Spaces:
Running
Running
File size: 10,699 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
#pragma once
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <utility>
#include <ATen/native/GridSamplerUtils.h>
namespace at::native {
using detail::GridSamplerInterpolation;
using detail::GridSamplerPadding;
// Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
// where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
// if align_corners: -1 and +1 get sent to the centers of the corner pixels
// -1 --> 0
// +1 --> (size - 1)
// scale_factor = (size - 1) / 2
// if not align_corners: -1 and +1 get sent to the image edges
// -1 --> -0.5
// +1 --> (size - 1) + 0.5 == size - 0.5
// scale_factor = size / 2
template <typename scalar_t>
static inline scalar_t grid_sampler_unnormalize(scalar_t coord, int64_t size,
bool align_corners) {
if (align_corners) {
// unnormalize coord from [-1, 1] to [0, size - 1]
return ((coord + 1) / 2) * (size - 1);
} else {
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
return ((coord + 1) * size - 1) / 2;
}
}
// grid_sampler_unnormalize_set_grad works the same as grid_sampler_unnormalize
// except that it also returns the `d output / d input` via pointer argument
// `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static inline scalar_t grid_sampler_unnormalize_set_grad(scalar_t coord, int64_t size,
bool align_corners, scalar_t *grad_in) {
if (align_corners) {
// unnormalize coord from [-1, 1] to [0, size - 1]
*grad_in = static_cast<scalar_t>(size - 1) / 2;
return ((coord + 1) / 2) * (size - 1);
} else {
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
*grad_in = static_cast<scalar_t>(size) / 2;
return ((coord + 1) * size - 1) / 2;
}
}
// Clips coordinates to between 0 and clip_limit - 1
template<typename scalar_t>
static inline scalar_t clip_coordinates(scalar_t in, int64_t clip_limit) {
return std::min(static_cast<scalar_t>(clip_limit - 1), std::max(in, static_cast<scalar_t>(0)));
}
// clip_coordinates_set_grad works similarly to clip_coordinates except that
// it also returns the `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
template<typename scalar_t>
static inline scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit,
scalar_t *grad_in) {
// Note that it is important for the gradient calculation that borders
// are considered out of bounds.
if (in <= static_cast<scalar_t>(0)) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
} else {
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
if (in >= max) {
*grad_in = static_cast<scalar_t>(0);
return max;
} else {
*grad_in = static_cast<scalar_t>(1);
return in;
}
}
}
// Reflects coordinates until they fall between low and high (inclusive).
// The bounds are passed as twice their value so that half-integer values
// can be represented as ints.
template<typename scalar_t>
static inline scalar_t reflect_coordinates(scalar_t in, int64_t twice_low,
int64_t twice_high) {
if (twice_low == twice_high) {
return static_cast<scalar_t>(0);
}
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
in = std::fabs(in - min);
// `fmod` returns same sign as `in`, which is positive after the `fabs` above.
scalar_t extra = std::fmod(in, span);
int flips = static_cast<int>(std::floor(in / span));
if (flips % 2 == 0) {
return extra + min;
} else {
return span - extra + min;
}
}
// reflect_coordinates_set_grad works similarly to reflect_coordinates except
// that it also returns the `d output / d input` via pointer argument
// `grad_in`.
// This is useful in the backward pass of grid_sampler.
template<typename scalar_t>
static inline scalar_t reflect_coordinates_set_grad(scalar_t in, int64_t twice_low,
int64_t twice_high, scalar_t *grad_in) {
if (twice_low == twice_high) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
}
int grad_in_mult_;
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
in = in - min;
if (in < static_cast<scalar_t>(0)) {
grad_in_mult_ = -1;
in = -in;
} else {
grad_in_mult_ = 1;
}
// `fmod` returns same sign as `in`, which is positive after the `if` above.
scalar_t extra = std::fmod(in, span);
int flips = static_cast<int>(std::floor(in / span));
if (flips % 2 == 0) {
*grad_in = static_cast<scalar_t>(grad_in_mult_);
return extra + min;
} else {
*grad_in = static_cast<scalar_t>(-grad_in_mult_);
return span - extra + min;
}
}
// Mapping the out-of-boundary points back into boundary
// This would only affect padding_mode=border or reflection
template<typename scalar_t>
static inline scalar_t compute_coordinates(scalar_t coord, int64_t size,
GridSamplerPadding padding_mode,
bool align_corners) {
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
coord = clip_coordinates(coord, size);
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
if (align_corners) {
coord = reflect_coordinates(coord, 0, 2*(size - 1));
} else {
coord = reflect_coordinates(coord, -1, 2*size - 1);
}
// clip coordinates to image borders
coord = clip_coordinates(coord, size);
}
return coord;
}
// Computes the pixel source index value for a grid coordinate
template <typename scalar_t>
static inline scalar_t grid_sampler_compute_source_index(
scalar_t coord,
int64_t size,
GridSamplerPadding padding_mode,
bool align_corners) {
coord = grid_sampler_unnormalize(coord, size, align_corners);
coord = compute_coordinates(coord, size, padding_mode, align_corners);
return coord;
}
// grid_sampler_compute_source_index_set_grad works similarly to
// grid_sampler_compute_source_index except that it also returns the
// `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static inline scalar_t grid_sampler_compute_source_index_set_grad(
scalar_t coord,
int64_t size,
GridSamplerPadding padding_mode,
bool align_corners,
scalar_t *grad_in) {
scalar_t grad_clip, grad_refl;
coord = grid_sampler_unnormalize_set_grad(coord, size, align_corners, grad_in);
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
*grad_in = (*grad_in) * grad_clip;
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
if (align_corners) {
coord = reflect_coordinates_set_grad(coord, 0, 2*(size - 1), &grad_refl);
} else {
coord = reflect_coordinates_set_grad(coord, -1, 2*size - 1, &grad_refl);
}
// clip coordinates to image borders
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
*grad_in = (*grad_in) * grad_refl * grad_clip;
}
return coord;
}
static inline bool within_bounds_2d(int64_t h, int64_t w, int64_t H, int64_t W) {
return h >= 0 && h < H && w >= 0 && w < W;
}
static inline bool within_bounds_3d(int64_t d, int64_t h, int64_t w, int64_t D, int64_t H, int64_t W) {
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
}
template<typename scalar_t>
static inline scalar_t get_value_bounded(
scalar_t* data,
scalar_t x,
scalar_t y,
int64_t W,
int64_t H,
int64_t sW,
int64_t sH,
GridSamplerPadding padding_mode,
bool align_corners) {
x = compute_coordinates(x, W, padding_mode, align_corners);
y = compute_coordinates(y, H, padding_mode, align_corners);
int64_t ix = static_cast<int64_t>(x);
int64_t iy = static_cast<int64_t>(y);
if (within_bounds_2d(iy, ix, H, W)) {
return data[iy * sH + ix * sW];
}
return static_cast<scalar_t>(0);
}
template<typename scalar_t>
static inline void safe_add_2d(scalar_t *data, int64_t h, int64_t w,
int64_t sH, int64_t sW, int64_t H, int64_t W,
scalar_t delta) {
if (within_bounds_2d(h, w, H, W)) {
data[h * sH + w * sW] += delta;
}
}
template<typename scalar_t>
static inline void safe_add_3d(scalar_t *data, int64_t d, int64_t h, int64_t w,
int64_t sD, int64_t sH, int64_t sW,
int64_t D, int64_t H, int64_t W,
scalar_t delta) {
if (within_bounds_3d(d, h, w, D, H, W)) {
data[d * sD + h * sH + w * sW] += delta;
}
}
template<typename scalar_t>
static inline void add_value_bounded(
scalar_t* data,
scalar_t x,
scalar_t y,
int64_t W,
int64_t H,
int64_t sW,
int64_t sH,
scalar_t delta,
GridSamplerPadding padding_mode,
bool align_corners) {
x = compute_coordinates(x, W, padding_mode, align_corners);
y = compute_coordinates(y, H, padding_mode, align_corners);
int64_t ix = static_cast<int64_t>(x);
int64_t iy = static_cast<int64_t>(y);
safe_add_2d(data, iy, ix, sH, sW, H, W, delta);
}
// Calculate the differential of the cubic convolution, i.e. `d coeff / d x`
template<typename scalar_t>
static inline void get_cubic_coefficients_grad(
scalar_t coeffs[4],
scalar_t t) {
// Must be the same as forward calculation in
// aten/src/ATen/native/UpSample.h:get_cubic_upsample_coefficients
scalar_t A = -0.75;
scalar_t x;
x = -1 - t; // 1 < x = |-1 - tx| < 2
coeffs[0] = (-3 * A * x - 10 * A ) * x - 8 * A;
x = -t; // x = |0 - tx| <= 1
coeffs[1] = (-3 * (A + 2) * x - 2 * (A + 3)) * x;
x = 1 - t; // x = |1 - tx| <= 1
coeffs[2] = (3 * (A + 2) * x - 2 * (A + 3)) * x;
x = 2 - t; // 1 < x = |2 - tx| < 2
coeffs[3] = (3 * A * x - 10 * A) * x + 8 * A;
}
} // namespace at::native
|