function computes `X = \ `:attr:`A`\ `.pinverse() @ \ `:attr:`B` in a faster and

    more numerically stable way than performing the computations separately.



.. warning::

    The default value of :attr:`rcond` may change in a future PyTorch release.

    It is therefore recommended to use a fixed value to avoid potential

    breaking changes.



Args:

    A (Tensor): lhs tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    B (Tensor): rhs tensor of shape `(*, m, k)` where `*` is zero or more batch dimensions.

    rcond (float, optional): used to determine the effective rank of :attr:`A`.

                             If :attr:`rcond`\ `= None`, :attr:`rcond` is set to the machine

                             precision of the dtype of :attr:`A` times `max(m, n)`. Default: `None`.



Keyword args:

    driver (str, optional): name of the LAPACK/MAGMA method to be used.

        If `None`, `'gelsy'` is used for CPU inputs and `'gels'` for CUDA inputs.

        Default: `None`.



Returns:

    A named tuple `(solution, residuals, rank, singular_values)`.



Examples::



    >>> A = torch.randn(1,3,3)

    >>> A

    tensor([[[-1.0838,  0.0225,  0.2275],

         [ 0.2438,  0.3844,  0.5499],

         [ 0.1175, -0.9102,  2.0870]]])

    >>> B = torch.randn(2,3,3)

    >>> B

    tensor([[[-0.6772,  0.7758,  0.5109],

         [-1.4382,  1.3769,  1.1818],

         [-0.3450,  0.0806,  0.3967]],

        [[-1.3994, -0.1521, -0.1473],

         [ 1.9194,  1.0458,  0.6705],

         [-1.1802, -0.9796,  1.4086]]])

    >>> X = torch.linalg.lstsq(A, B).solution # A is broadcasted to shape (2, 3, 3)

    >>> torch.dist(X, torch.linalg.pinv(A) @ B)

    tensor(1.5152e-06)



    >>> S = torch.linalg.lstsq(A, B, driver='gelsd').singular_values

    >>> torch.dist(S, torch.linalg.svdvals(A))

    tensor(2.3842e-07)



    >>> A[:, 0].zero_()  # Decrease the rank of A

    >>> rank = torch.linalg.lstsq(A, B).rank

    >>> rank

    tensor([2])



.. _condition number:

    https://pytorch.org/docs/master/linalg.html#torch.linalg.cond

.. _full description of these drivers:

    https://www.netlib.org/lapack/lug/node27.html

""")

matrix_power = _add_docstr(_linalg.linalg_matrix_power, r"""

matrix_power(A, n, *, out=None) -> Tensor



Computes the `n`-th power of a square matrix for an integer `n`.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



If :attr:`n`\ `= 0`, it returns the identity matrix (or batch) of the same shape

as :attr:`A`. If :attr:`n` is negative, it returns the inverse of each matrix

(if invertible) raised to the power of `abs(n)`.



.. note::

    Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by

    a negative power as, if :attr:`n`\ `> 0`::



        torch.linalg.solve(matrix_power(A, n), B) == matrix_power(A, -n)  @ B



    It is always preferred to use :func:`~solve` when possible, as it is faster and more

    numerically stable than computing :math:`A^{-n}` explicitly.



.. seealso::



        :func:`torch.linalg.solve` computes :attr:`A`\ `.inverse() @ \ `:attr:`B` with a

        numerically stable algorithm.



Args:

    A (Tensor): tensor of shape `(*, m, m)` where `*` is zero or more batch dimensions.

    n (int): the exponent.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if :attr:`n`\ `< 0` and the matrix :attr:`A` or any matrix in the

                  batch of matrices :attr:`A` is not invertible.



Examples::



    >>> A = torch.randn(3, 3)

    >>> torch.linalg.matrix_power(A, 0)

    tensor([[1., 0., 0.],

            [0., 1., 0.],

            [0., 0., 1.]])

    >>> torch.linalg.matrix_power(A, 3)

    tensor([[ 1.0756,  0.4980,  0.0100],

            [-1.6617,  1.4994, -1.9980],

            [-0.4509,  0.2731,  0.8001]])

    >>> torch.linalg.matrix_power(A.expand(2, -1, -1), -2)

    tensor([[[ 0.2640,  0.4571, -0.5511],

            [-1.0163,  0.3491, -1.5292],

            [-0.4899,  0.0822,  0.2773]],

            [[ 0.2640,  0.4571, -0.5511],

            [-1.0163,  0.3491, -1.5292],

            [-0.4899,  0.0822,  0.2773]]])

""")

matrix_rank = _add_docstr(_linalg.linalg_matrix_rank, r"""

linalg.matrix_rank(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor



Computes the numerical rank of a matrix.



The matrix rank is computed as the number of singular values

(or eigenvalues in absolute value when :attr:`hermitian`\ `= True`)

that are greater than :math:`\max(\text{atol}, \sigma_1 * \text{rtol})` threshold,

where :math:`\sigma_1` is the largest singular value (or eigenvalue).



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or

symmetric if real, but this is not checked internally. Instead, just the lower

triangular part of the matrix is used in the computations.



If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`,

the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon`

and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`).

If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then

:attr:`rtol` is set to zero.



If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that

of the singular values of :attr:`A` as returned by :func:`torch.linalg.svdvals`.



.. note::

    This function has NumPy compatible variant `linalg.matrix_rank(A, tol, hermitian=False)`.

    However, use of the positional argument :attr:`tol` is deprecated in favor of :attr:`atol` and :attr:`rtol`.



""" + fr"""

.. note:: The matrix rank is computed using a singular value decomposition

          :func:`torch.linalg.svdvals` if :attr:`hermitian`\ `= False` (default) and the eigenvalue

          decomposition :func:`torch.linalg.eigvalsh` when :attr:`hermitian`\ `= True`.

          {common_notes["sync_note"]}

""" + r"""



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    tol (float, Tensor, optional): [NumPy Compat] Alias for :attr:`atol`. Default: `None`.



Keyword args:

    atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero.

                                    Default: `None`.

    rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`.

                                    Default: `None`.

    hermitian(bool): indicates whether :attr:`A` is Hermitian if complex

                     or symmetric if real. Default: `False`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.eye(10)

    >>> torch.linalg.matrix_rank(A)

    tensor(10)

    >>> B = torch.eye(10)

    >>> B[0, 0] = 0

    >>> torch.linalg.matrix_rank(B)

    tensor(9)



    >>> A = torch.randn(4, 3, 2)

    >>> torch.linalg.matrix_rank(A)

    tensor([2, 2, 2, 2])



    >>> A = torch.randn(2, 4, 2, 3)

    >>> torch.linalg.matrix_rank(A)

    tensor([[2, 2, 2, 2],

            [2, 2, 2, 2]])



    >>> A = torch.randn(2, 4, 3, 3, dtype=torch.complex64)

    >>> torch.linalg.matrix_rank(A)

    tensor([[3, 3, 3, 3],

            [3, 3, 3, 3]])

    >>> torch.linalg.matrix_rank(A, hermitian=True)

    tensor([[3, 3, 3, 3],

            [3, 3, 3, 3]])

    >>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0)

    tensor([[3, 2, 2, 2],

            [1, 2, 1, 2]])

    >>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0, hermitian=True)

    tensor([[2, 2, 2, 1],

            [1, 2, 2, 2]])

""")

norm = _add_docstr(_linalg.linalg_norm, r"""

linalg.norm(A, ord=None, dim=None, keepdim=False, *, out=None, dtype=None) -> Tensor



Computes a vector or matrix norm.



Supports input of float, double, cfloat and cdouble dtypes.



Whether this function computes a vector or matrix norm is determined as follows:



- If :attr:`dim` is an `int`, the vector norm will be computed.

- If :attr:`dim` is a `2`-`tuple`, the matrix norm will be computed.

- If :attr:`dim`\ `= None` and :attr:`ord`\ `= None`,

  :attr:`A` will be flattened to 1D and the `2`-norm of the resulting vector will be computed.

- If :attr:`dim`\ `= None` and :attr:`ord` `!= None`, :attr:`A` must be 1D or 2D.



:attr:`ord` defines the norm that is computed. The following norms are supported:



======================     =========================  ========================================================

:attr:`ord`                norm for matrices          norm for vectors

======================     =========================  ========================================================

`None` (default)           Frobenius norm             `2`-norm (see below)

`'fro'`                    Frobenius norm             -- not supported --

`'nuc'`                    nuclear norm               -- not supported --

`inf`                      `max(sum(abs(x), dim=1))`  `max(abs(x))`

`-inf`                     `min(sum(abs(x), dim=1))`  `min(abs(x))`

`0`                        -- not supported --        `sum(x != 0)`

`1`                        `max(sum(abs(x), dim=0))`  as below

`-1`                       `min(sum(abs(x), dim=0))`  as below

`2`                        largest singular value     as below

`-2`                       smallest singular value    as below

other `int` or `float`     -- not supported --        `sum(abs(x)^{ord})^{(1 / ord)}`

======================     =========================  ========================================================



where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.



.. seealso::



        :func:`torch.linalg.vector_norm` computes a vector norm.



        :func:`torch.linalg.matrix_norm` computes a matrix norm.



        The above functions are often clearer and more flexible than using :func:`torch.linalg.norm`.

        For example, `torch.linalg.norm(A, ord=1, dim=(0, 1))` always

        computes a matrix norm, but with `torch.linalg.vector_norm(A, ord=1, dim=(0, 1))` it is possible

        to compute a vector norm over the two dimensions.



Args:

    A (Tensor): tensor of shape `(*, n)` or `(*, m, n)` where `*` is zero or more batch dimensions

    ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `None`

    dim (int, Tuple[int], optional): dimensions over which to compute

        the vector or matrix norm. See above for the behavior when :attr:`dim`\ `= None`.

        Default: `None`

    keepdim (bool, optional): If set to `True`, the reduced dimensions are retained

        in the result as dimensions with size one. Default: `False`



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.

    dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to

        :attr:`dtype` before performing the operation, and the returned tensor's type

        will be :attr:`dtype`. Default: `None`



Returns:

    A real-valued tensor, even when :attr:`A` is complex.



Examples::



    >>> from torch import linalg as LA

    >>> a = torch.arange(9, dtype=torch.float) - 4

    >>> a

    tensor([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    >>> B = a.reshape((3, 3))

    >>> B

    tensor([[-4., -3., -2.],

            [-1.,  0.,  1.],

            [ 2.,  3.,  4.]])



    >>> LA.norm(a)

    tensor(7.7460)

    >>> LA.norm(B)

    tensor(7.7460)

    >>> LA.norm(B, 'fro')

    tensor(7.7460)

    >>> LA.norm(a, float('inf'))

    tensor(4.)

    >>> LA.norm(B, float('inf'))

    tensor(9.)

    >>> LA.norm(a, -float('inf'))

    tensor(0.)

    >>> LA.norm(B, -float('inf'))

    tensor(2.)



    >>> LA.norm(a, 1)

    tensor(20.)

    >>> LA.norm(B, 1)

    tensor(7.)

    >>> LA.norm(a, -1)

    tensor(0.)

    >>> LA.norm(B, -1)

    tensor(6.)

    >>> LA.norm(a, 2)

    tensor(7.7460)

    >>> LA.norm(B, 2)

    tensor(7.3485)



    >>> LA.norm(a, -2)

    tensor(0.)

    >>> LA.norm(B.double(), -2)

    tensor(1.8570e-16, dtype=torch.float64)

    >>> LA.norm(a, 3)

    tensor(5.8480)

    >>> LA.norm(a, -3)

    tensor(0.)



Using the :attr:`dim` argument to compute vector norms::



    >>> c = torch.tensor([[1., 2., 3.],

    ...                   [-1, 1, 4]])

    >>> LA.norm(c, dim=0)

    tensor([1.4142, 2.2361, 5.0000])

    >>> LA.norm(c, dim=1)

    tensor([3.7417, 4.2426])

    >>> LA.norm(c, ord=1, dim=1)

    tensor([6., 6.])



Using the :attr:`dim` argument to compute matrix norms::



    >>> A = torch.arange(8, dtype=torch.float).reshape(2, 2, 2)

    >>> LA.norm(A, dim=(1,2))

    tensor([ 3.7417, 11.2250])

    >>> LA.norm(A[0, :, :]), LA.norm(A[1, :, :])

    (tensor(3.7417), tensor(11.2250))

""")

vector_norm = _add_docstr(_linalg.linalg_vector_norm, r"""

linalg.vector_norm(x, ord=2, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor



Computes a vector norm.



If :attr:`x` is complex valued, it computes the norm of :attr:`x`\ `.abs()`



Supports input of float, double, cfloat and cdouble dtypes.



This function does not necessarily treat multidimensional :attr:`x` as a batch of

vectors, instead:



- If :attr:`dim`\ `= None`, :attr:`x` will be flattened before the norm is computed.

- If :attr:`dim` is an `int` or a `tuple`, the norm will be computed over these dimensions

  and the other dimensions will be treated as batch dimensions.



This behavior is for consistency with :func:`torch.linalg.norm`.



:attr:`ord` defines the vector norm that is computed. The following norms are supported:



======================   ===============================

:attr:`ord`              vector norm

======================   ===============================

`2` (default)            `2`-norm (see below)

`inf`                    `max(abs(x))`

`-inf`                   `min(abs(x))`

`0`                      `sum(x != 0)`

other `int` or `float`   `sum(abs(x)^{ord})^{(1 / ord)}`

======================   ===============================



where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.



:attr:`dtype` may be used to perform the computation in a more precise dtype.

It is semantically equivalent to calling ``linalg.vector_norm(x.to(dtype))``

but it is faster in some cases.



.. seealso::



        :func:`torch.linalg.matrix_norm` computes a matrix norm.



Args:

    x (Tensor): tensor, flattened by default, but this behavior can be

        controlled using :attr:`dim`.

    ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `2`

    dim (int, Tuple[int], optional): dimensions over which to compute

        the norm. See above for the behavior when :attr:`dim`\ `= None`.

        Default: `None`

    keepdim (bool, optional): If set to `True`, the reduced dimensions are retained

        in the result as dimensions with size one. Default: `False`



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.

    dtype (:class:`torch.dtype`, optional): type used to perform the accumulation and the return.

        If specified, :attr:`x` is cast to :attr:`dtype` before performing the operation,

        and the returned tensor’s type will be :attr:`dtype` if real and of its real counterpart if complex.

        :attr:`dtype` may be complex if :attr:`x` is complex, otherwise it must be real.

        :attr:`x` should be convertible without narrowing to :attr:`dtype`. Default: None



Returns:

    A real-valued tensor, even when :attr:`x` is complex.



Examples::



    >>> from torch import linalg as LA

    >>> a = torch.arange(9, dtype=torch.float) - 4

    >>> a

    tensor([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    >>> B = a.reshape((3, 3))

    >>> B

    tensor([[-4., -3., -2.],

            [-1.,  0.,  1.],

            [ 2.,  3.,  4.]])

    >>> LA.vector_norm(a, ord=3.5)

    tensor(5.4345)

    >>> LA.vector_norm(B, ord=3.5)

    tensor(5.4345)

""")

matrix_norm = _add_docstr(_linalg.linalg_matrix_norm, r"""

linalg.matrix_norm(A, ord='fro', dim=(-2, -1), keepdim=False, *, dtype=None, out=None) -> Tensor



Computes a matrix norm.



If :attr:`A` is complex valued, it computes the norm of :attr:`A`\ `.abs()`



Support input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices: the norm will be computed over the

dimensions specified by the 2-tuple :attr:`dim` and the other dimensions will

be treated as batch dimensions. The output will have the same batch dimensions.



:attr:`ord` defines the matrix norm that is computed. The following norms are supported:



======================   ========================================================

:attr:`ord`              matrix norm

======================   ========================================================

`'fro'` (default)        Frobenius norm

`'nuc'`                  nuclear norm

`inf`                    `max(sum(abs(x), dim=1))`

`-inf`                   `min(sum(abs(x), dim=1))`

`1`                      `max(sum(abs(x), dim=0))`

`-1`                     `min(sum(abs(x), dim=0))`

`2`                      largest singular value

`-2`                     smallest singular value

======================   ========================================================



where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.



Args:

    A (Tensor): tensor with two or more dimensions. By default its

        shape is interpreted as `(*, m, n)` where `*` is zero or more

        batch dimensions, but this behavior can be controlled using :attr:`dim`.

    ord (int, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `'fro'`

    dim (Tuple[int, int], optional): dimensions over which to compute the norm. Default: `(-2, -1)`

    keepdim (bool, optional): If set to `True`, the reduced dimensions are retained

        in the result as dimensions with size one. Default: `False`



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.

    dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to

        :attr:`dtype` before performing the operation, and the returned tensor's type

        will be :attr:`dtype`. Default: `None`



Returns:

    A real-valued tensor, even when :attr:`A` is complex.



Examples::



    >>> from torch import linalg as LA

    >>> A = torch.arange(9, dtype=torch.float).reshape(3, 3)

    >>> A

    tensor([[0., 1., 2.],

            [3., 4., 5.],

            [6., 7., 8.]])

    >>> LA.matrix_norm(A)

    tensor(14.2829)

    >>> LA.matrix_norm(A, ord=-1)

    tensor(9.)

    >>> B = A.expand(2, -1, -1)

    >>> B

    tensor([[[0., 1., 2.],

            [3., 4., 5.],

            [6., 7., 8.]],



            [[0., 1., 2.],

            [3., 4., 5.],

            [6., 7., 8.]]])

    >>> LA.matrix_norm(B)

    tensor([14.2829, 14.2829])

    >>> LA.matrix_norm(B, dim=(0, 2))

    tensor([ 3.1623, 10.0000, 17.2627])

""")

matmul = _add_docstr(_linalg.linalg_matmul, r"""

linalg.matmul(input, other, *, out=None) -> Tensor



Alias for :func:`torch.matmul`

""")

diagonal = _add_docstr(_linalg.linalg_diagonal, r"""

linalg.diagonal(A, *, offset=0, dim1=-2, dim2=-1) -> Tensor



Alias for :func:`torch.diagonal` with defaults :attr:`dim1`\ `= -2`, :attr:`dim2`\ `= -1`.

""")

multi_dot = _add_docstr(_linalg.linalg_multi_dot, r"""

linalg.multi_dot(tensors, *, out=None)



Efficiently multiplies two or more matrices by reordering the multiplications so that

the fewest arithmetic operations are performed.



Supports inputs of float, double, cfloat and cdouble dtypes.

This function does not support batched inputs.



Every tensor in :attr:`tensors` must be 2D, except for the first and last which

may be 1D. If the first tensor is a 1D vector of shape `(n,)` it is treated as a row vector

of shape `(1, n)`, similarly if the last tensor is a 1D vector of shape `(n,)` it is treated

as a column vector of shape `(n, 1)`.



If the first and last tensors are matrices, the output will be a matrix.

However, if either is a 1D vector, then the output will be a 1D vector.



Differences with `numpy.linalg.multi_dot`:



- Unlike `numpy.linalg.multi_dot`, the first and last tensors must either be 1D or 2D

  whereas NumPy allows them to be nD



.. warning:: This function does not broadcast.



.. note:: This function is implemented by chaining :func:`torch.mm` calls after

          computing the optimal matrix multiplication order.



.. note:: The cost of multiplying two matrices with shapes `(a, b)` and `(b, c)` is

          `a * b * c`. Given matrices `A`, `B`, `C` with shapes `(10, 100)`,

          `(100, 5)`, `(5, 50)` respectively, we can calculate the cost of different

          multiplication orders as follows:



          .. math::



             \begin{align*}

             \operatorname{cost}((AB)C) &= 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500 \\

             \operatorname{cost}(A(BC)) &= 10 \times 100 \times 50 + 100 \times 5 \times 50 = 75000

             \end{align*}



          In this case, multiplying `A` and `B` first followed by `C` is 10 times faster.



Args:

    tensors (Sequence[Tensor]): two or more tensors to multiply. The first and last

        tensors may be 1D or 2D. Every other tensor must be 2D.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> from torch.linalg import multi_dot



    >>> multi_dot([torch.tensor([1, 2]), torch.tensor([2, 3])])

    tensor(8)

    >>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([2, 3])])

    tensor([8])

    >>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([[2], [3]])])

    tensor([[8]])



    >>> A = torch.arange(2 * 3).view(2, 3)

    >>> B = torch.arange(3 * 2).view(3, 2)

    >>> C = torch.arange(2 * 2).view(2, 2)

    >>> multi_dot((A, B, C))

    tensor([[ 26,  49],

            [ 80, 148]])

""")

svd = _add_docstr(_linalg.linalg_svd, r"""

linalg.svd(A, full_matrices=True, *, driver=None, out=None) -> (Tensor, Tensor, Tensor)



Computes the singular value decomposition (SVD) of a matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **full SVD** of a matrix

:math:`A \in \mathbb{K}^{m \times n}`, if `k = min(m,n)`, is defined as



.. math::



    A = U \operatorname{diag}(S) V^{\text{H}}

    \mathrlap{\qquad U \in \mathbb{K}^{m \times m}, S \in \mathbb{R}^k, V \in \mathbb{K}^{n \times n}}



where :math:`\operatorname{diag}(S) \in \mathbb{K}^{m \times n}`,

:math:`V^{\text{H}}` is the conjugate transpose when :math:`V` is complex, and the transpose when :math:`V` is real-valued.

The matrices  :math:`U`, :math:`V` (and thus :math:`V^{\text{H}}`) are orthogonal in the real case, and unitary in the complex case.



When `m > n` (resp. `m < n`) we can drop the last `m - n` (resp. `n - m`) columns of `U` (resp. `V`) to form the **reduced SVD**:



.. math::



    A = U \operatorname{diag}(S) V^{\text{H}}

    \mathrlap{\qquad U \in \mathbb{K}^{m \times k}, S \in \mathbb{R}^k, V \in \mathbb{K}^{k \times n}}



where :math:`\operatorname{diag}(S) \in \mathbb{K}^{k \times k}`.

In this case, :math:`U` and :math:`V` also have orthonormal columns.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



The returned decomposition is a named tuple `(U, S, Vh)`

which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above.



The singular values are returned in descending order.



The parameter :attr:`full_matrices` chooses between the full (default) and reduced SVD.



The :attr:`driver` kwarg may be used in CUDA with a cuSOLVER backend to choose the algorithm used to compute the SVD.

The choice of a driver is a trade-off between accuracy and speed.



- If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss.



  - For a general matrix: `'gesvdj'` (Jacobi method)

  - If :attr:`A` is tall or wide (`m >> n` or `m << n`): `'gesvda'` (Approximate method)



- If :attr:`A` is not well-conditioned or precision is relevant: `'gesvd'` (QR based)



By default (:attr:`driver`\ `= None`), we call `'gesvdj'` and, if it fails, we fallback to `'gesvd'`.



Differences with `numpy.linalg.svd`:



- Unlike `numpy.linalg.svd`, this function always returns a tuple of three tensors

  and it doesn't support `compute_uv` argument.

  Please use :func:`torch.linalg.svdvals`, which computes only the singular values,

  instead of `compute_uv=False`.



.. note:: When :attr:`full_matrices`\ `= True`, the gradients with respect to `U[..., :, min(m, n):]`

          and `Vh[..., min(m, n):, :]` will be ignored, as those vectors can be arbitrary bases

          of the corresponding subspaces.



.. warning:: The returned tensors `U` and `V` are not unique, nor are they continuous with

             respect to :attr:`A`.

             Due to this lack of uniqueness, different hardware and software may compute

             different singular vectors.



             This non-uniqueness is caused by the fact that multiplying any pair of singular

             vectors :math:`u_k, v_k` by `-1` in the real case or by

             :math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex case produces another two

             valid singular vectors of the matrix.

             For this reason, the loss function shall not depend on this :math:`e^{i \phi}` quantity,

             as it is not well-defined.

             This is checked for complex inputs when computing the gradients of this function. As such,

             when inputs are complex and are on a CUDA device, the computation of the gradients

             of this function synchronizes that device with the CPU.



.. warning:: Gradients computed using `U` or `Vh` will only be finite when

             :attr:`A` does not have repeated singular values. If :attr:`A` is rectangular,

             additionally, zero must also not be one of its singular values.

             Furthermore, if the distance between any two singular values is close to zero,

             the gradient will be numerically unstable, as it depends on the singular values

             :math:`\sigma_i` through the computation of

             :math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`.

             In the rectangular case, the gradient will also be numerically unstable when

             :attr:`A` has small singular values, as it also depends on the computation of

             :math:`\frac{1}{\sigma_i}`.



.. seealso::



        :func:`torch.linalg.svdvals` computes only the singular values.

        Unlike :func:`torch.linalg.svd`, the gradients of :func:`~svdvals` are always

        numerically stable.



        :func:`torch.linalg.eig` for a function that computes another type of spectral

        decomposition of a matrix. The eigendecomposition works just on square matrices.



        :func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition

        for Hermitian and symmetric matrices.



        :func:`torch.linalg.qr` for another (much faster) decomposition that works on general

        matrices.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    full_matrices (bool, optional): controls whether to compute the full or reduced

                                    SVD, and consequently,

                                    the shape of the returned tensors

                                    `U` and `Vh`. Default: `True`.



Keyword args:

    driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs.

        Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`.

        Default: `None`.

    out (tuple, optional): output tuple of three tensors. Ignored if `None`.



Returns:

    A named tuple `(U, S, Vh)` which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above.



    `S` will always be real-valued, even when :attr:`A` is complex.

    It will also be ordered in descending order.



    `U` and `Vh` will have the same dtype as :attr:`A`. The left / right singular vectors will be given by

    the columns of `U` and the rows of `Vh` respectively.



Examples::



    >>> A = torch.randn(5, 3)

    >>> U, S, Vh = torch.linalg.svd(A, full_matrices=False)

    >>> U.shape, S.shape, Vh.shape

    (torch.Size([5, 3]), torch.Size([3]), torch.Size([3, 3]))

    >>> torch.dist(A, U @ torch.diag(S) @ Vh)

    tensor(1.0486e-06)



    >>> U, S, Vh = torch.linalg.svd(A)

    >>> U.shape, S.shape, Vh.shape

    (torch.Size([5, 5]), torch.Size([3]), torch.Size([3, 3]))

    >>> torch.dist(A, U[:, :3] @ torch.diag(S) @ Vh)

    tensor(1.0486e-06)



    >>> A = torch.randn(7, 5, 3)

    >>> U, S, Vh = torch.linalg.svd(A, full_matrices=False)

    >>> torch.dist(A, U @ torch.diag_embed(S) @ Vh)

    tensor(3.0957e-06)



.. _condition number:

    https://pytorch.org/docs/master/linalg.html#torch.linalg.cond

.. _the resulting vectors will span the same subspace:

    https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD

""")

svdvals = _add_docstr(_linalg.linalg_svdvals, r"""

linalg.svdvals(A, *, driver=None, out=None) -> Tensor



Computes the singular values of a matrix.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



The singular values are returned in descending order.



.. note:: This function is equivalent to NumPy's `linalg.svd(A, compute_uv=False)`.



""" + fr"""

.. note:: {common_notes["sync_note"]}

""" + r"""



.. seealso::



        :func:`torch.linalg.svd` computes the full singular value decomposition.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.



Keyword args:

    driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs.

        Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`.

        Check :func:`torch.linalg.svd` for details.

        Default: `None`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Returns:

    A real-valued tensor, even when :attr:`A` is complex.



Examples::



    >>> A = torch.randn(5, 3)

    >>> S = torch.linalg.svdvals(A)

    >>> S

    tensor([2.5139, 2.1087, 1.1066])



    >>> torch.dist(S, torch.linalg.svd(A, full_matrices=False).S)

    tensor(2.4576e-07)

""")

cond = _add_docstr(_linalg.linalg_cond, r"""

linalg.cond(A, p=None, *, out=None) -> Tensor



Computes the condition number of a matrix with respect to a matrix norm.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **condition number** :math:`\kappa` of a matrix

:math:`A \in \mathbb{K}^{n \times n}` is defined as



.. math::



    \kappa(A) = \|A\|_p\|A^{-1}\|_p



The condition number of :attr:`A` measures the numerical stability of the linear system `AX = B`

with respect to a matrix norm.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



:attr:`p` defines the matrix norm that is computed. The following norms are supported:



=========    =================================

:attr:`p`    matrix norm

=========    =================================

`None`       `2`-norm (largest singular value)

`'fro'`      Frobenius norm

`'nuc'`      nuclear norm

`inf`        `max(sum(abs(x), dim=1))`

`-inf`       `min(sum(abs(x), dim=1))`

`1`          `max(sum(abs(x), dim=0))`

`-1`         `min(sum(abs(x), dim=0))`

`2`          largest singular value

`-2`         smallest singular value

=========    =================================



where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.



For :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`, this function uses

:func:`torch.linalg.norm` and :func:`torch.linalg.inv`.

As such, in this case, the matrix (or every matrix in the batch) :attr:`A` has to be square

and invertible.



For :attr:`p` in `(2, -2)`, this function can be computed in terms of the singular values

:math:`\sigma_1 \geq \ldots \geq \sigma_n`



.. math::



    \kappa_2(A) = \frac{\sigma_1}{\sigma_n}\qquad \kappa_{-2}(A) = \frac{\sigma_n}{\sigma_1}



In these cases, it is computed using :func:`torch.linalg.svdvals`. For these norms, the matrix

(or every matrix in the batch) :attr:`A` may have any shape.



.. note :: When inputs are on a CUDA device, this function synchronizes that device with the CPU

           if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`.



.. seealso::



        :func:`torch.linalg.solve` for a function that solves linear systems of square matrices.



        :func:`torch.linalg.lstsq` for a function that solves linear systems of general matrices.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions

                    for :attr:`p` in `(2, -2)`, and of shape `(*, n, n)` where every matrix

                    is invertible for :attr:`p` in `('fro', 'nuc', inf, -inf, 1, -1)`.

    p (int, inf, -inf, 'fro', 'nuc', optional):

        the type of the matrix norm to use in the computations (see above). Default: `None`



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Returns:

    A real-valued tensor, even when :attr:`A` is complex.



Raises:

    RuntimeError:

        if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`

        and the :attr:`A` matrix or any matrix in the batch :attr:`A` is not square

        or invertible.



Examples::



    >>> A = torch.randn(3, 4, 4, dtype=torch.complex64)

    >>> torch.linalg.cond(A)

    >>> A = torch.tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

    >>> torch.linalg.cond(A)

    tensor([1.4142])

    >>> torch.linalg.cond(A, 'fro')

    tensor(3.1623)

    >>> torch.linalg.cond(A, 'nuc')

    tensor(9.2426)

    >>> torch.linalg.cond(A, float('inf'))

    tensor(2.)

    >>> torch.linalg.cond(A, float('-inf'))

    tensor(1.)

    >>> torch.linalg.cond(A, 1)

    tensor(2.)

    >>> torch.linalg.cond(A, -1)

    tensor(1.)

    >>> torch.linalg.cond(A, 2)

    tensor([1.4142])

    >>> torch.linalg.cond(A, -2)

    tensor([0.7071])



    >>> A = torch.randn(2, 3, 3)

    >>> torch.linalg.cond(A)

    tensor([[9.5917],

            [3.2538]])

    >>> A = torch.randn(2, 3, 3, dtype=torch.complex64)

    >>> torch.linalg.cond(A)

    tensor([[4.6245],

            [4.5671]])

""")

pinv = _add_docstr(_linalg.linalg_pinv, r"""

linalg.pinv(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor



Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.



The pseudoinverse may be `defined algebraically`_

but it is more computationally convenient to understand it `through the SVD`_



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or

symmetric if real, but this is not checked internally. Instead, just the lower

triangular part of the matrix is used in the computations.



The singular values (or the norm of the eigenvalues when :attr:`hermitian`\ `= True`)

that are below :math:`\max(\text{atol}, \sigma_1 \cdot \text{rtol})` threshold are

treated as zero and discarded in the computation,

where :math:`\sigma_1` is the largest singular value (or eigenvalue).



If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`,

the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon`

and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`).

If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then

:attr:`rtol` is set to zero.



If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that

of the singular values of :attr:`A` as returned by :func:`torch.linalg.svd`.



.. note:: This function uses :func:`torch.linalg.svd` if :attr:`hermitian`\ `= False` and

          :func:`torch.linalg.eigh` if :attr:`hermitian`\ `= True`.

          For CUDA inputs, this function synchronizes that device with the CPU.



.. note::

    Consider using :func:`torch.linalg.lstsq` if possible for multiplying a matrix on the left by

    the pseudoinverse, as::



        torch.linalg.lstsq(A, B).solution == A.pinv() @ B



    It is always preferred to use :func:`~lstsq` when possible, as it is faster and more

    numerically stable than computing the pseudoinverse explicitly.



.. note::

    This function has NumPy compatible variant `linalg.pinv(A, rcond, hermitian=False)`.

    However, use of the positional argument :attr:`rcond` is deprecated in favor of :attr:`rtol`.



.. warning::

    This function uses internally :func:`torch.linalg.svd` (or :func:`torch.linalg.eigh`

    when :attr:`hermitian`\ `= True`), so its derivative has the same problems as those of these

    functions. See the warnings in :func:`torch.linalg.svd` and :func:`torch.linalg.eigh` for

    more details.



.. seealso::



        :func:`torch.linalg.inv` computes the inverse of a square matrix.



        :func:`torch.linalg.lstsq` computes :attr:`A`\ `.pinv() @ \ `:attr:`B` with a

        numerically stable algorithm.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    rcond (float, Tensor, optional): [NumPy Compat]. Alias for :attr:`rtol`. Default: `None`.



Keyword args:

    atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero.

                                    Default: `None`.

    rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`.

                                    Default: `None`.

    hermitian(bool, optional): indicates whether :attr:`A` is Hermitian if complex

                               or symmetric if real. Default: `False`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(3, 5)

    >>> A

    tensor([[ 0.5495,  0.0979, -1.4092, -0.1128,  0.4132],

            [-1.1143, -0.3662,  0.3042,  1.6374, -0.9294],

            [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]])

    >>> torch.linalg.pinv(A)

    tensor([[ 0.0600, -0.1933, -0.2090],

            [-0.0903, -0.0817, -0.4752],

            [-0.7124, -0.1631, -0.2272],

            [ 0.1356,  0.3933, -0.5023],

            [-0.0308, -0.1725, -0.5216]])



    >>> A = torch.randn(2, 6, 3)

    >>> Apinv = torch.linalg.pinv(A)

    >>> torch.dist(Apinv @ A, torch.eye(3))

    tensor(8.5633e-07)



    >>> A = torch.randn(3, 3, dtype=torch.complex64)

    >>> A = A + A.T.conj()  # creates a Hermitian matrix

    >>> Apinv = torch.linalg.pinv(A, hermitian=True)

    >>> torch.dist(Apinv @ A, torch.eye(3))

    tensor(1.0830e-06)



.. _defined algebraically:

    https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Existence_and_uniqueness

.. _through the SVD:

    https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Singular_value_decomposition_(SVD)

""")

matrix_exp = _add_docstr(_linalg.linalg_matrix_exp, r"""

linalg.matrix_exp(A) -> Tensor



Computes the matrix exponential of a square matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

this function computes the **matrix exponential** of :math:`A \in \mathbb{K}^{n \times n}`, which is defined as



.. math::

    \mathrm{matrix\_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}.



If the matrix :math:`A` has eigenvalues :math:`\lambda_i \in \mathbb{C}`,

the matrix :math:`\mathrm{matrix\_exp}(A)` has eigenvalues :math:`e^{\lambda_i} \in \mathbb{C}`.



Supports input of bfloat16, float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.



Example::



    >>> A = torch.empty(2, 2, 2)

    >>> A[0, :, :] = torch.eye(2, 2)

    >>> A[1, :, :] = 2 * torch.eye(2, 2)

    >>> A

    tensor([[[1., 0.],

             [0., 1.]],



            [[2., 0.],

             [0., 2.]]])

    >>> torch.linalg.matrix_exp(A)

    tensor([[[2.7183, 0.0000],

             [0.0000, 2.7183]],



             [[7.3891, 0.0000],

              [0.0000, 7.3891]]])



    >>> import math

    >>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric

    >>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]]

    tensor([[ 0.5000,  0.8660],

            [-0.8660,  0.5000]])

""")


solve = _add_docstr(_linalg.linalg_solve, r"""

linalg.solve(A, B, *, left=True, out=None) -> Tensor



Computes the solution of a square system of linear equations with a unique solution.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to

:math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as



.. math:: AX = B



If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system



.. math::



    XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}



This system of linear equations has one solution if and only if :math:`A` is `invertible`_.

This function assumes that :math:`A` is invertible.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



Letting `*` be zero or more batch dimensions,



- If :attr:`A` has shape `(*, n, n)` and :attr:`B` has shape `(*, n)` (a batch of vectors) or shape

  `(*, n, k)` (a batch of matrices or "multiple right-hand sides"), this function returns `X` of shape

  `(*, n)` or `(*, n, k)` respectively.

- Otherwise, if :attr:`A` has shape `(*, n, n)` and  :attr:`B` has shape `(n,)`  or `(n, k)`, :attr:`B`

  is broadcasted to have shape `(*, n)` or `(*, n, k)` respectively.

  This function then returns the solution of the resulting batch of systems of linear equations.



.. note::

    This function computes `X = \ `:attr:`A`\ `.inverse() @ \ `:attr:`B` in a faster and

    more numerically stable way than performing the computations separately.



.. note::

    It is possible to compute the solution of the system :math:`XA = B` by passing the inputs

    :attr:`A` and :attr:`B` transposed and transposing the output returned by this function.



""" + fr"""

.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.solve_ex")}

""" + r"""



.. seealso::



        :func:`torch.linalg.solve_triangular` computes the solution of a triangular system of linear

        equations with a unique solution.



Args:

    A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.

    B (Tensor): right-hand side tensor of shape `(*, n)` or  `(*, n, k)` or `(n,)` or `(n, k)`

                according to the rules described above



Keyword args:

    left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A`

                  is not invertible.



Examples::



    >>> A = torch.randn(3, 3)

    >>> b = torch.randn(3)

    >>> x = torch.linalg.solve(A, b)

    >>> torch.allclose(A @ x, b)

    True

    >>> A = torch.randn(2, 3, 3)

    >>> B = torch.randn(2, 3, 4)

    >>> X = torch.linalg.solve(A, B)

    >>> X.shape

    torch.Size([2, 3, 4])

    >>> torch.allclose(A @ X, B)

    True



    >>> A = torch.randn(2, 3, 3)

    >>> b = torch.randn(3, 1)

    >>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3, 1)

    >>> x.shape

    torch.Size([2, 3, 1])

    >>> torch.allclose(A @ x, b)

    True

    >>> b = torch.randn(3)

    >>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3)

    >>> x.shape

    torch.Size([2, 3])

    >>> Ax = A @ x.unsqueeze(-1)

    >>> torch.allclose(Ax, b.unsqueeze(-1).expand_as(Ax))

    True



.. _invertible:

    https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

""")

solve_triangular = _add_docstr(_linalg.linalg_solve_triangular, r"""

linalg.solve_triangular(A, B, *, upper, left=True, unitriangular=False, out=None) -> Tensor



Computes the solution of a triangular system of linear equations with a unique solution.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system**

associated to the triangular matrix :math:`A \in \mathbb{K}^{n \times n}` without zeros on the diagonal

(that is, it is `invertible`_) and the rectangular matrix , :math:`B \in \mathbb{K}^{n \times k}`,

which is defined as



.. math:: AX = B



The argument :attr:`upper` signals whether :math:`A` is upper or lower triangular.



If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that

solves the system



.. math::



    XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}



If :attr:`upper`\ `= True` (resp. `False`) just the upper (resp. lower) triangular half of :attr:`A`

will be accessed. The elements below the main diagonal will be considered to be zero and will not be accessed.



If :attr:`unitriangular`\ `= True`, the diagonal of :attr:`A` is assumed to be ones and will not be accessed.



The result may contain `NaN` s if the diagonal of :attr:`A` contains zeros or elements that

are very close to zero and :attr:`unitriangular`\ `= False` (default) or if the input matrix

has very small eigenvalues.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



.. seealso::



        :func:`torch.linalg.solve` computes the solution of a general square system of linear

        equations with a unique solution.



Args:

    A (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`)

                where `*` is zero or more batch dimensions.

    B (Tensor): right-hand side tensor of shape `(*, n, k)`.



Keyword args:

    upper (bool): whether :attr:`A` is an upper or lower triangular matrix.

    left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.

    unitriangular (bool, optional): if `True`, the diagonal elements of :attr:`A` are assumed to be

                                    all equal to `1`. Default: `False`.

    out (Tensor, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`.

                            Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(3, 3).triu_()

    >>> B = torch.randn(3, 4)

    >>> X = torch.linalg.solve_triangular(A, B, upper=True)

    >>> torch.allclose(A @ X, B)

    True



    >>> A = torch.randn(2, 3, 3).tril_()

    >>> B = torch.randn(2, 3, 4)

    >>> X = torch.linalg.solve_triangular(A, B, upper=False)

    >>> torch.allclose(A @ X, B)

    True



    >>> A = torch.randn(2, 4, 4).tril_()

    >>> B = torch.randn(2, 3, 4)

    >>> X = torch.linalg.solve_triangular(A, B, upper=False, left=False)

    >>> torch.allclose(X @ A, B)

    True



.. _invertible:

    https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

""")

lu_factor = _add_docstr(_linalg.linalg_lu_factor, r"""

linalg.lu_factor(A, *, bool pivot=True, out=None) -> (Tensor, Tensor)



Computes a compact representation of the LU factorization with partial pivoting of a matrix.



This function computes a compact representation of the decomposition given by :func:`torch.linalg.lu`.

If the matrix is square, this representation may be used in :func:`torch.linalg.lu_solve`

to solve system of linear equations that share the matrix :attr:`A`.



The returned decomposition is represented as a named tuple `(LU, pivots)`.

The ``LU`` matrix has the same shape as the input matrix ``A``. Its upper and lower triangular

parts encode the non-constant elements of ``L`` and ``U`` of the LU decomposition of ``A``.



The returned permutation matrix is represented by a 1-indexed vector. `pivots[i] == j` represents

that in the `i`-th step of the algorithm, the `i`-th row was permuted with the `j-1`-th row.



On CUDA, one may use :attr:`pivot`\ `= False`. In this case, this function returns the LU

decomposition without pivoting if it exists.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



""" + fr"""

.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.lu_factor_ex")}

""" + r"""

.. warning:: The LU decomposition is almost never unique, as often there are different permutation

             matrices that can yield different LU decompositions.

             As such, different platforms, like SciPy, or inputs on different devices,

             may produce different valid decompositions.



             Gradient computations are only supported if the input matrix is full-rank.

             If this condition is not met, no error will be thrown, but the gradient may not be finite.

             This is because the LU decomposition with pivoting is not differentiable at these points.



.. seealso::



        :func:`torch.linalg.lu_solve` solves a system of linear equations given the output of this

        function provided the input matrix was square and invertible.



        :func:`torch.lu_unpack` unpacks the tensors returned by :func:`~lu_factor` into the three

        matrices `P, L, U` that form the decomposition.



        :func:`torch.linalg.lu` computes the LU decomposition with partial pivoting of a possibly

        non-square matrix. It is a composition of :func:`~lu_factor` and :func:`torch.lu_unpack`.



        :func:`torch.linalg.solve` solves a system of linear equations. It is a composition

        of :func:`~lu_factor` and :func:`~lu_solve`.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.



Keyword args:

    pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU

                            decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`.

    out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(LU, pivots)`.



Raises:

    RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A`

                  is not invertible.



Examples::



    >>> A = torch.randn(2, 3, 3)

    >>> B1 = torch.randn(2, 3, 4)

    >>> B2 = torch.randn(2, 3, 7)

    >>> LU, pivots = torch.linalg.lu_factor(A)

    >>> X1 = torch.linalg.lu_solve(LU, pivots, B1)

    >>> X2 = torch.linalg.lu_solve(LU, pivots, B2)

    >>> torch.allclose(A @ X1, B1)

    True

    >>> torch.allclose(A @ X2, B2)

    True



.. _invertible:

    https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

""")

lu_factor_ex = _add_docstr(_linalg.linalg_lu_factor_ex, r"""

linalg.lu_factor_ex(A, *, pivot=True, check_errors=False, out=None) -> (Tensor, Tensor, Tensor)



This is a version of :func:`~lu_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`.

It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_.



""" + fr"""

.. note:: {common_notes["sync_note_ex"]}



.. warning:: {common_notes["experimental_warning"]}

""" + r"""



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.



Keyword args:

    pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU

                            decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`.

    check_errors (bool, optional): controls whether to check the content of ``infos`` and raise

                                   an error if it is non-zero. Default: `False`.

    out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(LU, pivots, info)`.



.. _LAPACK's getrf:

    https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html

""")

lu_solve = _add_docstr(_linalg.linalg_lu_solve, r"""

linalg.lu_solve(LU, pivots, B, *, left=True, adjoint=False, out=None) -> Tensor



Computes the solution of a square system of linear equations with a unique solution given an LU decomposition.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to

:math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as



.. math:: AX = B



where :math:`A` is given factorized as returned by :func:`~lu_factor`.



If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system



.. math::



    XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}



If  :attr:`adjoint`\ `= True` (and :attr:`left`\ `= True`), given an LU factorization of :math:`A`

this function function returns the :math:`X \in \mathbb{K}^{n \times k}` that solves the system



.. math::



    A^{\text{H}}X = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}



where :math:`A^{\text{H}}` is the conjugate transpose when :math:`A` is complex, and the

transpose when :math:`A` is real-valued. The :attr:`left`\ `= False` case is analogous.



Supports inputs of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if the inputs are batches of matrices then

the output has the same batch dimensions.



Args:

    LU (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`)

                 where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`.

    pivots (Tensor): tensor of shape `(*, n)` (or `(*, k)` if :attr:`left`\ `= True`)

                     where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`.

    B (Tensor): right-hand side tensor of shape `(*, n, k)`.



Keyword args:

    left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.

    adjoint (bool, optional): whether to solve the system :math:`AX=B` or :math:`A^{\text{H}}X = B`. Default: `False`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> A = torch.randn(3, 3)

    >>> LU, pivots = torch.linalg.lu_factor(A)

    >>> B = torch.randn(3, 2)

    >>> X = torch.linalg.lu_solve(LU, pivots, B)

    >>> torch.allclose(A @ X, B)

    True



    >>> B = torch.randn(3, 3, 2)   # Broadcasting rules apply: A is broadcasted

    >>> X = torch.linalg.lu_solve(LU, pivots, B)

    >>> torch.allclose(A @ X, B)

    True



    >>> B = torch.randn(3, 5, 3)

    >>> X = torch.linalg.lu_solve(LU, pivots, B, left=False)

    >>> torch.allclose(X @ A, B)

    True



    >>> B = torch.randn(3, 3, 4)   # Now solve for A^T

    >>> X = torch.linalg.lu_solve(LU, pivots, B, adjoint=True)

    >>> torch.allclose(A.mT @ X, B)

    True



.. _invertible:

    https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

""")

lu = _add_docstr(_linalg.linalg_lu, r"""

lu(A, *, pivot=True, out=None) -> (Tensor, Tensor, Tensor)



Computes the LU decomposition with partial pivoting of a matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **LU decomposition with partial pivoting** of a matrix

:math:`A \in \mathbb{K}^{m \times n}` is defined as



.. math::



    A = PLU\mathrlap{\qquad P \in \mathbb{K}^{m \times m}, L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}}



where `k = min(m,n)`, :math:`P` is a `permutation matrix`_, :math:`L` is lower triangular with ones on the diagonal

and :math:`U` is upper triangular.



If :attr:`pivot`\ `= False` and :attr:`A` is on GPU, then the **LU decomposition without pivoting** is computed



.. math::



    A = LU\mathrlap{\qquad L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}}



When :attr:`pivot`\ `= False`, the returned matrix :attr:`P` will be empty.

The LU decomposition without pivoting `may not exist`_ if any of the principal minors of :attr:`A` is singular.

In this case, the output matrix may contain `inf` or `NaN`.



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



.. seealso::



        :func:`torch.linalg.solve` solves a system of linear equations using the LU decomposition

        with partial pivoting.



.. warning:: The LU decomposition is almost never unique, as often there are different permutation

             matrices that can yield different LU decompositions.

             As such, different platforms, like SciPy, or inputs on different devices,

             may produce different valid decompositions.



.. warning:: Gradient computations are only supported if the input matrix is full-rank.

             If this condition is not met, no error will be thrown, but the gradient

             may not be finite.

             This is because the LU decomposition with pivoting is not differentiable at these points.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    pivot (bool, optional): Controls whether to compute the LU decomposition with partial pivoting or

        no pivoting. Default: `True`.



Keyword args:

    out (tuple, optional): output tuple of three tensors. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(P, L, U)`.



Examples::



    >>> A = torch.randn(3, 2)

    >>> P, L, U = torch.linalg.lu(A)

    >>> P

    tensor([[0., 1., 0.],

            [0., 0., 1.],

            [1., 0., 0.]])

    >>> L

    tensor([[1.0000, 0.0000],

            [0.5007, 1.0000],

            [0.0633, 0.9755]])

    >>> U

    tensor([[0.3771, 0.0489],

            [0.0000, 0.9644]])

    >>> torch.dist(A, P @ L @ U)

    tensor(5.9605e-08)



    >>> A = torch.randn(2, 5, 7, device="cuda")

    >>> P, L, U = torch.linalg.lu(A, pivot=False)

    >>> P

    tensor([], device='cuda:0')

    >>> torch.dist(A, L @ U)

    tensor(1.0376e-06, device='cuda:0')



.. _permutation matrix:

    https://en.wikipedia.org/wiki/Permutation_matrix

.. _may not exist:

    https://en.wikipedia.org/wiki/LU_decomposition#Definitions

""")

tensorinv = _add_docstr(_linalg.linalg_tensorinv, r"""

linalg.tensorinv(A, ind=2, *, out=None) -> Tensor



Computes the multiplicative inverse of :func:`torch.tensordot`.



If `m` is the product of the first :attr:`ind` dimensions of :attr:`A` and `n` is the product of

the rest of the dimensions, this function expects `m` and `n` to be equal.

If this is the case, it computes a tensor `X` such that

`tensordot(\ `:attr:`A`\ `, X, \ `:attr:`ind`\ `)` is the identity matrix in dimension `m`.

`X` will have the shape of :attr:`A` but with the first :attr:`ind` dimensions pushed back to the end



.. code:: text



    X.shape == A.shape[ind:] + A.shape[:ind]



Supports input of float, double, cfloat and cdouble dtypes.



.. note:: When :attr:`A` is a `2`-dimensional tensor and :attr:`ind`\ `= 1`,

          this function computes the (multiplicative) inverse of :attr:`A`

          (see :func:`torch.linalg.inv`).



.. note::

    Consider using :func:`torch.linalg.tensorsolve` if possible for multiplying a tensor on the left

    by the tensor inverse, as::



        linalg.tensorsolve(A, B) == torch.tensordot(linalg.tensorinv(A), B)  # When B is a tensor with shape A.shape[:B.ndim]



    It is always preferred to use :func:`~tensorsolve` when possible, as it is faster and more

    numerically stable than computing the pseudoinverse explicitly.



.. seealso::



        :func:`torch.linalg.tensorsolve` computes

        `torch.tensordot(tensorinv(\ `:attr:`A`\ `), \ `:attr:`B`\ `)`.



Args:

    A (Tensor): tensor to invert. Its shape must satisfy

                    `prod(\ `:attr:`A`\ `.shape[:\ `:attr:`ind`\ `]) ==

                    prod(\ `:attr:`A`\ `.shape[\ `:attr:`ind`\ `:])`.

    ind (int): index at which to compute the inverse of :func:`torch.tensordot`. Default: `2`.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if the reshaped :attr:`A` is not invertible or the product of the first

                  :attr:`ind` dimensions is not equal to the product of the rest.



Examples::



    >>> A = torch.eye(4 * 6).reshape((4, 6, 8, 3))

    >>> Ainv = torch.linalg.tensorinv(A, ind=2)

    >>> Ainv.shape

    torch.Size([8, 3, 4, 6])

    >>> B = torch.randn(4, 6)

    >>> torch.allclose(torch.tensordot(Ainv, B), torch.linalg.tensorsolve(A, B))

    True



    >>> A = torch.randn(4, 4)

    >>> Atensorinv = torch.linalg.tensorinv(A, ind=1)

    >>> Ainv = torch.linalg.inv(A)

    >>> torch.allclose(Atensorinv, Ainv)

    True

""")

tensorsolve = _add_docstr(_linalg.linalg_tensorsolve, r"""

linalg.tensorsolve(A, B, dims=None, *, out=None) -> Tensor



Computes the solution `X` to the system `torch.tensordot(A, X) = B`.



If `m` is the product of the first :attr:`B`\ `.ndim`  dimensions of :attr:`A` and

`n` is the product of the rest of the dimensions, this function expects `m` and `n` to be equal.



The returned tensor `x` satisfies

`tensordot(\ `:attr:`A`\ `, x, dims=x.ndim) == \ `:attr:`B`.

`x` has shape :attr:`A`\ `[B.ndim:]`.



If :attr:`dims` is specified, :attr:`A` will be reshaped as



.. code:: text



    A = movedim(A, dims, range(len(dims) - A.ndim + 1, 0))



Supports inputs of float, double, cfloat and cdouble dtypes.



.. seealso::



        :func:`torch.linalg.tensorinv` computes the multiplicative inverse of

        :func:`torch.tensordot`.



Args:

    A (Tensor): tensor to solve for. Its shape must satisfy

                    `prod(\ `:attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]) ==

                    prod(\ `:attr:`A`\ `.shape[\ `:attr:`B`\ `.ndim:])`.

    B (Tensor): tensor of shape :attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]`.

    dims (Tuple[int], optional): dimensions of :attr:`A` to be moved.

        If `None`, no dimensions are moved. Default: `None`.



Keyword args:

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Raises:

    RuntimeError: if the reshaped :attr:`A`\ `.view(m, m)` with `m` as above  is not

                  invertible or the product of the first :attr:`ind` dimensions is not equal

                  to the product of the rest of the dimensions.



Examples::



    >>> A = torch.eye(2 * 3 * 4).reshape((2 * 3, 4, 2, 3, 4))

    >>> B = torch.randn(2 * 3, 4)

    >>> X = torch.linalg.tensorsolve(A, B)

    >>> X.shape

    torch.Size([2, 3, 4])

    >>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B)

    True



    >>> A = torch.randn(6, 4, 4, 3, 2)

    >>> B = torch.randn(4, 3, 2)

    >>> X = torch.linalg.tensorsolve(A, B, dims=(0, 2))

    >>> X.shape

    torch.Size([6, 4])

    >>> A = A.permute(1, 3, 4, 0, 2)

    >>> A.shape[B.ndim:]

    torch.Size([6, 4])

    >>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B, atol=1e-6)

    True

""")

qr = _add_docstr(_linalg.linalg_qr, r"""

qr(A, mode='reduced', *, out=None) -> (Tensor, Tensor)



Computes the QR decomposition of a matrix.



Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,

the **full QR decomposition** of a matrix

:math:`A \in \mathbb{K}^{m \times n}` is defined as



.. math::



    A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times m}, R \in \mathbb{K}^{m \times n}}



where :math:`Q` is orthogonal in the real case and unitary in the complex case,

and :math:`R` is upper triangular with real diagonal (even in the complex case).



When `m > n` (tall matrix), as `R` is upper triangular, its last `m - n` rows are zero.

In this case, we can drop the last `m - n` columns of `Q` to form the

**reduced QR decomposition**:



.. math::



    A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times n}, R \in \mathbb{K}^{n \times n}}



The reduced QR decomposition agrees with the full QR decomposition when `n >= m` (wide matrix).



Supports input of float, double, cfloat and cdouble dtypes.

Also supports batches of matrices, and if :attr:`A` is a batch of matrices then

the output has the same batch dimensions.



The parameter :attr:`mode` chooses between the full and reduced QR decomposition.

If :attr:`A` has shape `(*, m, n)`, denoting `k = min(m, n)`



- :attr:`mode`\ `= 'reduced'` (default): Returns `(Q, R)` of shapes `(*, m, k)`, `(*, k, n)` respectively.

  It is always differentiable.

- :attr:`mode`\ `= 'complete'`: Returns `(Q, R)` of shapes `(*, m, m)`, `(*, m, n)` respectively.

  It is differentiable for `m <= n`.

- :attr:`mode`\ `= 'r'`: Computes only the reduced `R`. Returns `(Q, R)` with `Q` empty and `R` of shape `(*, k, n)`.

  It is never differentiable.



Differences with `numpy.linalg.qr`:



- :attr:`mode`\ `= 'raw'` is not implemented.

- Unlike `numpy.linalg.qr`, this function always returns a tuple of two tensors.

  When :attr:`mode`\ `= 'r'`, the `Q` tensor is an empty tensor.



.. warning:: The elements in the diagonal of `R` are not necessarily positive.

             As such, the returned QR decomposition is only unique up to the sign of the diagonal of `R`.

             Therefore, different platforms, like NumPy, or inputs on different devices,

             may produce different valid decompositions.



.. warning:: The QR decomposition is only well-defined if the first `k = min(m, n)` columns

             of every matrix in :attr:`A` are linearly independent.

             If this condition is not met, no error will be thrown, but the QR produced

             may be incorrect and its autodiff may fail or produce incorrect results.



Args:

    A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.

    mode (str, optional): one of `'reduced'`, `'complete'`, `'r'`.

                          Controls the shape of the returned tensors. Default: `'reduced'`.



Keyword args:

    out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.



Returns:

    A named tuple `(Q, R)`.



Examples::



    >>> A = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])

    >>> Q, R = torch.linalg.qr(A)

    >>> Q

    tensor([[-0.8571,  0.3943,  0.3314],

            [-0.4286, -0.9029, -0.0343],

            [ 0.2857, -0.1714,  0.9429]])

    >>> R

    tensor([[ -14.0000,  -21.0000,   14.0000],

            [   0.0000, -175.0000,   70.0000],

            [   0.0000,    0.0000,  -35.0000]])

    >>> (Q @ R).round()

    tensor([[  12.,  -51.,    4.],

            [   6.,  167.,  -68.],

            [  -4.,   24.,  -41.]])

    >>> (Q.T @ Q).round()

    tensor([[ 1.,  0.,  0.],

            [ 0.,  1., -0.],

            [ 0., -0.,  1.]])

    >>> Q2, R2 = torch.linalg.qr(A, mode='r')

    >>> Q2

    tensor([])

    >>> torch.equal(R, R2)

    True

    >>> A = torch.randn(3, 4, 5)

    >>> Q, R = torch.linalg.qr(A, mode='complete')

    >>> torch.dist(Q @ R, A)

    tensor(1.6099e-06)

    >>> torch.dist(Q.mT @ Q, torch.eye(4))

    tensor(6.2158e-07)

""")

vander = _add_docstr(_linalg.linalg_vander, r"""

vander(x, N=None) -> Tensor



Generates a Vandermonde matrix.



Returns the Vandermonde matrix :math:`V`



.. math::



    V = \begin{pmatrix}

            1 & x_1 & x_1^2 & \dots & x_1^{N-1}\\

            1 & x_2 & x_2^2 & \dots & x_2^{N-1}\\

            1 & x_3 & x_3^2 & \dots & x_3^{N-1}\\

            \vdots & \vdots & \vdots & \ddots &\vdots \\

            1 & x_n & x_n^2 & \dots & x_n^{N-1}

        \end{pmatrix}.



for `N > 1`.

If :attr:`N`\ `= None`, then `N = x.size(-1)` so that the output is a square matrix.



Supports inputs of float, double, cfloat, cdouble, and integral dtypes.

Also supports batches of vectors, and if :attr:`x` is a batch of vectors then

the output has the same batch dimensions.



Differences with `numpy.vander`:



- Unlike `numpy.vander`, this function returns the powers of :attr:`x` in ascending order.

  To get them in the reverse order call ``linalg.vander(x, N).flip(-1)``.



Args:

    x (Tensor): tensor of shape `(*, n)` where `*` is zero or more batch dimensions

                consisting of vectors.



Keyword args:

    N (int, optional): Number of columns in the output. Default: `x.size(-1)`



Example::



    >>> x = torch.tensor([1, 2, 3, 5])

    >>> linalg.vander(x)

    tensor([[  1,   1,   1,   1],

            [  1,   2,   4,   8],

            [  1,   3,   9,  27],

            [  1,   5,  25, 125]])

    >>> linalg.vander(x, N=3)

    tensor([[ 1,  1,  1],

            [ 1,  2,  4],

            [ 1,  3,  9],

            [ 1,  5, 25]])

""")

vecdot = _add_docstr(_linalg.linalg_vecdot, r"""

linalg.vecdot(x, y, *, dim=-1, out=None) -> Tensor



Computes the dot product of two batches of vectors along a dimension.



In symbols, this function computes



.. math::



    \sum_{i=1}^n \overline{x_i}y_i.



over the dimension :attr:`dim` where :math:`\overline{x_i}` denotes the conjugate for complex

vectors, and it is the identity for real vectors.



Supports input of half, bfloat16, float, double, cfloat, cdouble and integral dtypes.

It also supports broadcasting.



Args:

    x (Tensor): first batch of vectors of shape `(*, n)`.

    y (Tensor): second batch of vectors of shape `(*, n)`.



Keyword args:

    dim (int): Dimension along which to compute the dot product. Default: `-1`.

    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.



Examples::



    >>> v1 = torch.randn(3, 2)

    >>> v2 = torch.randn(3, 2)

    >>> linalg.vecdot(v1, v2)

    tensor([ 0.3223,  0.2815, -0.1944])

    >>> torch.vdot(v1[0], v2[0])

    tensor(0.3223)

""")