Spaces:
Running
Running
File size: 5,779 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import abc
import time
import warnings
from collections import namedtuple
from functools import wraps
from typing import Dict, Optional
__all__ = ['MetricsConfig', 'MetricHandler', 'ConsoleMetricHandler', 'NullMetricHandler', 'MetricStream',
'configure', 'getStream', 'prof', 'profile', 'put_metric', 'publish_metric', 'get_elapsed_time_ms',
'MetricData']
MetricData = namedtuple("MetricData", ["timestamp", "group_name", "name", "value"])
class MetricsConfig:
__slots__ = ["params"]
def __init__(self, params: Optional[Dict[str, str]] = None):
self.params = params
if self.params is None:
self.params = {}
class MetricHandler(abc.ABC):
@abc.abstractmethod
def emit(self, metric_data: MetricData):
pass
class ConsoleMetricHandler(MetricHandler):
def emit(self, metric_data: MetricData):
print(
f"[{metric_data.timestamp}][{metric_data.group_name}]: {metric_data.name}={metric_data.value}"
)
class NullMetricHandler(MetricHandler):
def emit(self, metric_data: MetricData):
pass
class MetricStream:
def __init__(self, group_name: str, handler: MetricHandler):
self.group_name = group_name
self.handler = handler
def add_value(self, metric_name: str, metric_value: int):
self.handler.emit(
MetricData(time.time(), self.group_name, metric_name, metric_value)
)
_metrics_map: Dict[str, MetricHandler] = {}
_default_metrics_handler: MetricHandler = NullMetricHandler()
# pyre-fixme[9]: group has type `str`; used as `None`.
def configure(handler: MetricHandler, group: Optional[str] = None):
if group is None:
global _default_metrics_handler
# pyre-fixme[9]: _default_metrics_handler has type `NullMetricHandler`; used
# as `MetricHandler`.
_default_metrics_handler = handler
else:
_metrics_map[group] = handler
def getStream(group: str):
if group in _metrics_map:
handler = _metrics_map[group]
else:
handler = _default_metrics_handler
return MetricStream(group, handler)
def _get_metric_name(fn):
qualname = fn.__qualname__
split = qualname.split(".")
if len(split) == 1:
module = fn.__module__
if module:
return module.split(".")[-1] + "." + split[0]
else:
return split[0]
else:
return qualname
def prof(fn=None, group: str = "torchelastic"):
r"""
@profile decorator publishes duration.ms, count, success, failure metrics for the function that it decorates.
The metric name defaults to the qualified name (``class_name.def_name``) of the function.
If the function does not belong to a class, it uses the leaf module name instead.
Usage
::
@metrics.prof
def x():
pass
@metrics.prof(group="agent")
def y():
pass
"""
def wrap(f):
@wraps(f)
def wrapper(*args, **kwargs):
key = _get_metric_name(f)
try:
start = time.time()
result = f(*args, **kwargs)
put_metric(f"{key}.success", 1, group)
except Exception:
put_metric(f"{key}.failure", 1, group)
raise
finally:
put_metric(f"{key}.duration.ms", get_elapsed_time_ms(start), group) # type: ignore[possibly-undefined]
return result
return wrapper
if fn:
return wrap(fn)
else:
return wrap
def profile(group=None):
"""
@profile decorator adds latency and success/failure metrics to any given function.
Usage
::
@metrics.profile("my_metric_group")
def some_function(<arguments>):
"""
warnings.warn("Deprecated, use @prof instead", DeprecationWarning)
def wrap(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
start_time = time.time()
result = func(*args, **kwargs)
publish_metric(group, f"{func.__name__}.success", 1)
except Exception:
publish_metric(group, f"{func.__name__}.failure", 1)
raise
finally:
publish_metric(
group,
f"{func.__name__}.duration.ms",
get_elapsed_time_ms(start_time), # type: ignore[possibly-undefined]
)
return result
return wrapper
return wrap
def put_metric(metric_name: str, metric_value: int, metric_group: str = "torchelastic"):
"""
Publish a metric data point.
Usage
::
put_metric("metric_name", 1)
put_metric("metric_name", 1, "metric_group_name")
"""
getStream(metric_group).add_value(metric_name, metric_value)
def publish_metric(metric_group: str, metric_name: str, metric_value: int):
warnings.warn(
"Deprecated, use put_metric(metric_group)(metric_name, metric_value) instead"
)
metric_stream = getStream(metric_group)
metric_stream.add_value(metric_name, metric_value)
def get_elapsed_time_ms(start_time_in_seconds: float):
"""Return the elapsed time in millis from the given start time."""
end_time = time.time()
return int((end_time - start_time_in_seconds) * 1000)
|