Spaces:
Running
Running
File size: 10,293 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
import torch.fx
import warnings
import functools
import builtins
from typing import Any, Callable, Dict, Optional, Union
def embedding_override(self, input):
return torch.empty(*input.shape, self.weight.shape[-1], device='meta')
def nn_layernorm_override(self, input):
return input
def torch_relu_override(x):
return x
def torch_nn_relu_override(self, x):
return x
def functional_relu_override(x, inplace=False):
assert not inplace, 'dont support inplace functional.relu for metatensor analysis'
return x
def torch_where_override(condition, x, y):
# torch.where returns the broadcasted tensor of condition, x, and y,
# so hack it by using addition
return condition.to(device='meta') + x.to(device='meta') + y.to(device='meta')
def torch_abs_override(input, *, out=None):
assert out is None, 'Dont support in-place abs for MetaTensor analysis'
return input
manual_meta_overrides : Dict[Callable, Callable] = {
torch.nn.Embedding: embedding_override,
torch.nn.LayerNorm: nn_layernorm_override,
torch.relu: torch_relu_override,
torch.nn.functional.relu: functional_relu_override,
torch.nn.ReLU: torch_nn_relu_override,
torch.where: torch_where_override,
torch.abs: torch_abs_override,
}
def gen_constructor_wrapper(target):
@functools.wraps(target)
def wrapper(*args, **kwargs):
proxy = None
def check_has_proxy(v):
if isinstance(v, torch.fx.Proxy):
nonlocal proxy
proxy = v
torch.fx.node.map_aggregate(args, check_has_proxy)
torch.fx.node.map_aggregate(kwargs, check_has_proxy)
if proxy is not None:
return proxy.tracer.create_proxy('call_function', target, args, kwargs)
else:
return target(*args, **kwargs)
return wrapper, target
class MetaProxy(torch.fx.Proxy):
def install_tensor_meta(self, tensor_meta):
self._tensor_meta = tensor_meta
def size(self, dim=None):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.size(*[dim] if dim else [])
return self.tracer.create_proxy('call_method', 'size', (self, dim) if dim else (self,), {})
def dim(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.dim()
return self.tracer.create_proxy('call_method', 'dim', (self,), {})
@property
def shape(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.shape
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'shape'), {})
@property
def dtype(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.dtype
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'dtype'), {})
@property
def device(self):
# Hack so we can track when devices are used. During meta-tensor propagation,
# replace these values with a constant 'meta'
return MetaDeviceAttribute(self, 'device')
def __getattr__(self, k):
if k == '_tensor_meta':
return self.__getattribute__(k)
# note: not added to the graph yet, if this is a method call
# we peephole optimize to the method invocation
return MetaAttribute(self, k)
class MetaAttribute(MetaProxy):
def __init__(self, root, attr: str):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._node = None
@property
def node(self):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if self._node is None:
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
return self._node
def __call__(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
class MetaDeviceAttribute(MetaAttribute):
pass
def proxys_to_metas(v):
if isinstance(v, MetaDeviceAttribute):
return 'meta'
if isinstance(v, torch.fx.Proxy):
assert isinstance(v, MetaProxy), f'Expected MetaProxy but got {type(v)}'
assert hasattr(v, '_tensor_meta'), 'MetaProxy does not have an associated meta'
return v._tensor_meta
return v
class MetaTracer(torch.fx.Tracer):
allow_insert_stateless_mods : bool = True
_TORCH_METHODS_TO_PATCH = ['arange', 'zeros', 'ones', 'full_like', 'eye']
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
if kind == 'placeholder' and target in self.meta_args:
rv.install_tensor_meta(self.meta_args[target])
return rv
if target in self.orig_fns:
# NOTE: tensor constructors in PyTorch define the `device` argument as
# *kwargs-only*. That is why this works. If you add methods to
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
# this will break and you will likely see issues where we cannot infer
# the size of the output.
if 'device' in kwargs:
kwargs['device'] = 'meta'
try:
args_metas = torch.fx.node.map_aggregate(args, proxys_to_metas)
kwargs_metas = torch.fx.node.map_aggregate(kwargs, proxys_to_metas)
if kind == 'call_function':
meta_target = manual_meta_overrides.get(target, target)
meta_out = meta_target(*args_metas, **kwargs_metas)
elif kind == 'call_method':
meta_out = getattr(args_metas[0], target)(*args_metas[1:], **kwargs_metas)
elif kind == 'call_module':
assert hasattr(self, 'orig_forward')
self._disable_module_getattr = True
try:
mod = self.root.get_submodule(target)
mod_type = type(mod)
if mod_type in manual_meta_overrides:
meta_out = manual_meta_overrides[mod_type](mod, *args_metas, **kwargs_metas)
else:
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
finally:
self._disable_module_getattr = False
elif kind == 'get_attr':
self._disable_module_getattr = True
try:
attr_itr = self.root
atoms = target.split('.')
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
assert isinstance(attr_itr, torch.Tensor)
meta_out = attr_itr.to(device='meta')
finally:
self._disable_module_getattr = False
else:
return rv
# TODO
assert isinstance(rv, torch.fx.Proxy), 'Dont support composite output yet'
rv.install_tensor_meta(meta_out)
except Exception as e:
warnings.warn(f'Could not compute metadata for {kind} target {target}: {e}')
return rv
def getattr(self, attr, attr_val, parameter_proxy_cache):
if getattr(self, '_disable_module_getattr', False):
return attr_val
else:
return super().getattr(attr, attr_val, parameter_proxy_cache)
def call_module(self, m, forward, args, kwargs):
self.orig_forward = forward
return super().call_module(m, forward, args, kwargs)
def _insert_module_as_submodule(self, mod: torch.nn.Module) -> str:
"""
Helper method which tries to insert a module that was not declared as submodule.
"""
idx = 0
mod_name = mod.__class__.__name__.lower()
path = f"{mod_name}_{idx}"
while hasattr(self.root, path):
path = f"{mod_name}_{idx}"
idx += 1
self.root.add_module(path, mod)
return path
def path_of_module(self, mod: torch.nn.Module) -> str:
try:
return super().path_of_module(mod)
except NameError as e:
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
path = self._insert_module_as_submodule(mod)
self.prev_module = path
return path
raise
def proxy(self, node):
return MetaProxy(node, self)
def trace(self, root, meta_args : Dict[str, torch.Tensor], concrete_args=None):
assert isinstance(meta_args, dict)
self.meta_args = meta_args
self.patched_torch_methods = {
target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
}
self.orig_fns = set()
for name, (wrapper, orig) in self.patched_torch_methods.items():
setattr(torch, name, wrapper)
self.orig_fns.add(orig)
try:
graph = super().trace(root, concrete_args)
graph._tracer_extras = {'meta_args': meta_args}
return graph
finally:
for name, (_, orig) in self.patched_torch_methods.items():
setattr(torch, name, orig)
def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]],
meta_args : Optional[Dict[str, torch.Tensor]] = None,
concrete_args: Optional[Dict[str, Any]] = None) -> torch.fx.GraphModule:
tracer = MetaTracer()
graph = tracer.trace(root, meta_args, concrete_args)
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
gm = torch.fx.GraphModule(tracer.root, graph, name)
return gm
|