Spaces:
Running
Running
File size: 22,119 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
#pragma once
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
#include <c10/util/MathConstants.h>
// ROCM hcc doesn't work well with using std:: in kernel functions
#if defined(__CUDA_ARCH__)
#include <c10/cuda/CUDAMathCompat.h>
#define compat_exp c10::cuda::compat::exp
#define compat_ceil c10::cuda::compat::ceil
#define compat_floor c10::cuda::compat::floor
#define compat_log c10::cuda::compat::log
#define compat_pow c10::cuda::compat::pow
#define compat_sqrt c10::cuda::compat::sqrt
#define compat_tan c10::cuda::compat::tan
#define compat_abs c10::cuda::compat::abs
#define compat_log1p c10::cuda::compat::log1p
#elif defined(__HIPCC__)
#include <c10/hip/HIPMathCompat.h>
#define compat_exp c10::hip::compat::exp
#define compat_ceil c10::hip::compat::ceil
#define compat_floor c10::hip::compat::floor
#define compat_log c10::hip::compat::log
#define compat_pow c10::hip::compat::pow
#define compat_sqrt c10::hip::compat::sqrt
#define compat_tan c10::hip::compat::tan
#define compat_abs c10::hip::compat::abs
#define compat_log1p c10::hip::compat::log1p
#else
#define compat_exp std::exp
#define compat_ceil std::ceil
#define compat_floor std::floor
#define compat_log std::log
#define compat_pow std::pow
#define compat_sqrt std::sqrt
#define compat_tan std::tan
#define compat_abs std::abs
#define compat_log1p std::log1p
#endif
namespace {
#if !defined(__CUDA_ARCH__) && !defined(__HIPCC__)
// we cannot use std::isnan directly due to some incompatibility of
// gcc constexpr'ing and nvcc
using std::isnan;
#endif
// Here sampler_t should be function type scalar_t(void). For gpu
// "sampler" is a device function, but since ROCM doesn't have
// equivalent to nvstd::function, we use a template type parameter to
// capture it.
template<typename scalar_t, typename sampler_t>
struct BaseSampler {
sampler_t sampler;
C10_DEVICE BaseSampler(const sampler_t& sampler): sampler(sampler) {}
C10_DEVICE scalar_t sample() {
return sampler();
}
};
// The function `sample_gamma` is
// is adapted from Numpy's distributions.c implementation.
// It is MIT licensed, so here is the copyright:
/* Copyright 2005 Robert Kern ([email protected])
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t, typename normal_sampler_t>
C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform, BaseSampler<accscalar_t, normal_sampler_t>& standard_normal) {
accscalar_t scale = 1.0f;
// Boost alpha for higher acceptance probability.
if (alpha < 1.0f) {
if (alpha == 0.f) return 0.f;
scale *= compat_pow(1 - standard_uniform.sample(), 1.0f / alpha);
alpha += 1.0f;
}
// This implements the acceptance-rejection method of Marsaglia and Tsang (2000)
// doi:10.1145/358407.358414
const accscalar_t d = alpha - 1.0f / 3.0f;
const accscalar_t c = 1.0f / compat_sqrt(9.0f * d);
for (;;) {
accscalar_t x, y;
do {
x = standard_normal.sample();
y = 1.0f + c * x;
} while (y <= 0);
const accscalar_t v = y * y * y;
const accscalar_t u = 1 - standard_uniform.sample();
const accscalar_t xx = x * x;
if (u < 1.0f - 0.0331f * xx * xx)
return static_cast<scalar_t>(scale * d * v);
if (compat_log(u) < 0.5f * xx + d * (1.0f - v + compat_log(v)))
return static_cast<scalar_t>(scale * d * v);
}
}
/* the functions stirling_approx_tail, binomial_inversion, and btrs are adapted
* from TensorFlow's random_binomial_op.cc implementation. That code is under
* copyright: 2019 The TensorFlow Authors.
*
* It was released under the Apache License, Version 2.0 (the "License"), available at:
* http://www.apache.org/licenses/LICENSE-2.0
*/
template<typename scalar_t>
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
const static scalar_t kTailValues[] = {
0.0810614667953272,
0.0413406959554092,
0.0276779256849983,
0.02079067210376509,
0.0166446911898211,
0.0138761288230707,
0.0118967099458917,
0.0104112652619720,
0.00925546218271273,
0.00833056343336287
};
if (k <= 9) {
return kTailValues[static_cast<size_t>(k)];
}
scalar_t kp1sq = (k + 1) * (k + 1);
return (1.0 / 12 - (1.0 / 360 - 1.0 / 1260 / kp1sq) / kp1sq) / (k + 1);
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t binomial_inversion(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
accscalar_t U;
accscalar_t geom_sum = 0;
scalar_t num_geom = 0;
accscalar_t logprob = compat_log1p(-prob);
while (1) {
U = standard_uniform.sample();
accscalar_t geom = compat_ceil(compat_log(U) / logprob);
geom_sum += geom;
if (geom_sum > count) {
break;
}
num_geom = num_geom + 1;
}
return num_geom;
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t btrs(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
scalar_t k;
accscalar_t U, V, us;
// This is spq in the paper.
const accscalar_t stddev = compat_sqrt(count * prob * (1 - prob));
// Other coefficients for Transformed Rejection sampling.
const accscalar_t b = 1.15 + 2.53 * stddev;
const accscalar_t a = -0.0873 + 0.0248 * b + 0.01 * prob;
const accscalar_t c = count * prob + 0.5;
const accscalar_t v_r = 0.92 - 4.2 / b;
const accscalar_t r = prob / (1 - prob);
const accscalar_t alpha = (2.83 + 5.1 / b) * stddev;
const accscalar_t m = compat_floor((count + 1) * prob);
while (1) {
U = standard_uniform.sample() - 0.5;
V = standard_uniform.sample();
us = 0.5 - compat_abs(U);
k = static_cast<scalar_t>(compat_floor((2 * a / us + b) * U + c));
// Reject non-sensical answers.
if (k < 0 || k > count) {
continue;
}
// Region for which the box is tight, and we can return our calculated value.
// This should happen 0.86 * v_r times. In the limit as n * p is large,
// the acceptance rate converges to ~79% (and in the lower regime it is ~24%).
if (us >= 0.07 && V <= v_r) {
return k;
}
// This deviates from Hormann's BTRS algorithm, as there is a log missing.
// For all (u, v) pairs outside of the bounding box, this calculates the
// transformed-reject ratio.
V = compat_log(V * alpha / (a / (us * us) + b));
accscalar_t upperbound =
((m + 0.5) * compat_log((m + 1) / (r * (count - m + 1))) +
(count + 1) * compat_log((count - m + 1) / (count - k + 1)) +
(k + 0.5) * compat_log(r * (count - k + 1) / (k + 1)) +
stirling_approx_tail<accscalar_t>(m) + stirling_approx_tail<accscalar_t>(count - m) -
stirling_approx_tail<accscalar_t>(k) - stirling_approx_tail<accscalar_t>(count - k));
if (V <= upperbound) {
return k;
}
}
}
template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
C10_DEVICE scalar_t sample_binomial(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
if (count <= 0.0 || prob <= 0.0) {
return 0;
} else if (prob >= 1.0) {
return count;
} else if (prob <= 0.5) {
if (count * prob >= 10.0) {
// btrs
return btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
} else {
// binomial inversion
return binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
}
} else if (prob > 0.5) {
scalar_t qprob = 1.0 - prob;
if (count * qprob >= 10.0) {
// btrs
return count - btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
} else {
// count - binomial inversion
return count - binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
}
} else {
// prob is nan?
return static_cast<scalar_t>(NAN);
}
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library] in ATen/native/Math.h.
*/
template<typename scalar_t, typename accscalar_t>
C10_DEVICE static inline scalar_t digamma_one(scalar_t x) {
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
if (x == 0) {
return INFINITY;
}
accscalar_t additional_summand = 0;
int x_is_integer = x == compat_floor(x);
if (x < 0) {
if (x_is_integer) {
return INFINITY;
}
// it is more standard to write this as recursion, but
// nvcc does not like that
additional_summand = -c10::pi<scalar_t> /
compat_tan(c10::pi<scalar_t> * x);
x = 1 - x;
}
// Push x to be >= 10
accscalar_t result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10 + additional_summand;
}
// Compute asymptotic digamma
static const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t y = 0;
if (x < 1.0e17f) {
accscalar_t z = 1.0 / (x * x);
y = z * polevl<accscalar_t>(z, A, 6);
}
return static_cast<scalar_t>(
result + compat_log(x) - (0.5f / x) - y + additional_summand);
}
// Computes the reparameterized gradient -(d/dalpha cdf(x;alpha)) / pdf(x;alpha)
// for random number x drawn from a standard Gamma distribution Gamma(alpha).
template <typename scalar_t, typename accscalar_t>
C10_HOST_DEVICE scalar_t standard_gamma_grad_one(scalar_t alpha_, scalar_t x_) {
// Use a Taylor series expansion for small x.
accscalar_t x = static_cast<accscalar_t>(x_);
accscalar_t alpha = static_cast<accscalar_t>(alpha_);
if (x < 0.8f) {
accscalar_t numer = 1;
accscalar_t denom = alpha;
auto series1 = numer / denom;
auto series2 = numer / (denom * denom);
for (int i = 1; i <= 5; ++i) {
numer *= -x / static_cast<accscalar_t>(i);
denom += 1;
series1 += numer / denom;
series2 += numer / (denom * denom);
}
const auto pow_x_alpha = compat_pow(x, alpha);
const auto gamma_pdf = compat_pow(x, alpha - 1) * compat_exp(-x);
const auto gamma_cdf = pow_x_alpha * series1;
const auto gamma_cdf_alpha =
(compat_log(x) - digamma_one<accscalar_t, accscalar_t>(alpha)) *
gamma_cdf -
pow_x_alpha * series2;
const auto result = -gamma_cdf_alpha / gamma_pdf;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : static_cast<scalar_t>(result);
}
// Use a Rice saddle point expansion for large alpha.
if (alpha > 8.0f) {
if (0.9f * alpha <= x && x <= 1.1f * alpha) {
const auto numer_1 = 1 + 24 * alpha * (1 + 12 * alpha);
const auto numer_2 = 1440 * (alpha * alpha) + 6 * x * (53 - 120 * x)
- 65 * x * x / alpha + alpha * (107 + 3600 * x);
const auto denom = 1244160 * (alpha * alpha) * (alpha * alpha);
return static_cast<scalar_t>(numer_1 * numer_2 / denom);
}
const auto denom = compat_sqrt(8 * alpha);
const auto term2 = denom / (alpha - x);
const auto term3 = compat_pow(
x - alpha - alpha * compat_log(x / alpha),
static_cast<accscalar_t>(-1.5));
const auto term23 = (x < alpha) ? term2 - term3 : term2 + term3;
const auto term1 = compat_log(x / alpha) * term23 -
compat_sqrt(2 / alpha) * (alpha + x) / ((alpha - x) * (alpha - x));
const auto stirling = 1 + 1 / (12 * alpha) * (1 + 1 / (24 * alpha));
const auto numer = x * term1;
return static_cast<scalar_t>(-stirling * numer / denom);
}
// Use a bivariate rational approximation to the reparameterized gradient.
const auto u = compat_log(x / alpha);
const auto v = compat_log(alpha);
static const accscalar_t coef_uv[3][8] = {
{0.16009398, -0.094634809, 0.025146376, -0.0030648343,
1, 0.32668115, 0.10406089, 0.0014179084},
{0.53487893, 0.1298071, 0.065735949, -0.0015649758,
0.16639465, 0.020070113, -0.0035938915, -0.00058392623},
{0.040121004, -0.0065914022, -0.0026286047, -0.0013441777,
0.017050642, -0.0021309326, 0.00085092367, -1.5247877e-07},
};
accscalar_t coef_v[8];
for (int i = 0; i < 8; ++ i) {
coef_v[i] = coef_uv[0][i] + u * (coef_uv[1][i] + u * coef_uv[2][i]);
}
const auto p = coef_v[0] + v * (coef_v[1] + v * (coef_v[2] + v * coef_v[3]));
const auto q = coef_v[4] + v * (coef_v[5] + v * (coef_v[6] + v * coef_v[7]));
return static_cast<scalar_t>(compat_exp(p / q));
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
// Assumes x is close to zero and uses a Taylor expansion.
template <typename scalar_t, typename accscalar_t>
C10_DEVICE static inline scalar_t _beta_grad_alpha_small(scalar_t x, scalar_t alpha, scalar_t beta) {
const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha)
- digamma_one<scalar_t, accscalar_t>(alpha + beta) - compat_log(x);
scalar_t numer = 1;
scalar_t series = numer / alpha * (factor + 1 / alpha);
for (int i = 1; i <= 10; ++i) {
scalar_t casted_i = static_cast<scalar_t>(i);
numer *= (casted_i - beta) * x / casted_i;
const scalar_t denom = alpha + casted_i;
series += numer / denom * (factor + 1 / denom);
}
const scalar_t result = x * compat_pow(1 - x, -beta) * series;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt beta.
// Assumes x is close to zero and uses a Taylor expansion.
template <typename scalar_t, typename accscalar_t>
C10_DEVICE static inline scalar_t _beta_grad_beta_small(scalar_t x, scalar_t alpha, scalar_t beta) {
const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha + beta) - digamma_one<scalar_t, accscalar_t>(beta);
scalar_t numer = 1, betas = 1, dbetas = 0, series = factor / alpha;
for (int i = 1; i <= 8; ++i) {
scalar_t casted_i = static_cast<scalar_t>(i);
numer *= -x / casted_i;
dbetas = dbetas * (beta - casted_i) + betas;
betas = betas * (beta - casted_i);
series += numer / (alpha + casted_i) * (dbetas + factor * betas);
}
const scalar_t result = -compat_pow(1 - x, 1 - beta) * series;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
}
// Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
// Assumes alpha and beta are both large and uses a Rice saddle point expansion.
// To ensure numerical stability, this computation is performed at higher precision.
template<typename scalar_t, typename accscalar_t>
C10_DEVICE static inline scalar_t _beta_grad_alpha_mid(accscalar_t x, accscalar_t alpha, accscalar_t beta) {
const accscalar_t total = alpha + beta;
const accscalar_t mean = alpha / total;
const accscalar_t std = compat_sqrt(alpha * beta / (total + 1)) / total;
if (mean - 0.1 * std <= x && x <= mean + 0.1 * std) {
// Avoid the singularity at x = mean.
const accscalar_t poly = 47 * x * (beta * beta) * (beta * beta) + alpha * (
(43 + 20 * (16 + 27 * beta) * x) * (beta * beta) * beta + alpha * (
3 * (59 + 180 * beta - 90 * x) * (beta * beta) + alpha * (
(453 + 1620 * beta * (1 - x) - 455 * x) * beta + alpha * (
8 * (1 - x) * (135 * beta - 11)))));
const accscalar_t prefactor_num = (1 + 12 * alpha) * (1 + 12 * beta) / (total * total);
const accscalar_t prefactor_den = 12960 * alpha * alpha * alpha * beta * beta * (1 + 12 * total);
return prefactor_num / (1 - x) * poly / prefactor_den;
}
const accscalar_t prefactor = -x / compat_sqrt(2 * alpha * beta / total);
const accscalar_t stirling = (1 + 1 / (12 * alpha) + 1 / (288 * alpha * alpha))
* (1 + 1 / (12 * beta) + 1 / (288 * beta * beta))
/ (1 + 1 / (12 * total) + 1 / (288 * total * total));
const accscalar_t term1_num = 2 * (alpha * alpha) * (x - 1) + alpha * beta * (x - 1) - x * (beta * beta);
const accscalar_t axbx = alpha * (x - 1) + beta * x;
const accscalar_t term1_den = compat_sqrt(2 * alpha / beta) * compat_pow(total, static_cast<accscalar_t>(1.5f)) * axbx * axbx;
const accscalar_t term1 = term1_num / term1_den;
const accscalar_t term2 = 0.5f * compat_log(alpha / (total * x));
const accscalar_t term3_num = compat_sqrt(8 * alpha * beta / total);
const accscalar_t term3_den = beta * x + alpha * (x - 1);
const accscalar_t term3 = term3_num / term3_den;
const accscalar_t term4_base = beta * compat_log(beta / (total * (1 - x))) +
alpha * compat_log(alpha / (total * x));
const accscalar_t term4 = compat_pow(term4_base, static_cast<accscalar_t>(-1.5f));
const accscalar_t term1234 = term1 + term2 * (term3 + (x < mean ? term4 : -term4));
return static_cast<scalar_t>(stirling * prefactor * term1234);
}
// Computes a scaled reparameterized gradient
// -(d/dalpha cdf(x;alpha,beta)) / pdf(x;alpha,beta) / (1-x)
// for random number x drawn from a Beta distribution Beta(alpha,beta).
// This function inputs total=alpha+beta to make it easy to implement
// Dirichlet reparameterized gradients in terms of Betas.
template<typename scalar_t, typename accscalar_t>
C10_HOST_DEVICE static inline scalar_t dirichlet_grad_one(scalar_t x, scalar_t alpha, scalar_t total) {
accscalar_t x_ = static_cast<accscalar_t>(x);
accscalar_t alpha_ = static_cast<accscalar_t>(alpha);
accscalar_t total_ = static_cast<accscalar_t>(total);
const scalar_t beta = total - alpha;
const accscalar_t beta_ = total_ - alpha_;
const scalar_t boundary = total * x * (1 - x);
// Use an asymptotic approximation for x close to 0.
if (x <= 0.5f && boundary < 2.5f) {
return _beta_grad_alpha_small<scalar_t, accscalar_t>(x, alpha, beta);
}
// Use an asymptotic approximation for x close to 1.
if (x >= 0.5f && boundary < 0.75f) {
return -_beta_grad_beta_small<scalar_t, accscalar_t>(1 - x, beta, alpha);
}
// Use an asymptotic approximation when alpha and (total - alpha) are both large.
if (alpha > 6 && beta > 6) {
return _beta_grad_alpha_mid<scalar_t, accscalar_t>(x_, alpha_, beta_);
}
// Use a rational correction to an analytic approximation.
static const accscalar_t c[2][3][3][4] = {
{{{1.003668233, -0.01061107488, -0.0657888334, 0.01201642863},
{0.6336835991, -0.3557432599, 0.05486251648, -0.001465281033},
{-0.03276231906, 0.004474107445, 0.002429354597, -0.0001557569013}},
{{0.221950385, -0.3187676331, 0.01799915743, 0.01074823814},
{-0.2951249643, 0.06219954479, 0.01535556598, 0.001550077057},
{0.02155310298, 0.004170831599, 0.001292462449, 6.976601077e-05}},
{{-0.05980841433, 0.008441916499, 0.01085618172, 0.002319392565},
{0.02911413504, 0.01400243777, -0.002721828457, 0.000751041181},
{0.005900514878, -0.001936558688, -9.495446725e-06, 5.385558597e-05}}},
{{{1, -0.02924021934, -0.04438342661, 0.007285809825},
{0.6357567472, -0.3473456711, 0.05454656494, -0.002407477521},
{-0.03301322327, 0.004845219414, 0.00231480583, -0.0002307248149}},
{{0.5925320577, -0.1757678135, 0.01505928619, 0.000564515273},
{0.1014815858, -0.06589186703, 0.01272886114, -0.0007316646956},
{-0.007258481865, 0.001096195486, 0.0003934994223, -4.12701925e-05}},
{{0.06469649321, -0.0236701437, 0.002902096474, -5.896963079e-05},
{0.001925008108, -0.002869809258, 0.0008000589141, -6.063713228e-05},
{-0.0003477407336, 6.959756487e-05, 1.097287507e-05, -1.650964693e-06}}},
};
const accscalar_t u = compat_log(x_);
const accscalar_t a = compat_log(alpha_) - u;
const accscalar_t b = compat_log(total_) - a;
const accscalar_t pow_u[3] = {1, u, u * u};
const accscalar_t pow_a[3] = {1, a, a * a};
accscalar_t p = 0.0;
accscalar_t q = 0.0;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
const accscalar_t ua = pow_u[i] * pow_a[j];
p += ua * (c[0][i][j][0] + b * (c[0][i][j][1] + b * (c[0][i][j][2] + b * c[0][i][j][3])));
q += ua * (c[1][i][j][0] + b * (c[1][i][j][1] + b * (c[1][i][j][2] + b * c[1][i][j][3])));
}
}
const accscalar_t approx = x_ * (digamma_one<scalar_t, accscalar_t>(total_) - digamma_one<scalar_t, accscalar_t>(alpha_)) / beta_;
return static_cast<scalar_t>(p / q * approx);
}
} // namespace
|