File size: 16,660 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
__all__ = ["init_backend", "backend_registered", "construct_rpc_backend_options", "register_backend", "BackendType", "BackendValue"]

import collections
import enum
from typing import cast, Dict, List, Set, Tuple

import torch
import torch.distributed as dist
from ._utils import _group_membership_management, _update_group_membership

from . import api
from . import constants as rpc_constants

__all__ = ["backend_registered", "register_backend", "construct_rpc_backend_options", "init_backend",
           "BackendValue", "BackendType"]

BackendValue = collections.namedtuple(
    "BackendValue", ["construct_rpc_backend_options_handler", "init_backend_handler"]
)


def _backend_type_repr(self):
    return "BackendType." + self.name


_backend_type_doc = """

    An enum class of available backends.



    PyTorch ships with a builtin ``BackendType.TENSORPIPE`` backend.

    Additional ones can be registered using the

    :func:`~torch.distributed.rpc.backend_registry.register_backend` function.

"""

# Create an enum type, `BackendType`, with empty members.
# Can't handle Function Enum API (mypy bug #9079)
BackendType = enum.Enum(value="BackendType", names=dict())  # type: ignore[misc]
# Unable to assign a function a method (mypy bug #2427)
BackendType.__repr__ = _backend_type_repr  # type: ignore[assignment]

if BackendType.__doc__:
    BackendType.__doc__ = _backend_type_doc

def backend_registered(backend_name):
    """

    Checks if backend_name is registered as an RPC backend.



    Args:

        backend_name (str): string to identify the RPC backend.

    Returns:

        True if the backend has been registered with ``register_backend``, else

        False.

    """
    return backend_name in BackendType.__members__.keys()


def register_backend(

    backend_name, construct_rpc_backend_options_handler, init_backend_handler

):
    """Registers a new RPC backend.



    Args:

        backend_name (str): backend string to identify the handler.

        construct_rpc_backend_options_handler (function):

            Handler that is invoked when

            rpc_backend.construct_rpc_backend_options(**dict) is called.

        init_backend_handler (function): Handler that is invoked when the

            `_init_rpc_backend()` function is called with a backend.

             This returns the agent.

    """
    global BackendType
    if backend_registered(backend_name):
        raise RuntimeError(f"RPC backend {backend_name}: already registered")
    # Create a new enum type, `BackendType`, with extended members.
    existing_enum_dict = {member.name: member.value for member in BackendType}
    extended_enum_dict = dict(
        {
            backend_name: BackendValue(
                construct_rpc_backend_options_handler=construct_rpc_backend_options_handler,
                init_backend_handler=init_backend_handler,
            )
        },
        **existing_enum_dict
    )
    # Can't handle Function Enum API (mypy bug #9079)
    BackendType = enum.Enum(value="BackendType", names=extended_enum_dict)  # type: ignore[misc]
    # Unable to assign a function a method (mypy bug #2427)
    BackendType.__repr__ = _backend_type_repr  # type: ignore[assignment]
    if BackendType.__doc__:
        BackendType.__doc__ = _backend_type_doc
    return BackendType[backend_name]

def construct_rpc_backend_options(

    backend,

    rpc_timeout=rpc_constants.DEFAULT_RPC_TIMEOUT_SEC,

    init_method=rpc_constants.DEFAULT_INIT_METHOD,

    **kwargs

):

    return backend.value.construct_rpc_backend_options_handler(
        rpc_timeout, init_method, **kwargs
    )

def init_backend(backend, *args, **kwargs):
    return backend.value.init_backend_handler(*args, **kwargs)

def _init_process_group(store, rank, world_size):
    # Initialize ProcessGroup.
    process_group_timeout = rpc_constants.DEFAULT_PROCESS_GROUP_TIMEOUT

    # We're using a bunch of private APIs here since `new_group` requires the
    # default group to be initialized.
    group = dist.ProcessGroupGloo(store, rank, world_size, process_group_timeout)

    assert group is not None, "Failed to initialize default ProcessGroup."

    if (rank != -1) and (rank != group.rank()):
        raise RuntimeError(
            f"rank argument {rank} doesn't match pg rank {group.rank()}"
        )
    if (world_size != -1) and (world_size != group.size()):
        raise RuntimeError(
            f"world_size argument {world_size} doesn't match pg size {group.size()}"
        )
    return group

def _tensorpipe_construct_rpc_backend_options_handler(

    rpc_timeout,

    init_method,

    num_worker_threads=rpc_constants.DEFAULT_NUM_WORKER_THREADS,

    _transports=None,

    _channels=None,

    **kwargs

):
    from . import TensorPipeRpcBackendOptions

    return TensorPipeRpcBackendOptions(
        rpc_timeout=rpc_timeout,
        init_method=init_method,
        num_worker_threads=num_worker_threads,
        _transports=_transports,
        _channels=_channels,
    )


def _tensorpipe_validate_devices(devices, device_count):
    return all(
        d.type == "cpu" or (d.type == "cuda" and 0 <= d.index < device_count)
        for d in devices
    )


# detect if any worker has invalid device_map configurations, and return
# reverse device maps
def _tensorpipe_exchange_and_check_all_device_maps(

    my_name, my_device_count, my_device_maps, my_devices, group

):
    gathered: List[Tuple[
        str, int, Dict[str, Dict[torch.device, torch.device]], List[torch.device]
    ]] = [("", 0, {}, []) for _ in range(group.size())]
    dist.all_gather_object(
        gathered, (my_name, my_device_count, my_device_maps, my_devices), group
    )
    all_names = [name for name, _, _, _ in gathered]
    all_device_counts = {name: count for name, count, _, _ in gathered}
    all_device_maps = {name: map_ for name, _, map_, _ in gathered}
    all_devices = {name: devices for name, _, _, devices in gathered}

    _validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices)

    # passed all checked, construct reverse mapping and get list of devices handled by this agent
    reverse_device_maps = _create_reverse_mapping(my_name, all_names, all_device_maps)
    my_devices = _create_device_list(my_devices, my_device_maps, reverse_device_maps)
    return reverse_device_maps, my_devices

def _validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices, is_static_group=True):
    for node in all_names:
        devices = all_devices[node]
        if len(set(devices)) != len(devices):
            raise ValueError(
                f"Node {node} has duplicated devices\n"
                f"devices = {devices}"
            )
        if not _tensorpipe_validate_devices(devices, all_device_counts[node]):
            raise ValueError(
                f"Node {node} has devices with invalid indices\n"
                f"devices = {devices}\n"
                f"device count = {all_device_counts[node]}"
            )

    for source_node in all_names:
        # For dynamic group (non-static) do not check the target node name since it may not have joined yet
        if is_static_group and not set(all_device_maps[source_node].keys()).issubset(all_names):
            raise ValueError(
                f"Node {source_node} has invalid target node names in its device maps\n"
                f"device maps = {all_device_maps[source_node].keys()}\n"
                f"node names = {all_names}"
            )
        for target_node, map_ in all_device_maps[source_node].items():
            if len(set(map_.values())) != len(map_):
                raise ValueError(
                    f"Node {source_node} has duplicated target devices "
                    f"in its device map for {target_node}\n"
                    f"device map = {map_}"
                )
            if all_devices[source_node]:
                if not set(map_.keys()).issubset(all_devices[source_node]):
                    raise ValueError(
                        f"Node {source_node} has unexpected source devices "
                        f"in its device map for {target_node}\n"
                        f"device map = {map_}\n"
                        f"devices = {all_devices[source_node]}"
                    )
            elif not _tensorpipe_validate_devices(
                map_.keys(), all_device_counts[source_node]
            ):
                raise ValueError(
                    f"Node {source_node} has source devices with invalid indices "
                    f"in its device map for {target_node}\n"
                    f"device map = {map_}\n"
                    f"device count = {all_device_counts[source_node]}"
                )
            if all_devices.get(target_node, []):
                if not set(map_.values()).issubset(all_devices[target_node]):
                    raise ValueError(
                        f"Node {source_node} has unexpected target devices "
                        f"in its device map for {target_node}\n"
                        f"device map = {map_}\n"
                        f"devices = {all_devices[target_node]}"
                    )
            elif target_node in all_device_counts and not _tensorpipe_validate_devices(
                map_.values(), all_device_counts[target_node]
            ):
                raise ValueError(
                    f"Node {source_node} has target devices with invalid indices "
                    f"in its device map for {target_node}\n"
                    f"device map = {map_}\n"
                    f"device count = {all_device_counts[target_node]}"
                )

def _create_device_list(my_devices, my_device_maps, reverse_device_maps):
    if not my_devices:
        devices_set: Set[torch.device] = set()
        for map_ in my_device_maps.values():
            devices_set.update(map_.keys())
        for map_ in reverse_device_maps.values():
            devices_set.update(map_.keys())
        devices_set.discard(torch.device("cpu"))
        my_devices = list(devices_set)
    my_devices = sorted(my_devices, key=lambda d: d.index)
    return my_devices

def _create_reverse_mapping(my_name, all_names, all_device_maps):
    reverse_device_maps: Dict[str, Dict[torch.device, torch.device]] = {}
    for node in all_names:
        if my_name in all_device_maps[node]:
            reverse_device_maps[node] = {
                v: k for k, v in all_device_maps[node][my_name].items()
            }
    return reverse_device_maps

def _get_device_infos():
    from . import TensorPipeAgent
    agent = cast(TensorPipeAgent, api._get_current_rpc_agent())
    opts = agent._get_backend_options()
    device_count = torch.cuda.device_count()
    if torch.cuda.is_available() and opts.devices:
        torch.cuda.init()
    return device_count, opts.device_maps, opts.devices

def _set_devices_and_reverse_device_map(agent):
    from . import TensorPipeAgent
    agent = cast(TensorPipeAgent, agent)
    # Group state is retrieved from local agent
    # On initialization, tensorpipe agent retrieves information from all existing workers, so group state is valid
    my_worker_info = agent.get_worker_info()
    my_name = my_worker_info.name
    all_worker_infos = agent.get_worker_infos()
    # One round to get device_maps of all workers and construct reverse device maps
    all_device_counts, all_device_maps, all_devices, all_names = {}, {}, {}, []
    for worker_info in all_worker_infos:
        worker_name = worker_info.name
        if worker_name != my_name:
            # TODO: make async?
            device_count, device_map, devices = api.rpc_sync(worker_name, _get_device_infos)
        else:
            opts = agent._get_backend_options()
            device_count, device_map, devices = torch.cuda.device_count(), opts.device_maps, opts.devices
        all_device_counts[worker_name] = device_count
        all_device_maps[worker_name] = device_map
        all_devices[worker_name] = devices
        all_names.append(worker_name)

    _validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices, is_static_group=False)
    reverse_device_maps = _create_reverse_mapping(my_name, all_names, all_device_maps)

    # Perform RPC call to all workers, including itself, to include newly joined worker information and device maps
    for worker_name in all_names:
        # Set device list for each worker
        all_devices[worker_name] = _create_device_list(all_devices[worker_name], all_device_maps[worker_name], reverse_device_maps)
        api.rpc_sync(worker_name, _update_group_membership,
                     args=(my_worker_info, all_devices[worker_name], reverse_device_maps, True))

def _tensorpipe_init_backend_handler(store, name, rank, world_size, rpc_backend_options):
    from . import TensorPipeAgent
    from . import TensorPipeRpcBackendOptions
    if not isinstance(store, dist.Store):
        raise TypeError(f"`store` must be a c10d::Store. {store}")

    if not isinstance(
        rpc_backend_options, TensorPipeRpcBackendOptions
    ):
        raise TypeError(
            f"`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`. {rpc_backend_options}"
        )

    device_count = torch.cuda.device_count()

    is_static_group = True if world_size else False
    # world_size is specified so this is a static group (ranks cannot join and leave)
    if is_static_group:
        # The agent's join method is required to behave like a barrier and perform
        # collective operations, for which it relies on a process group, instead of
        # re-implementing this on top of RPCs.
        group = _init_process_group(store, rank, world_size)

        reverse_device_maps, devices = _tensorpipe_exchange_and_check_all_device_maps(
            name,
            device_count,
            rpc_backend_options.device_maps,
            rpc_backend_options.devices,
            group,
        )

        if torch.cuda.is_available() and devices:
            # It's necessary to initialize PyTorch CUDA states here (e.g.,
            # CUDACachingAllocator). If this is missing, we could hit errors like
            # "allocator not initialized", because other processes might send
            # CUDA-related RPC request to this process before user code in this
            # process initializes its PyTorch CUDA states.
            torch.cuda.init()

        # TODO: add try-except and destroy _agent in all processes if any fails.
        agent = TensorPipeAgent(
            store,
            name,
            rank,
            world_size,
            rpc_backend_options,
            reverse_device_maps,
            devices,
        )

        api._init_rpc_states(agent)

        # Run one dummy round of RPC to initialize channels/transports. Without
        # this, it's easy to hit timeout in rpc.shutdown() if there is no other RPC
        # on that process before rpc.shutdown(), as the agent initialization can
        # take longer than 5s.
        api._all_gather(None, timeout=rpc_backend_options.rpc_timeout)
        # Need a barrier here to make sure no peers leave before the rank0 finishes
        # _all_gather
        group.barrier().wait()

        return agent
    # initialization for dynamic rpc (ranks can join and leave)
    else:
        with _group_membership_management(store, name, True):
            # Construct TPAgent with empty reverse_device_map and devices
            # these properties will be updated after initialization
            agent = TensorPipeAgent(
                store,
                name,
                rank,
                world_size,
                rpc_backend_options,
                {},
                [],
            )
            api._init_rpc_states(agent)

            try:
                # Notify all workers in group this rank has joined and set devices and reverse_device_map
                # This is a synchronous operation that completes once all existing ranks are updated
                _set_devices_and_reverse_device_map(agent)
                pass
            except Exception:
                api.shutdown()
                raise
            return agent

register_backend(
    "TENSORPIPE",
    _tensorpipe_construct_rpc_backend_options_handler,
    _tensorpipe_init_backend_handler,
)