Spaces:
Running
Running
File size: 20,056 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/env.h>
#include <c10/util/irange.h>
namespace at::native {
using conv_depthwise2d_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 2>);
DECLARE_DISPATCH(conv_depthwise2d_backward_fn, conv_depthwise2d_backward_stub);
using conv_depthwise3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(conv_depthwise3d_backward_fn, conv_depthwise3d_backward_stub);
using cudnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_backward_fn, cudnn_convolution_backward_stub);
using mps_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mps_convolution_backward_fn, mps_convolution_backward_stub);
using cudnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, bool, std::array<bool,2>);
DECLARE_DISPATCH(cudnn_convolution_transpose_backward_fn, cudnn_convolution_transpose_backward_stub);
using miopen_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_backward_fn, miopen_convolution_backward_stub);
using miopen_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_convolution_transpose_backward_fn, miopen_convolution_transpose_backward_stub);
using miopen_depthwise_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, bool, bool, std::array<bool,3>);
DECLARE_DISPATCH(miopen_depthwise_convolution_backward_fn, miopen_depthwise_convolution_backward_stub);
using mkldnn_convolution_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_backward_fn, mkldnn_convolution_backward_stub);
using mkldnn_convolution_transpose_fn = Tensor(*)(const Tensor&, const Tensor&, const c10::optional<Tensor>&,
IntArrayRef, IntArrayRef, IntArrayRef, IntArrayRef, int64_t);
DECLARE_DISPATCH(mkldnn_convolution_transpose_fn, mkldnn_convolution_transpose_stub);
using mkldnn_convolution_transpose_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, int64_t, std::array<bool,3>);
DECLARE_DISPATCH(mkldnn_convolution_transpose_backward_fn, mkldnn_convolution_transpose_backward_stub);
using slow_conv_dilated2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated2d_backward_fn, slow_conv_dilated2d_backward_stub);
using slow_conv_dilated3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, std::array<bool, 3>);
DECLARE_DISPATCH(slow_conv_dilated3d_backward_fn, slow_conv_dilated3d_backward_stub);
using slow_conv_transpose2d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose2d_backward_fn, slow_conv_transpose2d_backward_stub);
using slow_conv_transpose3d_backward_fn = std::tuple<at::Tensor,at::Tensor,at::Tensor>(*)(
const at::Tensor&, const at::Tensor&, const at::Tensor&, at::IntArrayRef, at::IntArrayRef,
at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, std::array<bool,3>);
DECLARE_DISPATCH(slow_conv_transpose3d_backward_fn, slow_conv_transpose3d_backward_stub);
namespace {
static bool cudnnv8_heuristic_mode_b = c10::utils::check_env("TORCH_CUDNN_USE_HEURISTIC_MODE_B") == true;
}
static inline bool cudnnv8_enabled_check_debug() {
static bool cudnnv8_flag = c10::utils::check_env("TORCH_CUDNN_V8_API_DISABLED") != true;
static bool cudnnv8_debug = c10::utils::check_env("TORCH_CUDNN_V8_API_DEBUG") == true;
static uint8_t cudnnv8_debugcount = 0;
if (cudnnv8_debug == 1 && cudnnv8_debugcount < 10) {
TORCH_WARN("TORCH_CUDNN_V8_DEBUG ON, V8 ON: ", cudnnv8_flag, " TORCH_CUDNN_USE_HEURISTIC_MODE B: ", cudnnv8_heuristic_mode_b);
cudnnv8_debugcount++;
}
return cudnnv8_flag == 1;
}
static inline bool cudnnv8_use_heur_mode_b() {
return cudnnv8_heuristic_mode_b;
}
// Keep in sync with py::enum_ in Module.cpp
enum class ConvBackend {
CudaDepthwise2d,
CudaDepthwise3d,
Cudnn,
CudnnTranspose,
Empty,
Miopen,
MiopenDepthwise,
MiopenTranspose,
Mkldnn,
MkldnnTranspose,
MkldnnEmpty,
NnpackSpatial,
Overrideable,
Slow2d,
Slow3d,
SlowDilated2d,
SlowDilated3d,
SlowTranspose2d,
SlowTranspose3d,
Winograd3x3Depthwise,
Xnnpack2d,
Mps,
MpsTranspose,
};
// Overload for selecting the convolution backend from the full set of convolution inputs.
// This overload is exposed to python for testing, etc.
TORCH_API ConvBackend select_conv_backend(
const Tensor& input, const Tensor& weight, const c10::optional<Tensor>& bias_opt,
SymIntArrayRef stride, SymIntArrayRef padding, SymIntArrayRef dilation,
bool transposed, SymIntArrayRef output_padding, c10::SymInt groups, const at::OptionalSymIntArrayRef bias_sizes_opt);
TORCH_API at::MemoryFormat _determine_backend_memory_format(const Tensor& input,
const Tensor& weight,
const ConvBackend backend);
// ---------------------------------------------------------------------
//
// Math
//
// ---------------------------------------------------------------------
constexpr int input_batch_size_dim = 0; // also grad_input
constexpr int input_channels_dim = 1;
constexpr int output_batch_size_dim = 0; // also grad_output
constexpr int output_channels_dim = 1;
constexpr int weight_output_channels_dim = 0;
constexpr int weight_input_channels_dim = 1;
// Often written as 2 + max_dim (extra dims for batch size and channels)
constexpr int max_dim = 3;
// ---------------------------------------------------------------------
//
// Checking
//
// ---------------------------------------------------------------------
// Used on pad, stride and dilation
static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, const char* arg_name)
{
TORCH_CHECK(args.size() <= expected_size,
"Too many ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
TORCH_CHECK(args.size() >= expected_size,
"Not enough ", arg_name, " values (", args.size(), ") supplied, expecting ",
expected_size, " (while checking arguments for ", c, ")");
auto num_negative_values = std::count_if(args.begin(), args.end(), [](int x){return x < 0;});
if (num_negative_values > 0){
std::stringstream ss;
ss << arg_name << " should be greater than zero but got (";
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
AT_ERROR(ss.str());
}
}
// NOTE [ Convolution checks ]
//
// NB: For many call sites, it is not strictly necessary to check all of
// these relationships (for example, for forward convolution, we compute
// the size of output ourselves, so we don't actually need to check
// output. However, writing a single function that does everything
// means we get to reuse it for both forwards and all backwards
// variants, even when the set of "real" inputs varies. The magic of
// relational computing!
//
// (There is one downside, which is that it is slightly harder to write
// error messages which are able to distinguish between real inputs
// (which the user can change) and computed inputs (which the user can
// only indirectly affect). It would be an interesting exercise to
// come up with a general framework to handle such situations.)
static void convolution_shape_check(
CheckedFrom c,
const TensorGeometryArg& input, const TensorGeometryArg& weight, const TensorGeometryArg& output,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups)
{
check_args(c, padding, input->dim() - 2, "padding");
check_args(c, stride, padding.size(), "stride");
check_args(c, dilation, padding.size(), "dilation");
// Input
checkDimRange(c, input, 3, 6 /* exclusive */);
checkSize_symint(c, input, input_channels_dim, weight->size(1) * groups);
// Weight
checkSameDim(c, input, weight);
// TODO: check that output->size() matches output_sizes
// TODO: check that weight matches output->sizes()
checkSameDim(c, input, output);
}
// NB: conv_output_size and conv_input_size are not bijections,
// as conv_output_size loses information; this is why conv_input_size
// takes an extra output_padding argument to resolve the ambiguity.
template <typename T>
static inline std::vector<T> _conv_output_size(
ArrayRef<T> input_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, ArrayRef<T> stride, ArrayRef<T> dilation = ArrayRef<T>()
) {
// ASSERT(input_size.size() > 2)
// ASSERT(input_size.size() == weight_size.size())
bool has_dilation = !dilation.empty();
auto dim = input_size.size();
std::vector<T> output_size(dim);
output_size[0] = input_size[input_batch_size_dim];
output_size[1] = weight_size[weight_output_channels_dim];
for (const auto d : c10::irange(2, dim)) {
auto dilation_ = has_dilation ? dilation[d - 2] : 1;
auto kernel = dilation_ * (weight_size[d] - 1) + 1;
output_size[d] = (input_size[d] + (2 * padding[d - 2]) - kernel) / stride[d - 2] + 1;
}
return output_size;
}
static inline std::vector<int64_t> conv_output_size(
IntArrayRef input_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation = IntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
static inline std::vector<c10::SymInt> conv_output_size(
SymIntArrayRef input_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, SymIntArrayRef stride, SymIntArrayRef dilation = SymIntArrayRef()
) {
return _conv_output_size(input_size, weight_size, padding, stride, dilation);
}
template <typename T>
std::vector<T> _conv_input_size(
ArrayRef<T> output_size, ArrayRef<T> weight_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, ArrayRef<T> stride, ArrayRef<T> dilation, T groups
) {
// ASSERT(output_size.size() > 2)
// ASSERT(output_size.size() == weight_size.size())
auto dim = output_size.size();
std::vector<T> input_size(dim);
input_size[0] = output_size[output_batch_size_dim];
input_size[1] = weight_size[weight_input_channels_dim] * groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = (weight_size[d] - 1) * dilation[d - 2] + 1;
input_size[d] = (output_size[d] - 1) * stride[d - 2] - (padding[d - 2] * 2) +
kernel + output_padding[d - 2];
}
return input_size;
}
static inline std::vector<c10::SymInt> conv_input_size(
SymIntArrayRef output_size, SymIntArrayRef weight_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, SymIntArrayRef stride, SymIntArrayRef dilation, c10::SymInt groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_input_size(
IntArrayRef output_size, IntArrayRef weight_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_input_size(output_size, weight_size, padding, output_padding, stride, dilation, groups);
}
template <typename T>
std::vector<T> _conv_weight_size(
ArrayRef<T> input_size, ArrayRef<T> output_size,
ArrayRef<T> padding, ArrayRef<T> output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
auto dim = input_size.size();
std::vector<T> weight_size(dim);
weight_size[0] = output_size[1];
weight_size[1] = input_size[1] / groups;
for (const auto d : c10::irange(2, dim)) {
auto kernel = input_size[d] - (output_size[d] - 1) * stride[d - 2]
+ padding[d - 2] * 2 - output_padding[d - 2];
weight_size[d] = (kernel - 1) / dilation[d - 2] + 1;
}
return weight_size;
}
static inline std::vector<c10::SymInt> conv_weight_size(
SymIntArrayRef input_size, SymIntArrayRef output_size,
SymIntArrayRef padding, SymIntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline std::vector<int64_t> conv_weight_size(
IntArrayRef input_size, IntArrayRef output_size,
IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups
) {
return _conv_weight_size(input_size, output_size, padding, output_padding, stride, dilation, groups);
}
static inline Tensor reshape_bias(int64_t dim, const Tensor& bias) {
std::vector<int64_t> shape(dim, 1);
shape[1] = -1;
return bias.reshape(shape);
}
static inline at::MemoryFormat cudnn_conv_suggest_memory_format(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithCuDNN() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return at::MemoryFormat::Contiguous;
}
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
auto weight_ndim = weight.ndimension();
bool can_use_cudnn_channels_last_2d = (cudnn_version >= 7603) && (weight_ndim == 4) && (
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast)
);
if (can_use_cudnn_channels_last_2d) {
return at::MemoryFormat::ChannelsLast;
}
bool can_use_cudnn_channels_last_3d = (cudnn_version >= 8005) && (weight_ndim == 5) && (
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d)
);
if (can_use_cudnn_channels_last_3d) {
return at::MemoryFormat::ChannelsLast3d;
}
return at::MemoryFormat::Contiguous;
}
// controls whether emptyCache will be called following cudnn conv benchmarking
TORCH_API void _cudnn_set_conv_benchmark_empty_cache(bool enable);
TORCH_API bool _cudnn_get_conv_benchmark_empty_cache();
static inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithMIOpen() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
bool can_use_miopen_channels_last_2d = false;
#if defined(USE_ROCM) && (ROCM_VERSION >= 40300)
// TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
// See #64427
static c10::optional<bool> PYTORCH_MIOPEN_SUGGEST_NHWC = c10::utils::check_env("PYTORCH_MIOPEN_SUGGEST_NHWC");
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
can_use_miopen_channels_last_2d = PYTORCH_MIOPEN_SUGGEST_NHWC && *PYTORCH_MIOPEN_SUGGEST_NHWC && (
( (input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast) )
);
#endif
bool can_use_miopen_channels_last_3d = false;
return can_use_miopen_channels_last_2d || can_use_miopen_channels_last_3d;
}
static inline bool mkldnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
// disable NHWC for MkldnnCPU tensor.
if (input.is_mkldnn() || weight.is_mkldnn()) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_mkldnn_channels_last_2d =
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast);
bool can_use_mkldnn_channels_last_3d =
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d);
return can_use_mkldnn_channels_last_2d || can_use_mkldnn_channels_last_3d;
}
static inline bool thnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_thnn_channels_last_2d = input.device().is_cpu() && (
(input_memory_format == at::MemoryFormat::ChannelsLast) || (
weight_memory_format == at::MemoryFormat::ChannelsLast));
return can_use_thnn_channels_last_2d;
}
static inline bool xpu_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
// check layout only for xpu tensor.
if (!input.is_xpu() || !weight.is_xpu()) {
return false;
}
// disable NHWC for float64 input.
if (input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
}
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
bool can_use_xpu_channels_last_2d =
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast);
bool can_use_xpu_channels_last_3d =
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d);
return can_use_xpu_channels_last_2d || can_use_xpu_channels_last_3d;
}
} // namespace at::native
|