File size: 2,003 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from torch.distributions import constraints
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import StickBreakingTransform

__all__ = ["LogisticNormal"]


class LogisticNormal(TransformedDistribution):
    r"""

    Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale`

    that define the base `Normal` distribution transformed with the

    `StickBreakingTransform` such that::



        X ~ LogisticNormal(loc, scale)

        Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale)



    Args:

        loc (float or Tensor): mean of the base distribution

        scale (float or Tensor): standard deviation of the base distribution



    Example::



        >>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1)

        >>> # of the base Normal distribution

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3))

        >>> m.sample()

        tensor([ 0.7653,  0.0341,  0.0579,  0.1427])



    """
    arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
    support = constraints.simplex
    has_rsample = True

    def __init__(self, loc, scale, validate_args=None):
        base_dist = Normal(loc, scale, validate_args=validate_args)
        if not base_dist.batch_shape:
            base_dist = base_dist.expand([1])
        super().__init__(
            base_dist, StickBreakingTransform(), validate_args=validate_args
        )

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(LogisticNormal, _instance)
        return super().expand(batch_shape, _instance=new)

    @property
    def loc(self):
        return self.base_dist.base_dist.loc

    @property
    def scale(self):
        return self.base_dist.base_dist.scale