Spaces:
Running
Running
File size: 16,660 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
__all__ = ["init_backend", "backend_registered", "construct_rpc_backend_options", "register_backend", "BackendType", "BackendValue"]
import collections
import enum
from typing import cast, Dict, List, Set, Tuple
import torch
import torch.distributed as dist
from ._utils import _group_membership_management, _update_group_membership
from . import api
from . import constants as rpc_constants
__all__ = ["backend_registered", "register_backend", "construct_rpc_backend_options", "init_backend",
"BackendValue", "BackendType"]
BackendValue = collections.namedtuple(
"BackendValue", ["construct_rpc_backend_options_handler", "init_backend_handler"]
)
def _backend_type_repr(self):
return "BackendType." + self.name
_backend_type_doc = """
An enum class of available backends.
PyTorch ships with a builtin ``BackendType.TENSORPIPE`` backend.
Additional ones can be registered using the
:func:`~torch.distributed.rpc.backend_registry.register_backend` function.
"""
# Create an enum type, `BackendType`, with empty members.
# Can't handle Function Enum API (mypy bug #9079)
BackendType = enum.Enum(value="BackendType", names=dict()) # type: ignore[misc]
# Unable to assign a function a method (mypy bug #2427)
BackendType.__repr__ = _backend_type_repr # type: ignore[assignment]
if BackendType.__doc__:
BackendType.__doc__ = _backend_type_doc
def backend_registered(backend_name):
"""
Checks if backend_name is registered as an RPC backend.
Args:
backend_name (str): string to identify the RPC backend.
Returns:
True if the backend has been registered with ``register_backend``, else
False.
"""
return backend_name in BackendType.__members__.keys()
def register_backend(
backend_name, construct_rpc_backend_options_handler, init_backend_handler
):
"""Registers a new RPC backend.
Args:
backend_name (str): backend string to identify the handler.
construct_rpc_backend_options_handler (function):
Handler that is invoked when
rpc_backend.construct_rpc_backend_options(**dict) is called.
init_backend_handler (function): Handler that is invoked when the
`_init_rpc_backend()` function is called with a backend.
This returns the agent.
"""
global BackendType
if backend_registered(backend_name):
raise RuntimeError(f"RPC backend {backend_name}: already registered")
# Create a new enum type, `BackendType`, with extended members.
existing_enum_dict = {member.name: member.value for member in BackendType}
extended_enum_dict = dict(
{
backend_name: BackendValue(
construct_rpc_backend_options_handler=construct_rpc_backend_options_handler,
init_backend_handler=init_backend_handler,
)
},
**existing_enum_dict
)
# Can't handle Function Enum API (mypy bug #9079)
BackendType = enum.Enum(value="BackendType", names=extended_enum_dict) # type: ignore[misc]
# Unable to assign a function a method (mypy bug #2427)
BackendType.__repr__ = _backend_type_repr # type: ignore[assignment]
if BackendType.__doc__:
BackendType.__doc__ = _backend_type_doc
return BackendType[backend_name]
def construct_rpc_backend_options(
backend,
rpc_timeout=rpc_constants.DEFAULT_RPC_TIMEOUT_SEC,
init_method=rpc_constants.DEFAULT_INIT_METHOD,
**kwargs
):
return backend.value.construct_rpc_backend_options_handler(
rpc_timeout, init_method, **kwargs
)
def init_backend(backend, *args, **kwargs):
return backend.value.init_backend_handler(*args, **kwargs)
def _init_process_group(store, rank, world_size):
# Initialize ProcessGroup.
process_group_timeout = rpc_constants.DEFAULT_PROCESS_GROUP_TIMEOUT
# We're using a bunch of private APIs here since `new_group` requires the
# default group to be initialized.
group = dist.ProcessGroupGloo(store, rank, world_size, process_group_timeout)
assert group is not None, "Failed to initialize default ProcessGroup."
if (rank != -1) and (rank != group.rank()):
raise RuntimeError(
f"rank argument {rank} doesn't match pg rank {group.rank()}"
)
if (world_size != -1) and (world_size != group.size()):
raise RuntimeError(
f"world_size argument {world_size} doesn't match pg size {group.size()}"
)
return group
def _tensorpipe_construct_rpc_backend_options_handler(
rpc_timeout,
init_method,
num_worker_threads=rpc_constants.DEFAULT_NUM_WORKER_THREADS,
_transports=None,
_channels=None,
**kwargs
):
from . import TensorPipeRpcBackendOptions
return TensorPipeRpcBackendOptions(
rpc_timeout=rpc_timeout,
init_method=init_method,
num_worker_threads=num_worker_threads,
_transports=_transports,
_channels=_channels,
)
def _tensorpipe_validate_devices(devices, device_count):
return all(
d.type == "cpu" or (d.type == "cuda" and 0 <= d.index < device_count)
for d in devices
)
# detect if any worker has invalid device_map configurations, and return
# reverse device maps
def _tensorpipe_exchange_and_check_all_device_maps(
my_name, my_device_count, my_device_maps, my_devices, group
):
gathered: List[Tuple[
str, int, Dict[str, Dict[torch.device, torch.device]], List[torch.device]
]] = [("", 0, {}, []) for _ in range(group.size())]
dist.all_gather_object(
gathered, (my_name, my_device_count, my_device_maps, my_devices), group
)
all_names = [name for name, _, _, _ in gathered]
all_device_counts = {name: count for name, count, _, _ in gathered}
all_device_maps = {name: map_ for name, _, map_, _ in gathered}
all_devices = {name: devices for name, _, _, devices in gathered}
_validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices)
# passed all checked, construct reverse mapping and get list of devices handled by this agent
reverse_device_maps = _create_reverse_mapping(my_name, all_names, all_device_maps)
my_devices = _create_device_list(my_devices, my_device_maps, reverse_device_maps)
return reverse_device_maps, my_devices
def _validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices, is_static_group=True):
for node in all_names:
devices = all_devices[node]
if len(set(devices)) != len(devices):
raise ValueError(
f"Node {node} has duplicated devices\n"
f"devices = {devices}"
)
if not _tensorpipe_validate_devices(devices, all_device_counts[node]):
raise ValueError(
f"Node {node} has devices with invalid indices\n"
f"devices = {devices}\n"
f"device count = {all_device_counts[node]}"
)
for source_node in all_names:
# For dynamic group (non-static) do not check the target node name since it may not have joined yet
if is_static_group and not set(all_device_maps[source_node].keys()).issubset(all_names):
raise ValueError(
f"Node {source_node} has invalid target node names in its device maps\n"
f"device maps = {all_device_maps[source_node].keys()}\n"
f"node names = {all_names}"
)
for target_node, map_ in all_device_maps[source_node].items():
if len(set(map_.values())) != len(map_):
raise ValueError(
f"Node {source_node} has duplicated target devices "
f"in its device map for {target_node}\n"
f"device map = {map_}"
)
if all_devices[source_node]:
if not set(map_.keys()).issubset(all_devices[source_node]):
raise ValueError(
f"Node {source_node} has unexpected source devices "
f"in its device map for {target_node}\n"
f"device map = {map_}\n"
f"devices = {all_devices[source_node]}"
)
elif not _tensorpipe_validate_devices(
map_.keys(), all_device_counts[source_node]
):
raise ValueError(
f"Node {source_node} has source devices with invalid indices "
f"in its device map for {target_node}\n"
f"device map = {map_}\n"
f"device count = {all_device_counts[source_node]}"
)
if all_devices.get(target_node, []):
if not set(map_.values()).issubset(all_devices[target_node]):
raise ValueError(
f"Node {source_node} has unexpected target devices "
f"in its device map for {target_node}\n"
f"device map = {map_}\n"
f"devices = {all_devices[target_node]}"
)
elif target_node in all_device_counts and not _tensorpipe_validate_devices(
map_.values(), all_device_counts[target_node]
):
raise ValueError(
f"Node {source_node} has target devices with invalid indices "
f"in its device map for {target_node}\n"
f"device map = {map_}\n"
f"device count = {all_device_counts[target_node]}"
)
def _create_device_list(my_devices, my_device_maps, reverse_device_maps):
if not my_devices:
devices_set: Set[torch.device] = set()
for map_ in my_device_maps.values():
devices_set.update(map_.keys())
for map_ in reverse_device_maps.values():
devices_set.update(map_.keys())
devices_set.discard(torch.device("cpu"))
my_devices = list(devices_set)
my_devices = sorted(my_devices, key=lambda d: d.index)
return my_devices
def _create_reverse_mapping(my_name, all_names, all_device_maps):
reverse_device_maps: Dict[str, Dict[torch.device, torch.device]] = {}
for node in all_names:
if my_name in all_device_maps[node]:
reverse_device_maps[node] = {
v: k for k, v in all_device_maps[node][my_name].items()
}
return reverse_device_maps
def _get_device_infos():
from . import TensorPipeAgent
agent = cast(TensorPipeAgent, api._get_current_rpc_agent())
opts = agent._get_backend_options()
device_count = torch.cuda.device_count()
if torch.cuda.is_available() and opts.devices:
torch.cuda.init()
return device_count, opts.device_maps, opts.devices
def _set_devices_and_reverse_device_map(agent):
from . import TensorPipeAgent
agent = cast(TensorPipeAgent, agent)
# Group state is retrieved from local agent
# On initialization, tensorpipe agent retrieves information from all existing workers, so group state is valid
my_worker_info = agent.get_worker_info()
my_name = my_worker_info.name
all_worker_infos = agent.get_worker_infos()
# One round to get device_maps of all workers and construct reverse device maps
all_device_counts, all_device_maps, all_devices, all_names = {}, {}, {}, []
for worker_info in all_worker_infos:
worker_name = worker_info.name
if worker_name != my_name:
# TODO: make async?
device_count, device_map, devices = api.rpc_sync(worker_name, _get_device_infos)
else:
opts = agent._get_backend_options()
device_count, device_map, devices = torch.cuda.device_count(), opts.device_maps, opts.devices
all_device_counts[worker_name] = device_count
all_device_maps[worker_name] = device_map
all_devices[worker_name] = devices
all_names.append(worker_name)
_validate_device_maps(all_names, all_device_counts, all_device_maps, all_devices, is_static_group=False)
reverse_device_maps = _create_reverse_mapping(my_name, all_names, all_device_maps)
# Perform RPC call to all workers, including itself, to include newly joined worker information and device maps
for worker_name in all_names:
# Set device list for each worker
all_devices[worker_name] = _create_device_list(all_devices[worker_name], all_device_maps[worker_name], reverse_device_maps)
api.rpc_sync(worker_name, _update_group_membership,
args=(my_worker_info, all_devices[worker_name], reverse_device_maps, True))
def _tensorpipe_init_backend_handler(store, name, rank, world_size, rpc_backend_options):
from . import TensorPipeAgent
from . import TensorPipeRpcBackendOptions
if not isinstance(store, dist.Store):
raise TypeError(f"`store` must be a c10d::Store. {store}")
if not isinstance(
rpc_backend_options, TensorPipeRpcBackendOptions
):
raise TypeError(
f"`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`. {rpc_backend_options}"
)
device_count = torch.cuda.device_count()
is_static_group = True if world_size else False
# world_size is specified so this is a static group (ranks cannot join and leave)
if is_static_group:
# The agent's join method is required to behave like a barrier and perform
# collective operations, for which it relies on a process group, instead of
# re-implementing this on top of RPCs.
group = _init_process_group(store, rank, world_size)
reverse_device_maps, devices = _tensorpipe_exchange_and_check_all_device_maps(
name,
device_count,
rpc_backend_options.device_maps,
rpc_backend_options.devices,
group,
)
if torch.cuda.is_available() and devices:
# It's necessary to initialize PyTorch CUDA states here (e.g.,
# CUDACachingAllocator). If this is missing, we could hit errors like
# "allocator not initialized", because other processes might send
# CUDA-related RPC request to this process before user code in this
# process initializes its PyTorch CUDA states.
torch.cuda.init()
# TODO: add try-except and destroy _agent in all processes if any fails.
agent = TensorPipeAgent(
store,
name,
rank,
world_size,
rpc_backend_options,
reverse_device_maps,
devices,
)
api._init_rpc_states(agent)
# Run one dummy round of RPC to initialize channels/transports. Without
# this, it's easy to hit timeout in rpc.shutdown() if there is no other RPC
# on that process before rpc.shutdown(), as the agent initialization can
# take longer than 5s.
api._all_gather(None, timeout=rpc_backend_options.rpc_timeout)
# Need a barrier here to make sure no peers leave before the rank0 finishes
# _all_gather
group.barrier().wait()
return agent
# initialization for dynamic rpc (ranks can join and leave)
else:
with _group_membership_management(store, name, True):
# Construct TPAgent with empty reverse_device_map and devices
# these properties will be updated after initialization
agent = TensorPipeAgent(
store,
name,
rank,
world_size,
rpc_backend_options,
{},
[],
)
api._init_rpc_states(agent)
try:
# Notify all workers in group this rank has joined and set devices and reverse_device_map
# This is a synchronous operation that completes once all existing ranks are updated
_set_devices_and_reverse_device_map(agent)
pass
except Exception:
api.shutdown()
raise
return agent
register_backend(
"TENSORPIPE",
_tensorpipe_construct_rpc_backend_options_handler,
_tensorpipe_init_backend_handler,
)
|