Spaces:
Running
Running
File size: 10,581 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import copy
from itertools import chain
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.utils._pytree as pytree
from torch._export.utils import _check_input_constraints_for_graph
from torch.export.unflatten import _assign_attr, _AttrKind
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from ._remove_effect_tokens_pass import _remove_effect_tokens
from .exported_program import (
ExportedProgram,
ExportGraphSignature,
InputKind,
OutputKind,
)
@torch._dynamo.disable
def _check_input_constraints_pre_hook(self, *args, **kwargs):
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(args)
if received_spec != self._in_spec:
raise ValueError( # noqa: TRY200
"Trying to flatten user inputs with exported input tree spec: \n"
f"{self._in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}"
)
return _check_input_constraints_for_graph(
[node for node in self.graph.nodes if node.op == "placeholder"],
flat_args_with_path,
self.range_constraints,
)
def _unlift_inputs_as_getattr(
gm: torch.fx.GraphModule,
lifted_inputs: List[Optional[str]],
) -> Tuple[Dict[str, torch.fx.Node], Dict[str, torch.fx.Node]]:
"""
Unlift inputs referring to params/buffers/constants as getattr nodes in the
graph
"""
unlifted_name_to_node = {}
input_name_to_node = {}
placeholder_nodes = [node for node in gm.graph.nodes if node.op == "placeholder"]
assert len(lifted_inputs) == len(placeholder_nodes)
for input_node, lifted_node in zip(placeholder_nodes, lifted_inputs):
if lifted_node is None:
input_name_to_node[input_node.name] = input_node
else:
with gm.graph.inserting_after(input_node):
getattr_node = gm.graph.get_attr(lifted_node)
input_node.replace_all_uses_with(getattr_node)
metadata = input_node.meta
gm.graph.erase_node(input_node)
getattr_node.meta = metadata
unlifted_name_to_node[lifted_node] = getattr_node
return unlifted_name_to_node, input_name_to_node
def _insert_copy_for_mutations(
gm: torch.fx.GraphModule,
mutated_outputs: List[Optional[str]],
unlifted_name_to_node: Dict[str, torch.fx.Node],
input_name_to_node: Dict[str, torch.fx.Node],
) -> None:
"""
Find the all the buffers and inputs that were mutated and insert copy_
operators to reflect mutations.
"""
output_node = None
for node in gm.graph.nodes:
if node.op == "output":
output_node = node
break
assert output_node is not None
outputs = pytree.tree_flatten(output_node.args)[0]
assert len(outputs) == len(mutated_outputs)
user_output_nodes = []
for return_node, mutated_node_name in zip(outputs, mutated_outputs):
if mutated_node_name is None:
user_output_nodes.append(return_node)
continue
if mutated_node_name in unlifted_name_to_node:
mutated_node = unlifted_name_to_node[mutated_node_name]
elif mutated_node_name in input_name_to_node:
mutated_node = input_name_to_node[mutated_node_name]
else:
raise RuntimeError(
f"Could not find {mutated_node_name} in either buffer or input nodes"
)
with gm.graph.inserting_before(output_node):
_ = gm.graph.call_function(
torch.ops.aten.copy_.default, (mutated_node, return_node)
)
with gm.graph.inserting_before(output_node):
# Only return user outputs
new_output = gm.graph.output(tuple(user_output_nodes))
output_node.replace_all_uses_with(new_output)
gm.graph.erase_node(output_node)
def _get_codegen(
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
) -> _PyTreeCodeGen:
"""
Create the codegen for the graph module based on the in/out specs
"""
if (
in_spec.type == tuple
and in_spec.num_children == 2
and in_spec.children_specs[0].type == tuple
and in_spec.children_specs[1].type == dict
):
# if in_spec contains the args (tuple) and kwargs (dict)
names = [f"arg_{i}" for i in range(in_spec.children_specs[0].num_children)]
# add kwarg names
names.extend(in_spec.children_specs[1].context)
else:
names = [f"arg_{i}" for i in range(in_spec.num_children)]
return _PyTreeCodeGen(
_PyTreeInfo(
names,
in_spec,
out_spec,
)
)
def _unlift(
gm: torch.fx.GraphModule,
lifted_inputs: List[Optional[str]],
mutated_outputs: List[Optional[str]],
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
state_dict: Dict[str, Any],
constants: Dict[str, Any],
):
"""
Args:
lifted_inputs: A list matching the graph module's input nodes. For
an input node that is referring to a lifted parameter/buffer, this
list will contain the fqn the corresponding attribute. Otherwise, this
list will contain None. This is used to unlift the lifted parameters as
get_attr nodes.
mutated_outputs: A list matching the graph module's output nodes. For
an output node that is referring to a mutated buffer or user input, this
list will contain the name of the corresponding buffer or user input
that needs to be mutated. Otherwise, this list will contain None. This
is used to re-insert an inplace copy_ operator to copy the mutated
values back to the original node.
"""
unlifted_name_to_node, input_name_to_node = _unlift_inputs_as_getattr(
gm, lifted_inputs
)
_insert_copy_for_mutations(
gm, mutated_outputs, unlifted_name_to_node, input_name_to_node
)
gm.graph._codegen = _get_codegen(in_spec, out_spec)
gm.graph.lint()
gm.graph.eliminate_dead_code()
gm.recompile()
return gm
def _register_attrs_to_new_gm(
new_gm: torch.fx.GraphModule,
graph_signature: ExportGraphSignature,
state_dict: Dict[str, Any],
constants: Dict[str, Any],
) -> None:
non_persistent_buffers = set(graph_signature.non_persistent_buffers)
for name in graph_signature.buffers:
if name in non_persistent_buffers:
persistent = False
value = constants[name]
else:
persistent = True
value = state_dict[name]
_assign_attr(
value, new_gm, name, attr_kind=_AttrKind.BUFFER, persistent=persistent
)
for name in graph_signature.parameters:
value = state_dict[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.PARAMETER,
)
for name in chain(
graph_signature.lifted_custom_objs, graph_signature.lifted_tensor_constants
):
value = constants[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.CONSTANT,
)
class _StatefulGraphModuleFactory(type):
"""
Metaclass that ensures a private constructor for _StatefulGraphModule
"""
def __call__(cls, *args, **kwargs):
raise TypeError(
f"{cls.__module__}.{cls.__qualname__} has no public constructor. "
)
def _create(cls, root, graph, range_constraints=None):
return super().__call__(
root,
graph,
range_constraints=range_constraints,
)
class _StatefulGraphModule(torch.fx.GraphModule, metaclass=_StatefulGraphModuleFactory):
def __init__(self, root, graph, range_constraints=None):
super().__init__(root, graph)
# Need to fix up non-persistent buffers.
self.range_constraints = range_constraints or []
def _create_stateful_graph_module(
plain_graph_module: torch.fx.GraphModule,
range_constraints,
# TODO(suo) this should not be optional, but is since we still ahve
# capture_pre_autograd_graph grr
graph_signature: Optional[ExportGraphSignature] = None,
):
stateful_gm = _StatefulGraphModule._create(
plain_graph_module,
plain_graph_module.graph,
range_constraints=range_constraints,
)
stateful_gm.register_forward_pre_hook(
_check_input_constraints_pre_hook, with_kwargs=True
)
if graph_signature is None:
return stateful_gm
# Fix up non-persistent buffers. torch.fx does not distinguish between
# persistent and non-persistent buffers, so we must restore that distinction
# here.
for buffer in graph_signature.non_persistent_buffers:
_assign_attr(
plain_graph_module.get_buffer(buffer),
stateful_gm,
buffer,
attr_kind=_AttrKind.BUFFER,
persistent=False,
)
return stateful_gm
def _unlift_exported_program_lifted_states(ep: ExportedProgram) -> torch.nn.Module:
ep = _remove_effect_tokens(ep)
new_gm = torch.fx.GraphModule(ep.graph_module, copy.deepcopy(ep.graph))
_register_attrs_to_new_gm(new_gm, ep.graph_signature, ep.state_dict, ep.constants)
lifted_inputs: List[Optional[str]] = [
in_spec.target
if in_spec.kind
in (
InputKind.BUFFER,
InputKind.CONSTANT_TENSOR,
InputKind.PARAMETER,
InputKind.CUSTOM_OBJ,
)
else None
for in_spec in ep.graph_signature.input_specs
]
mutated_outputs: List[Optional[str]] = [
out_spec.target
if out_spec.kind in (OutputKind.BUFFER_MUTATION, OutputKind.USER_INPUT_MUTATION)
else None
for out_spec in ep.graph_signature.output_specs
]
new_gm = _unlift(
new_gm,
lifted_inputs,
mutated_outputs,
ep.call_spec.in_spec,
ep.call_spec.out_spec,
ep.state_dict,
ep.constants,
)
unlift_gm = _create_stateful_graph_module(
new_gm, ep.range_constraints, ep.graph_signature
)
unlift_gm.meta.update(ep.graph_module.meta)
return unlift_gm
|