Spaces:
Running
Running
File size: 33,418 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import abc
import logging
import os
import re
import shutil
import signal
import subprocess
import sys
import tempfile
import time
from contextlib import nullcontext
from dataclasses import dataclass, field
from enum import IntFlag
from multiprocessing import synchronize
from types import FrameType
from typing import Any, Callable, Dict, Optional, Set, Tuple, Union
from abc import ABC, abstractmethod
import torch.multiprocessing as mp
from torch.distributed.elastic.multiprocessing.errors import ProcessFailure, record
from torch.distributed.elastic.multiprocessing.redirects import (
redirect_stderr,
redirect_stdout,
)
from torch.distributed.elastic.multiprocessing.subprocess_handler import SubprocessHandler, get_subprocess_handler
from torch.distributed.elastic.multiprocessing.tail_log import TailLog
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
log = logging.getLogger(__name__)
__all__ = [
"DefaultLogsSpecs",
"SignalException",
"Std",
"to_map",
"RunProcsResult",
"PContext",
"get_std_cm",
"MultiprocessContext",
"SubprocessContext",
]
class SignalException(Exception):
"""
Exception is raised inside the torchelastic agent process by the termination handler
if the death signal got received by the process.
"""
def __init__(self, msg: str, sigval: signal.Signals) -> None:
super().__init__(msg)
self.sigval = sigval
def _terminate_process_handler(signum: int, frame: Optional[FrameType]) -> None:
"""Termination handler that raises exceptions on the main process.
When the process receives death signal(SIGTERM, SIGINT), this termination handler will
be invoked. It raises the ``SignalException`` exception that should be processed by the
user code. Python does not terminate process after the termination handler is finished,
so the exception should not be silently ignored, otherwise the process will never
be terminated.
"""
sigval = signal.Signals(signum)
raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval)
def _get_kill_signal() -> signal.Signals:
"""Get the kill signal. SIGKILL for unix, CTRL_C_EVENT for windows."""
if IS_WINDOWS:
return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
else:
return signal.SIGKILL
def _get_default_signal() -> signal.Signals:
"""Get the default termination signal. SIGTERM for unix, CTRL_C_EVENT for windows."""
if IS_WINDOWS:
return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
else:
return signal.SIGTERM
def _validate_full_rank(d: Dict[int, Any], nprocs: int, what: str):
actual_keys = set(d.keys())
expected_keys = set(range(nprocs))
if actual_keys != expected_keys:
raise RuntimeError(
f"{what}, local rank mapping mismatch,"
f" expected: {expected_keys}, actual: {actual_keys}"
)
_MAPPING_REGEX = r"^(\d:[0123],)*(\d:[0123])$"
_VALUE_REGEX = r"^[0123]$"
class Std(IntFlag):
NONE = 0
OUT = 1
ERR = 2
ALL = OUT | ERR
@classmethod
def from_str(cls, vm: str) -> Union["Std", Dict[int, "Std"]]:
"""
Example:
::
from_str("0") -> Std.NONE
from_str("1") -> Std.OUT
from_str("0:3,1:0,2:1,3:2") -> {0: Std.ALL, 1: Std.NONE, 2: Std.OUT, 3: Std.ERR}
Any other input raises an exception
"""
def to_std(v: str) -> Std: # type: ignore[return]
s = Std(int(v))
if s in Std:
return s
# return None -> should NEVER reach here since we regex check input
if re.match(_VALUE_REGEX, vm): # vm is a number (e.g. 0)
return to_std(vm)
elif re.match(_MAPPING_REGEX, vm): # vm is a mapping (e.g. 0:1,1:2)
d: Dict[int, Std] = {}
for m in vm.split(","):
i, v = m.split(":")
d[int(i)] = to_std(v)
return d
else:
raise ValueError(
f"{vm} does not match: <{_VALUE_REGEX}> or <{_MAPPING_REGEX}>"
)
def to_map(
val_or_map: Union[Std, Dict[int, Std]], local_world_size: int
) -> Dict[int, Std]:
"""
Certain APIs take redirect settings either as a single value (e.g. apply to all
local ranks) or as an explicit user-provided mapping. This method is a convenience
method that converts a value or mapping into a mapping.
Example:
::
to_map(Std.OUT, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
to_map({1: Std.OUT}, local_world_size=2) # returns: {0: Std.NONE, 1: Std.OUT}
to_map({0: Std.OUT, 1: Std.OUT}, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
"""
if isinstance(val_or_map, Std):
return dict.fromkeys(range(local_world_size), val_or_map)
else:
map = {}
for i in range(local_world_size):
map[i] = val_or_map.get(i, Std.NONE)
return map
@dataclass
class LogsDest:
"""
For each log type, holds mapping of local rank ids to file paths.
"""
stdouts: Dict[int, str] = field(default_factory=dict)
stderrs: Dict[int, str] = field(default_factory=dict)
tee_stdouts: Dict[int, str] = field(default_factory=dict)
tee_stderrs: Dict[int, str] = field(default_factory=dict)
error_files: Dict[int, str] = field(default_factory=dict)
class LogsSpecs(ABC):
"""
Defines logs processing and redirection for each worker process.
Args:
log_dir:
Base directory where logs will be written.
redirects:
Streams to redirect to files. Pass a single ``Std``
enum to redirect for all workers, or a mapping keyed
by local_rank to selectively redirect.
tee:
Streams to duplicate to stdout/stderr.
Pass a single ``Std`` enum to duplicate streams for all workers,
or a mapping keyed by local_rank to selectively duplicate.
"""
def __init__(
self,
log_dir: Optional[str] = None,
redirects: Union[Std, Dict[int, Std]] = Std.NONE,
tee: Union[Std, Dict[int, Std]] = Std.NONE,
local_ranks_filter: Optional[Set[int]] = None,
) -> None:
self._root_log_dir = log_dir
self._redirects = redirects
self._tee = tee
self._local_ranks_filter = local_ranks_filter
@abstractmethod
def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
"""
Given the environment variables, builds destination of log files for each of the local ranks.
Envs parameter contains env variables dict for each of the local ranks, where entries are defined in:
:func:`~torchelastic.distributed.elastic.agent.server.local_elastic_agent.LocalElasticAgent._start_workers`.
"""
pass
@property
@abstractmethod
def root_log_dir(self) -> str:
pass
class DefaultLogsSpecs(LogsSpecs):
"""
Default LogsSpecs implementation:
- `log_dir` will be created if it doesn't exist
- Generates nested folders for each attempt and rank.
"""
def __init__(
self,
log_dir: Optional[str] = None,
redirects: Union[Std, Dict[int, Std]] = Std.NONE,
tee: Union[Std, Dict[int, Std]] = Std.NONE,
local_ranks_filter: Optional[Set[int]] = None,
) -> None:
if log_dir != os.devnull:
if not log_dir:
log_dir = tempfile.mkdtemp(prefix="torchelastic_")
elif not os.path.exists(log_dir):
os.makedirs(log_dir)
else:
if os.path.isfile(log_dir):
raise NotADirectoryError(f"log_dir: {log_dir} is a file")
super().__init__(log_dir, redirects, tee, local_ranks_filter)
# initialized only once
self._run_log_dir = None
@property
def root_log_dir(self) -> str:
return str(self._root_log_dir)
def _make_log_dir(self, log_dir: Optional[str], rdzv_run_id: str):
base_log_dir = log_dir or tempfile.mkdtemp(prefix="torchelastic_")
os.makedirs(base_log_dir, exist_ok=True)
dir = tempfile.mkdtemp(prefix=f"{rdzv_run_id}_", dir=base_log_dir)
log.info("log directory set to: %s", dir)
return dir
def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
"""
Uses following scheme to build log destination paths:
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stdout.log`
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stderr.log`
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/error.json`
"""
nprocs = len(envs)
global_env = {} # use only to query properies that are not dependent on a rank
if nprocs > 0:
global_env = envs[0]
else:
log.warning("Empty envs map provided when defining logging destinations.")
# Keys are always defined, but values can be missing in unit tests
run_id = global_env.get("TORCHELASTIC_RUN_ID", "test_run_id")
restart_count = global_env.get("TORCHELASTIC_RESTART_COUNT", "0")
attempt_log_dir: str = ""
if self._root_log_dir != os.devnull:
if not self._run_log_dir:
self._run_log_dir = self._make_log_dir(self._root_log_dir, run_id)
attempt_log_dir = os.path.join(self._run_log_dir, f"attempt_{restart_count}") # type: ignore[call-overload]
shutil.rmtree(attempt_log_dir, ignore_errors=True)
os.makedirs(attempt_log_dir)
if self._root_log_dir == os.devnull:
attempt_log_dir = os.devnull
# create subdirs for each local rank in the logs_dir
# logs_dir
# |- 0
# |- error.json
# |- stdout.log
# |- stderr.log
# |- ...
# |- (nprocs-1)
redirs = to_map(self._redirects, nprocs)
ts = to_map(self._tee, nprocs)
# to tee stdout/stderr we first redirect into a file
# then tail -f stdout.log/stderr.log so add tee settings to redirects
for local_rank, tee_std in ts.items():
redirect_std = redirs[local_rank]
redirs[local_rank] = redirect_std | tee_std
SYS_STREAM = "" # special case to indicate to output to console
stdouts = dict.fromkeys(range(nprocs), SYS_STREAM)
stderrs = dict.fromkeys(range(nprocs), SYS_STREAM)
tee_stdouts: Dict[int, str] = {}
tee_stderrs: Dict[int, str] = {}
error_files = {}
for local_rank in range(nprocs):
if attempt_log_dir == os.devnull:
tee_stdouts[local_rank] = os.devnull
tee_stderrs[local_rank] = os.devnull
error_files[local_rank] = os.devnull
envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = ""
else:
clogdir = os.path.join(attempt_log_dir, str(local_rank))
os.mkdir(clogdir)
rd = redirs[local_rank]
if (rd & Std.OUT) == Std.OUT:
stdouts[local_rank] = os.path.join(clogdir, "stdout.log")
if (rd & Std.ERR) == Std.ERR:
stderrs[local_rank] = os.path.join(clogdir, "stderr.log")
t = ts[local_rank]
if t & Std.OUT == Std.OUT:
tee_stdouts[local_rank] = stdouts[local_rank]
if t & Std.ERR == Std.ERR:
tee_stderrs[local_rank] = stderrs[local_rank]
if self._local_ranks_filter and local_rank not in self._local_ranks_filter:
# If stream is tee'd, only write to file, but don't tail
if local_rank in tee_stdouts:
tee_stdouts.pop(local_rank, None)
if local_rank in tee_stderrs:
tee_stderrs.pop(local_rank, None)
# If stream is not redirected, don't print
if stdouts[local_rank] == SYS_STREAM:
stdouts[local_rank] = os.devnull
if stderrs[local_rank] == SYS_STREAM:
stderrs[local_rank] = os.devnull
error_file = os.path.join(clogdir, "error.json")
error_files[local_rank] = error_file
log.info("Setting worker%s reply file to: %s", local_rank, error_file)
envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = error_file
return LogsDest(stdouts, stderrs, tee_stdouts, tee_stderrs, error_files)
def __repr__(self) -> str:
return (
f"DefaultLogsSpecs(root_log_dir={self._root_log_dir}, redirects={self._redirects}, "
f"tee={self._tee}, local_ranks_filter={self._local_ranks_filter})"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, DefaultLogsSpecs):
return False
return (
self._root_log_dir == other._root_log_dir
and self._redirects == other._redirects
and self._tee == other._tee
and self._local_ranks_filter == other._local_ranks_filter
)
@dataclass
class RunProcsResult:
"""
Results of a completed run of processes started with ``start_processes()``. Returned by ``PContext``.
Note the following:
1. All fields are mapped by local rank
2. ``return_values`` - only populated for functions (not the binaries).
3. ``stdouts`` - path to stdout.log (empty string if no redirect)
4. ``stderrs`` - path to stderr.log (empty string if no redirect)
"""
return_values: Dict[int, Any] = field(default_factory=dict)
failures: Dict[int, ProcessFailure] = field(default_factory=dict)
stdouts: Dict[int, str] = field(default_factory=dict)
stderrs: Dict[int, str] = field(default_factory=dict)
def is_failed(self) -> bool:
return len(self.failures) > 0
class PContext(abc.ABC):
"""
The base class that standardizes operations over a set of processes that are launched via different mechanisms.
The name ``PContext`` is intentional to disambiguate with ``torch.multiprocessing.ProcessContext``.
.. warning:: stdouts and stderrs should ALWAYS be a superset of
tee_stdouts and tee_stderrs (respectively) this is b/c
tee is implemented as a redirect + tail -f <stdout/stderr.log>
"""
def __init__(
self,
name: str,
entrypoint: Union[Callable, str],
args: Dict[int, Tuple],
envs: Dict[int, Dict[str, str]],
logs_specs: LogsSpecs,
log_line_prefixes: Optional[Dict[int, str]] = None,
):
self.name = name
# validate that all mappings have the same number of keys and
# all local ranks are accounted for
nprocs = len(args)
# TODO log_line_prefixes can be exanded too
logs_dest = logs_specs.reify(envs)
_validate_full_rank(logs_dest.stdouts, nprocs, "stdouts")
_validate_full_rank(logs_dest.stderrs, nprocs, "stderrs")
self.entrypoint = entrypoint
self.args = args
self.envs = envs
self.stdouts = logs_dest.stdouts
self.stderrs = logs_dest.stderrs
self.error_files = logs_dest.error_files
self.nprocs = nprocs
self._stdout_tail = TailLog(name, logs_dest.tee_stdouts, sys.stdout, log_line_prefixes)
self._stderr_tail = TailLog(name, logs_dest.tee_stderrs, sys.stderr, log_line_prefixes)
def start(self) -> None:
"""Start processes using parameters defined in the constructor."""
signal.signal(signal.SIGTERM, _terminate_process_handler)
signal.signal(signal.SIGINT, _terminate_process_handler)
if not IS_WINDOWS:
signal.signal(signal.SIGHUP, _terminate_process_handler)
signal.signal(signal.SIGQUIT, _terminate_process_handler)
self._start()
self._stdout_tail.start()
self._stderr_tail.start()
@abc.abstractmethod
def _start(self) -> None:
"""Start processes using strategy defined in a particular context."""
raise NotImplementedError()
@abc.abstractmethod
def _poll(self) -> Optional[RunProcsResult]:
"""
Poll the run status of the processes running under this context.
This method follows an "all-or-nothing" policy and returns
a ``RunProcessResults`` object if either all processes complete
successfully or any process fails. Returns ``None`` if
all processes are still running.
"""
raise NotImplementedError()
def wait(self, timeout: float = -1, period: float = 1) -> Optional[RunProcsResult]:
"""
Wait for the specified ``timeout`` seconds, polling every ``period`` seconds
for the processes to be done. Returns ``None`` if the processes are still running
on timeout expiry. Negative timeout values are interpreted as "wait-forever".
A timeout value of zero simply queries the status of the processes (e.g. equivalent
to a poll).
..note: Multiprocessing library registers SIGTERM and SIGINT signal handlers that raise
``SignalException`` when the signals received. It is up to the consumer of the code
to properly handle the exception. It is important not to swallow the exception otherwise
the process would not terminate. Example of the typical workflow can be:
.. code-block:: python
pc = start_processes(...)
try:
pc.wait(1)
.. do some other work
except SignalException as e:
pc.shutdown(e.sigval, timeout=30)
If SIGTERM or SIGINT occurs, the code above will try to shutdown child processes by propagating
received signal. If child processes will not terminate in the timeout time, the process will send
the SIGKILL.
"""
if timeout == 0:
return self._poll()
if timeout < 0:
timeout = sys.maxsize
expiry = time.time() + timeout
while time.time() < expiry:
pr = self._poll()
if pr:
return pr
time.sleep(period)
return None
@abc.abstractmethod
def pids(self) -> Dict[int, int]:
"""Return pids of processes mapped by their respective local_ranks."""
raise NotImplementedError()
@abc.abstractmethod
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
r"""
Terminates all processes managed by this context and cleans up any
meta resources (e.g. redirect, error_file files).
"""
raise NotImplementedError()
def close(
self, death_sig: Optional[signal.Signals] = None, timeout: int = 30
) -> None:
r"""
Terminates all processes managed by this context and cleans up any
meta resources (e.g. redirect, error_file files).
Args:
death_sig: Death signal to terminate processes.
timeout: Time to wait for processes to finish, if process is
still alive after this time, it will be terminated via SIGKILL.
"""
if not death_sig:
death_sig = _get_default_signal()
self._close(death_sig=death_sig, timeout=timeout)
if self._stdout_tail:
self._stdout_tail.stop()
if self._stderr_tail:
self._stderr_tail.stop()
def get_std_cm(std_rd: str, redirect_fn):
if IS_WINDOWS or IS_MACOS or not std_rd:
return nullcontext()
else:
return redirect_fn(std_rd)
def _wrap(
local_rank: int,
fn: Callable,
args: Dict[int, Tuple],
envs: Dict[int, Dict[str, str]],
stdout_redirects: Dict[int, str], # redirect file for stdout (to console if None)
stderr_redirects: Dict[int, str], # redirect file for stderr (to console if None)
ret_vals: Dict[int, mp.SimpleQueue],
queue_finished_reading_event: synchronize.Event,
) -> None:
# get the per-rank params up front so we fail fast if no mapping is found
args_ = args[local_rank]
env_ = envs[local_rank]
ret_val_ = ret_vals[local_rank]
stdout_rd = stdout_redirects[local_rank]
stderr_rd = stderr_redirects[local_rank]
stdout_cm = get_std_cm(stdout_rd, redirect_stdout)
stderr_cm = get_std_cm(stderr_rd, redirect_stderr)
for k, v in env_.items():
os.environ[k] = v
with stdout_cm, stderr_cm:
ret = record(fn)(*args_)
ret_val_.put(ret)
queue_finished_reading_event.wait()
class MultiprocessContext(PContext):
"""``PContext`` holding worker processes invoked as a function."""
def __init__(
self,
name: str,
entrypoint: Callable,
args: Dict[int, Tuple],
envs: Dict[int, Dict[str, str]],
start_method: str,
logs_specs: LogsSpecs,
log_line_prefixes: Optional[Dict[int, str]] = None,
):
super().__init__(
name,
entrypoint,
args,
envs,
logs_specs,
log_line_prefixes,
)
self.start_method = start_method
# each ret_val queue will always contain a single element.
self._ret_vals = {
local_rank: mp.get_context(self.start_method).SimpleQueue()
for local_rank in range(self.nprocs)
}
# see comments in ``join()`` for what this is
self._return_values: Dict[int, Any] = {}
self._pc: Optional[mp.ProcessContext] = None
# Note: set method should ONLY be invoked for the use case when all processes finished
# successfully. If any process died on event.wait() calling set() method will deadlock.
self._worker_finished_event = mp.get_context(self.start_method).Event()
def _start(self):
if self._pc:
raise ValueError(
"The process context already initialized."
" Most likely the start method got called twice."
)
self._pc = mp.start_processes(
fn=_wrap,
args=(
self.entrypoint,
self.args,
self.envs,
self.stdouts,
self.stderrs,
self._ret_vals,
self._worker_finished_event,
),
nprocs=self.nprocs,
join=False,
daemon=False,
start_method=self.start_method,
)
def _is_done(self) -> bool:
return len(self._return_values) == self.nprocs
def _poll(self) -> Optional[RunProcsResult]:
assert self._pc is not None # assertion for mypy type checker
try:
# torch.mp.ProcessContext Throws an Exception if some/all of
# worker processes failed
# timeout < 0 checks worker status and return immediately
# Join will never return success since we use synchronize.Event to wait
# for all processes to finish.
self._pc.join(-1)
# IMPORTANT: we use multiprocessing.Queue to carry worker return values
# back to the parent, the worker process will wait before terminating
# until all the buffered items are fed by the feeder thread to the underlying
# pipe. Hence to prevent deadlocks on large return values,
# we opportunistically try queue.get on each join call
# See: https://docs.python.org/2/library/multiprocessing.html#all-platforms
for local_rank in range(0, self.nprocs):
return_queue = self._ret_vals[local_rank]
if not return_queue.empty():
# save the return values temporarily into a member var
self._return_values[local_rank] = return_queue.get()
if self._is_done():
# we should ALWAYS have ALL the return values when all the processes are done
self._worker_finished_event.set()
# Wait untill all processes are finished. At this point workers finished executing
# user function
self._pc.join()
_validate_full_rank(
self._return_values, self.nprocs, "return_value queue"
)
self.close()
return RunProcsResult(
return_values=self._return_values,
stdouts=self.stdouts,
stderrs=self.stderrs,
)
else:
return None
except (mp.ProcessRaisedException, mp.ProcessExitedException) as e:
failed_local_rank = e.error_index
# entrypoint for MultiprocessContext will always be a Callable
fn_name = self.entrypoint.__qualname__ # type: ignore[union-attr]
failed_proc = self._pc.processes[failed_local_rank]
error_filepath = self.error_files[failed_local_rank]
log.exception(
"failed (exitcode: %s)"
" local_rank: %s (pid: %s)"
" of fn: %s (start_method: %s)",
failed_proc.exitcode,
failed_local_rank, e.pid,
fn_name, self.start_method,
)
self.close()
return RunProcsResult(
failures={
failed_local_rank: ProcessFailure(
local_rank=failed_local_rank,
pid=e.pid,
exitcode=failed_proc.exitcode,
error_file=error_filepath,
)
},
stdouts=self.stdouts,
stderrs=self.stderrs,
)
def pids(self) -> Dict[int, int]:
assert self._pc is not None # assertion for mypy type checking
return dict(enumerate(self._pc.pids()))
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
if not self._pc:
return
for proc in self._pc.processes:
if proc.is_alive():
log.warning("Closing process %s via signal %s", proc.pid, death_sig.name)
try:
os.kill(proc.pid, death_sig)
except ProcessLookupError:
# If the process exited because of some reason,
# `ProcessLookupError` will be raised, it is safe to ignore it.
pass
end = time.monotonic() + timeout
for proc in self._pc.processes:
time_to_wait = end - time.monotonic()
if time_to_wait <= 0:
break
proc.join(time_to_wait)
for proc in self._pc.processes:
if proc.is_alive():
log.warning(
"Unable to shutdown process %s via %s, forcefully exiting via %s",
proc.pid, death_sig, _get_kill_signal()
)
try:
os.kill(proc.pid, _get_kill_signal())
except ProcessLookupError:
# If the process exited because of some reason,
# `ProcessLookupError` will be raised, it is safe to ignore it.
pass
proc.join()
class SubprocessContext(PContext):
"""``PContext`` holding worker processes invoked as a binary."""
def __init__(
self,
name: str,
entrypoint: str,
args: Dict[int, Tuple],
envs: Dict[int, Dict[str, str]],
logs_specs: LogsSpecs,
log_line_prefixes: Optional[Dict[int, str]] = None,
):
super().__init__(
name,
entrypoint,
args,
envs,
logs_specs,
log_line_prefixes,
)
# state vector; _vdone[local_rank] -> is local_rank finished or not
self._running_local_ranks: Set[int] = set(range(self.nprocs))
self._failures: Dict[int, ProcessFailure] = {}
self.subprocess_handlers: Dict[int, SubprocessHandler] = {}
def _start(self):
if self.subprocess_handlers:
raise ValueError(
"The subprocess handlers already initialized. Most likely the start method got called twice."
)
self.subprocess_handlers = {
local_rank: get_subprocess_handler(
entrypoint=self.entrypoint, # type: ignore[arg-type] # entrypoint is always a str
args=self.args[local_rank],
env=self.envs[local_rank],
stdout=self.stdouts[local_rank],
stderr=self.stderrs[local_rank],
local_rank_id=local_rank,
)
for local_rank in range(self.nprocs)
}
def _poll(self) -> Optional[RunProcsResult]:
done_local_ranks = set()
for local_rank in self._running_local_ranks:
handler = self.subprocess_handlers[local_rank]
exitcode = handler.proc.poll()
if exitcode is not None:
done_local_ranks.add(local_rank)
if exitcode != 0: # failed or signaled
self._failures[local_rank] = ProcessFailure(
local_rank=local_rank,
pid=handler.proc.pid,
exitcode=exitcode,
error_file=self.error_files[local_rank],
)
# else: --> succeeded; nothing to do
self._running_local_ranks.difference_update(done_local_ranks)
# if ALL procs are finished or ANY have failed
if not self._running_local_ranks or self._failures:
self.close() # terminate all running procs
result = RunProcsResult(
failures=self._failures,
stdouts=self.stdouts,
stderrs=self.stderrs,
)
if result.is_failed():
first_failure = min(result.failures.values(), key=lambda f: f.timestamp)
log.error(
"failed (exitcode: %s)"
" local_rank: %s (pid: %s)"
" of binary: %s",
first_failure.exitcode, first_failure.local_rank, first_failure.pid, self.entrypoint
)
else:
# Populate return with dummy values. This provides consistency with MultiprocessingHandler
result.return_values = dict.fromkeys(range(self.nprocs))
return result
else: # there are no failures and procs still running
return None
def pids(self) -> Dict[int, int]:
return {
local_rank: sh.proc.pid
for local_rank, sh in self.subprocess_handlers.items()
}
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
if not self.subprocess_handlers:
return
for handler in self.subprocess_handlers.values():
if handler.proc.poll() is None:
log.warning(
"Sending process %s closing signal %s", handler.proc.pid, death_sig.name
)
handler.close(death_sig=death_sig)
end = time.monotonic() + timeout
for handler in self.subprocess_handlers.values():
time_to_wait = end - time.monotonic()
if time_to_wait <= 0:
break
try:
handler.proc.wait(time_to_wait)
except subprocess.TimeoutExpired:
# Ignore the timeout expired exception, since
# the child process will be forcefully terminated via SIGKILL
pass
for handler in self.subprocess_handlers.values():
if handler.proc.poll() is None:
log.warning(
"Unable to shutdown process %s via %s, forcefully exiting via %s",
handler.proc.pid, death_sig, _get_kill_signal()
)
handler.close(death_sig=_get_kill_signal())
handler.proc.wait()
|