Spaces:
Running
Running
File size: 14,068 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#pragma once
/*
Provides a subset of CUDA BLAS functions as templates:
gemm<Dtype>(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c,
ldc)
gemv<Dtype>(transa, m, n, alpha, a, lda, x, incx, beta, y, incy)
dot<Dtype>(n, x, incx, y, incy, result)
where Dtype is double, float, at::Half or at::BFloat16 (ROCm, NOT for dot).
The functions are available in at::cuda::blas namespace.
*/
#include <ATen/cuda/CUDAContext.h>
#include <ATen/OpMathType.h>
namespace at::cuda::blas {
// RAII guard that sets the CuBLAS pointer mode and restores it to
// its previous value when the guard is destroyed
class PointerModeGuard {
public:
PointerModeGuard(cublasHandle_t handle, cublasPointerMode_t mode) :
handle(handle) {
TORCH_CUDABLAS_CHECK(cublasGetPointerMode(handle, &previous_mode));
TORCH_CUDABLAS_CHECK(cublasSetPointerMode(handle, mode));
}
~PointerModeGuard() {
cublasSetPointerMode(handle, previous_mode);
}
private:
cublasHandle_t handle;
cublasPointerMode_t previous_mode;
};
/* LEVEL 3 BLAS FUNCTIONS */
#define CUDABLAS_GEMM_ARGTYPES(Dtype) \
char transa, char transb, int64_t m, int64_t n, int64_t k, at::opmath_type<Dtype> alpha, \
const Dtype *a, int64_t lda, const Dtype *b, int64_t ldb, at::opmath_type<Dtype> beta,\
Dtype *c, int64_t ldc
#define CUDABLAS_GEMM_ARGS(Dtype) transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc
template <typename Dtype>
inline void gemm(CUDABLAS_GEMM_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::gemm: not implemented for ", typeid(Dtype).name());
}
template <>
void gemm<double>(CUDABLAS_GEMM_ARGTYPES(double));
template <>
void gemm<float>(CUDABLAS_GEMM_ARGTYPES(float));
template <>
void gemm<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>));
template <>
void gemm<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>));
template <>
void gemm<at::Half>(CUDABLAS_GEMM_ARGTYPES(at::Half));
template <>
void gemm<at::BFloat16>(CUDABLAS_GEMM_ARGTYPES(at::BFloat16));
template <typename Dtype>
inline void gemm_internal(CUDABLAS_GEMM_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::gemm_internal: not implemented for ", typeid(Dtype).name());
}
template <>
void gemm_internal<double>(CUDABLAS_GEMM_ARGTYPES(double));
template <>
void gemm_internal<float>(CUDABLAS_GEMM_ARGTYPES(float));
template <>
void gemm_internal<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>));
template <>
void gemm_internal<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>));
template <>
void gemm_internal<at::Half>(CUDABLAS_GEMM_ARGTYPES(at::Half));
template <>
void gemm_internal<at::BFloat16>(CUDABLAS_GEMM_ARGTYPES(at::BFloat16));
#if (!defined(USE_ROCM) && !defined(_MSC_VER)) || (defined(USE_ROCM) && ROCM_VERSION >= 50700)
enum GEMMAndBiasActivationEpilogue {
None,
RELU,
GELU,
};
// NOTE: GELU activation is not supported prior to CUDA 11.4 and will
// do nothing if passed in that case.
template <typename Dtype>
void gemm_and_bias(
bool transpose_mat1,
bool transpose_mat2,
int64_t m,
int64_t n,
int64_t k,
at::opmath_type<Dtype> alpha_val,
const Dtype* mat1_ptr,
int64_t mat1_ld,
const Dtype* mat2_ptr,
int64_t mat2_ld,
const Dtype* bias,
Dtype* result_ptr,
int64_t result_ld,
GEMMAndBiasActivationEpilogue activation = GEMMAndBiasActivationEpilogue::None);
void int8_gemm(
bool transpose_mat1,
bool transpose_mat2,
int64_t m,
int64_t n,
int64_t k,
const int8_t* mat1_ptr,
int64_t mat1_ld,
const int8_t* mat2_ptr,
int64_t mat2_ld,
int32_t* result_ptr,
int64_t result_ld);
void scaled_gemm(
char transa,
char transb,
int64_t m,
int64_t n,
int64_t k,
const void* mat1_ptr,
const void* mat1_scale_ptr,
int64_t mat1_ld,
ScalarType mat1_dtype,
const void* mat2_ptr,
const void* mat2_scale_ptr,
int64_t mat2_ld,
ScalarType mat2_dtype,
const void* bias_ptr,
ScalarType bias_dtype,
void* result_ptr,
const void* result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
void* amax_ptr,
bool use_fast_accum);
#endif
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) \
char transa, char transb, int64_t m, int64_t n, int64_t k, at::opmath_type<Dtype> alpha, \
const Dtype *a, int64_t lda, int64_t stridea, \
const Dtype *b, int64_t ldb, int64_t strideb, \
at::opmath_type<Dtype> beta, Dtype *c, int64_t ldc, int64_t stridec, int64_t num_batches
#define CUDABLAS_BGEMM_ARGS(Dtype) \
transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb, strideb, beta, c, ldc, stridec, num_batches
template <typename Dtype>
inline void bgemm(CUDABLAS_BGEMM_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::bgemm: not implemented for ", typeid(Dtype).name());
}
template <>
void bgemm<double>(CUDABLAS_BGEMM_ARGTYPES(double));
template <>
void bgemm<float>(CUDABLAS_BGEMM_ARGTYPES(float));
template <>
void bgemm<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>));
template <>
void bgemm<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>));
template <>
void bgemm<at::Half>(CUDABLAS_BGEMM_ARGTYPES(at::Half));
template <>
void bgemm<at::BFloat16>(CUDABLAS_BGEMM_ARGTYPES(at::BFloat16));
template <typename Dtype>
inline void bgemm_internal(CUDABLAS_BGEMM_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::bgemm_internal: not implemented for ", typeid(Dtype).name());
}
template <>
void bgemm_internal<double>(CUDABLAS_BGEMM_ARGTYPES(double));
template <>
void bgemm_internal<float>(CUDABLAS_BGEMM_ARGTYPES(float));
template <>
void bgemm_internal<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>));
template <>
void bgemm_internal<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>));
template <>
void bgemm_internal<at::Half>(CUDABLAS_BGEMM_ARGTYPES(at::Half));
template <>
void bgemm_internal<at::BFloat16>(CUDABLAS_BGEMM_ARGTYPES(at::BFloat16));
#if defined(USE_ROCM) && ROCM_VERSION <= 50500
// ROCm 5.6 hipblas matches the const Dtype *A API, but prior hipblas does not.
#define CUDABLAS_TRSM_ARGTYPES(Dtype) \
hipblasHandle_t handle, hipblasSideMode_t side, hipblasFillMode_t uplo, \
hipblasOperation_t trans, hipblasDiagType_t diag, int m, int n, \
const Dtype *alpha, Dtype *A, int lda, Dtype *B, int ldb
#else
#define CUDABLAS_TRSM_ARGTYPES(Dtype) \
cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo, \
cublasOperation_t trans, cublasDiagType_t diag, int m, int n, \
const Dtype *alpha, const Dtype *A, int lda, Dtype *B, int ldb
#endif
template <typename Dtype>
inline void trsm(CUDABLAS_TRSM_ARGTYPES(Dtype)) {
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::trsm: not implemented for ", typeid(Dtype).name());
}
template <>
TORCH_CUDA_CU_API void trsm<float>(CUDABLAS_TRSM_ARGTYPES(float));
template <>
TORCH_CUDA_CU_API void trsm<double>(CUDABLAS_TRSM_ARGTYPES(double));
template <>
TORCH_CUDA_CU_API void trsm<c10::complex<float>>(CUDABLAS_TRSM_ARGTYPES(c10::complex<float>));
template <>
TORCH_CUDA_CU_API void trsm<c10::complex<double>>(CUDABLAS_TRSM_ARGTYPES(c10::complex<double>));
#define CUDABLAS_TRSM_BATCHED_ARGTYPES(Dtype) \
cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo, \
cublasOperation_t trans, cublasDiagType_t diag, int m, int n, \
const Dtype *alpha, Dtype *A[], int lda, Dtype *B[], int ldb, \
int batchCount
template <typename Dtype>
inline void trsmBatched(CUDABLAS_TRSM_BATCHED_ARGTYPES(Dtype)) {
TORCH_INTERNAL_ASSERT(
false,
"at::cuda::blas::trsmBatched: not implemented for ",
typeid(Dtype).name());
}
template <>
TORCH_CUDA_CU_API void trsmBatched<float>(CUDABLAS_TRSM_BATCHED_ARGTYPES(float));
template <>
TORCH_CUDA_CU_API void trsmBatched<double>(CUDABLAS_TRSM_BATCHED_ARGTYPES(double));
template <>
TORCH_CUDA_CU_API void trsmBatched<c10::complex<float>>(CUDABLAS_TRSM_BATCHED_ARGTYPES(c10::complex<float>));
template <>
TORCH_CUDA_CU_API void trsmBatched<c10::complex<double>>(CUDABLAS_TRSM_BATCHED_ARGTYPES(c10::complex<double>));
/* LEVEL 2 BLAS FUNCTIONS */
#define CUDABLAS_GEMV_ARGTYPES(Dtype) \
char trans, int64_t m, int64_t n, Dtype alpha, const Dtype *a, int64_t lda, \
const Dtype *x, int64_t incx, Dtype beta, Dtype *y, int64_t incy
template <typename Dtype>
inline void gemv(CUDABLAS_GEMV_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::gemv: not implemented for ", typeid(Dtype).name());
}
template <>
void gemv<double>(CUDABLAS_GEMV_ARGTYPES(double));
template <>
void gemv<float>(CUDABLAS_GEMV_ARGTYPES(float));
template <>
void gemv<c10::complex<double>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<double>));
template <>
void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>));
template <>
void gemv<at::Half>(CUDABLAS_GEMV_ARGTYPES(at::Half));
template <>
void gemv<at::BFloat16>(CUDABLAS_GEMV_ARGTYPES(at::BFloat16));
/* LEVEL 1 BLAS FUNCTIONS */
#define CUDABLAS_DOT_ARGTYPES(Dtype) \
cublasHandle_t handle, int n, const Dtype *x, int incx, const Dtype *y, \
int incy, Dtype *result
template <typename Dtype>
inline void dot(CUDABLAS_DOT_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::dot: not implemented for ", typeid(Dtype).name());
}
template <>
void dot<double>(CUDABLAS_DOT_ARGTYPES(double));
template <>
void dot<float>(CUDABLAS_DOT_ARGTYPES(float));
template <>
void dot<at::Half>(CUDABLAS_DOT_ARGTYPES(at::Half));
template <>
void dot<at::BFloat16>(CUDABLAS_DOT_ARGTYPES(at::BFloat16));
template <>
void dot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>));
template <>
void dot<c10::complex<float>>(CUDABLAS_DOT_ARGTYPES(c10::complex<float>));
template <typename Dtype>
inline void vdot(CUDABLAS_DOT_ARGTYPES(Dtype)) {
AT_ERROR("at::cuda::blas::vdot: not implemented for ", typeid(Dtype).name());
}
template <>
void vdot<c10::complex<float>>(CUDABLAS_DOT_ARGTYPES(c10::complex<float>));
template <>
void vdot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>));
#define CUDABLAS_GETRS_ARGTYPES(Dtype) \
cublasHandle_t handle, cublasOperation_t trans, \
int n, int nrhs, Dtype** dA_array, int lda, int* ipiv_array, \
Dtype** dB_array, int ldb, int* info_array, int batchsize
template<class Dtype>
void getrsBatched(CUDABLAS_GETRS_ARGTYPES(Dtype)) {
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::getrsBatched: not implemented for ",
typeid(Dtype).name());
}
template<>
TORCH_CUDA_CU_API void getrsBatched<float>(CUDABLAS_GETRS_ARGTYPES(float));
template<>
TORCH_CUDA_CU_API void getrsBatched<double>(CUDABLAS_GETRS_ARGTYPES(double));
template<>
TORCH_CUDA_CU_API void getrsBatched<c10::complex<float>>(CUDABLAS_GETRS_ARGTYPES(c10::complex<float>));
template<>
TORCH_CUDA_CU_API void getrsBatched<c10::complex<double>>(CUDABLAS_GETRS_ARGTYPES(c10::complex<double>));
#define CUDABLAS_GEQRF_BATCHED_ARGTYPES(Dtype) \
cublasHandle_t handle, int m, int n, Dtype **A_array, int lda, \
Dtype **tau_array, int *info, int batchsize
template <class Dtype>
void geqrfBatched(CUDABLAS_GEQRF_BATCHED_ARGTYPES(Dtype)) {
TORCH_INTERNAL_ASSERT(
false,
"at::cuda::blas::geqrfBatched: not implemented for ",
typeid(Dtype).name());
}
template <>
TORCH_CUDA_CU_API void geqrfBatched<float>(CUDABLAS_GEQRF_BATCHED_ARGTYPES(float));
template <>
TORCH_CUDA_CU_API void geqrfBatched<double>(CUDABLAS_GEQRF_BATCHED_ARGTYPES(double));
template <>
TORCH_CUDA_CU_API void geqrfBatched<c10::complex<double>>(
CUDABLAS_GEQRF_BATCHED_ARGTYPES(c10::complex<double>));
template <>
TORCH_CUDA_CU_API void geqrfBatched<c10::complex<float>>(
CUDABLAS_GEQRF_BATCHED_ARGTYPES(c10::complex<float>));
#define CUDABLAS_GETRF_ARGTYPES(Dtype) \
int n, Dtype** dA_array, int ldda, int* ipiv_array, int* info_array, int batchsize
template<class Dtype>
void getrfBatched(CUDABLAS_GETRF_ARGTYPES(Dtype)) {
TORCH_CHECK(false, "at::cuda::blas::getrfBatched: not implemented for ", typeid(Dtype).name());
}
template<>
TORCH_CUDA_CU_API void getrfBatched<float>(CUDABLAS_GETRF_ARGTYPES(float));
template<>
TORCH_CUDA_CU_API void getrfBatched<double>(CUDABLAS_GETRF_ARGTYPES(double));
template<>
TORCH_CUDA_CU_API void getrfBatched<c10::complex<double>>(CUDABLAS_GETRF_ARGTYPES(c10::complex<double>));
template<>
TORCH_CUDA_CU_API void getrfBatched<c10::complex<float>>(CUDABLAS_GETRF_ARGTYPES(c10::complex<float>));
#define CUDABLAS_GELS_BATCHED_ARGTYPES(Dtype) \
cublasHandle_t handle, cublasOperation_t trans, int m, int n, int nrhs, Dtype** dA_array, int ldda, Dtype** dC_array, int lddc, int* info, int *devInfoArray, int batchSize
template <class Dtype>
void gelsBatched(CUDABLAS_GELS_BATCHED_ARGTYPES(Dtype)) {
TORCH_INTERNAL_ASSERT(false, "at::cuda::blas::gelsBatched: not implemented for ", typeid(Dtype).name());
}
template<>
TORCH_CUDA_CU_API void gelsBatched<double>(CUDABLAS_GELS_BATCHED_ARGTYPES(double));
template<>
TORCH_CUDA_CU_API void gelsBatched<float>(CUDABLAS_GELS_BATCHED_ARGTYPES(float));
template<>
TORCH_CUDA_CU_API void gelsBatched<c10::complex<double>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::complex<double>));
template<>
TORCH_CUDA_CU_API void gelsBatched<c10::complex<float>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::complex<float>));
} // namespace at::cuda::blas
|