File size: 41,523 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
import contextlib
import functools
import gc
from dataclasses import asdict, dataclass, field
from itertools import chain
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Generator,
    Iterable,
    List,
    no_type_check,
    Optional,
    Set,
    Tuple,
    Union,
)

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import (
    _gather_state_dict,
    _offload_state_dict_to_cpu,
)
from torch.distributed._tensor import DTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    _CHECKPOINT_PREFIX,
)
from torch.distributed.fsdp import (
    FullOptimStateDictConfig,
    FullStateDictConfig,
    FullyShardedDataParallel as FSDP,
    OptimStateDictConfig,
    ShardedOptimStateDictConfig,
    ShardedStateDictConfig,
    StateDictConfig,
    StateDictType,
)
from torch.distributed.fsdp._common_utils import (
    _get_module_fsdp_state_if_fully_sharded_module,
    FSDP_WRAPPED_MODULE,
)
from torch.nn.modules.module import _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel as DDP


FLAT_PARAM = "_flat_param"
PG = "param_groups"
PG_PREFIX = f"{PG}."
STATE = "state"
STATE_PREFIX = f"{STATE}."
PARAMS = "params"
FQNS_T = Set[str]

_patched_state_dict: Set[Callable] = set()


PrimitiveType = Union[DTensor, ShardedTensor, torch.Tensor, int, float, str]
ValueType = Union[
    PrimitiveType, List[PrimitiveType], Tuple[PrimitiveType], Dict[str, "ValueType"]
]
DictValueType = Dict[str, ValueType]
ListDictValueType = List[DictValueType]
OptimizerStateType = Dict[str, Union[DictValueType, ListDictValueType]]


@contextlib.contextmanager
def gc_context():
    is_enabled = gc.isenabled()
    gc.disable()
    try:
        yield
    finally:
        # TODO: add logging for the gc details/time
        gc.collect()
        if is_enabled:
            gc.enable()


@dataclass
class StateDictOptions:
    """

    This dataclass specifies how get_state_dict/set_state_dict will work.



    - ``full_state_dict``: if this is set to True, all the tensors in the

      returned state_dict will be gathered. No ShardedTensor and DTensor

      will be in the returned state_dict.



    - ``cpu_offload``: offload all the tensors to cpu. To prevent CPU OOM, if

      ``full_state_dict`` is also true, then only the rank0 will get the

      state_dict and all other ranks will get empty state_dict.



    - ``ignore_frozen_params``: if the value is True, the returned state_dict

      won't contain any frozen parameters -- the ``requires_grad`` is False.

      The default value is False.



    - ``keep_submodule_prefixes``: when ``submodules`` is not None, this option

      indicates whether to keep the submodule prefixes from the state_dict keys.

      or example, if the submodule is ``module.pretrain`` and the full FQN of

      the parameter is ``pretrain.layer1.weight`` of the param. When this option

      is True, the parameter's key in the returned state_dict will be

      ``pretrain.layer1.weight``. If the options is False, the key will be

      ``layer1.weight``.

      Note that if ``keep_submodule_prefixes`` is False, there may be conflicted

      FQNs, hence there should be only one submodule in ``submodules``.



    - ``strict``: the ``strict`` option when ``set_state_dict`` calls

      model.load_state_dict().

      The default value is False.

    """

    full_state_dict: bool = False
    cpu_offload: bool = False
    ignore_frozen_params: bool = False
    keep_submodule_prefixes: bool = True
    strict: bool = True


@dataclass
class _StateDictInfo(StateDictOptions):
    fqn_param_mapping: Dict[
        Union[str, torch.Tensor], Union[FQNS_T, torch.Tensor]
    ] = field(default_factory=dict)
    all_fqns: Set[str] = field(default_factory=set)
    submodule_prefixes: Set[str] = field(default_factory=set)
    handle_model: bool = True
    handle_optim: bool = True
    fsdp_context: Callable = contextlib.nullcontext
    fsdp_modules: List[nn.Module] = field(default_factory=list)


def _get_fqns(

    model: nn.Module,

    name: str,

    skip_ddp_prefix: bool = True,

    skip_compiler_prefix: bool = True,

) -> FQNS_T:
    """

    This API is used to convert the name of a parameter to the FQNs. For FSDP

    without `use_orig_params`, the name of FlatParameter can be mapped to

    multiple original parameters. As a result, the return type of this function

    is `Set[str]`.



    Args:

        module (nn.Module): the root model.

        name (str): the name

        skip_ddp_prefix (bool): whether to skip DDP's `module` prefix



    Returns:

        The canonical FQNs based on the model traversal.

    """

    # Remove the checkpoint prefix, if it exists.
    name = name.replace(_CHECKPOINT_PREFIX, "")
    if "." not in name:
        return {name}

    obj_names = name.split(".")
    fqn_obj_names = []
    curr_obj = model
    for i, curr_obj_name in enumerate(obj_names):
        if isinstance(curr_obj, DDP):
            assert curr_obj_name == "module"
            curr_obj = curr_obj.module
            if not skip_ddp_prefix:
                fqn_obj_names.append(curr_obj_name)
        elif isinstance(curr_obj, FSDP):
            if i < len(obj_names) - 1 and obj_names[i + 1] == FLAT_PARAM:
                prefix = ".".join(fqn_obj_names)
                flat_param = getattr(curr_obj, FLAT_PARAM)
                if prefix:
                    prefix = f"{prefix}."
                return {f"{prefix}{fqn}" for fqn in flat_param._fqns}
            curr_obj = getattr(curr_obj, FSDP_WRAPPED_MODULE)
            if curr_obj_name != FSDP_WRAPPED_MODULE:
                fqn_obj_names.append(curr_obj_name)
                curr_obj = getattr(curr_obj, curr_obj_name)
        elif isinstance(curr_obj, torch._dynamo.eval_frame.OptimizedModule):
            assert curr_obj_name == "_orig_mod"
            curr_obj = curr_obj._orig_mod
            if not skip_compiler_prefix:
                fqn_obj_names.append(curr_obj_name)
        else:
            fqn_obj_names.append(curr_obj_name)
            if curr_obj_name == nn.modules.module._EXTRA_STATE_KEY_SUFFIX:
                if i != len(obj_names) - 1:
                    raise RuntimeError("Expect `_extra_state` to be the last obj name")
            else:
                curr_obj = getattr(curr_obj, curr_obj_name)

    return {".".join(fqn_obj_names).replace(_CHECKPOINT_PREFIX, "")}


class _EXTRA_STATE:
    pass


def _iterate_valid_model_state(model):
    visited_modules: Set[nn.Module] = set()

    def recurse(module: nn.Module, curr_fqn: str) -> Generator:
        visited_modules.add(module)

        curr_fqn = f"{curr_fqn}." if curr_fqn else ""
        for name, submodule in module.named_children():
            if submodule in visited_modules:
                continue
            new_fqn = f"{curr_fqn}{name}"
            yield from recurse(submodule, new_fqn)

        for name, obj in chain(
            module.named_buffers(recurse=False), module.named_parameters(recurse=False)
        ):
            if name in module._non_persistent_buffers_set:
                continue
            new_fqn = f"{curr_fqn}{name}"
            yield new_fqn, obj

        if (
            getattr(module.__class__, "get_extra_state", nn.Module.get_extra_state)
            != nn.Module.get_extra_state
        ):
            new_fqn = f"{curr_fqn}{nn.modules.module._EXTRA_STATE_KEY_SUFFIX}"
            yield new_fqn, _EXTRA_STATE()

    yield from recurse(model, "")


def _verify_options(

    model: nn.Module,

    optims: Tuple[torch.optim.Optimizer, ...],

    optim_only: bool,

    *,

    submodules: Optional[Set[nn.Module]] = None,

    options: Optional[StateDictOptions] = None,

) -> _StateDictInfo:
    """

    Verify the model and options passed by the user and generates _StateDictInfo.

    """
    if optim_only and not optims:
        raise RuntimeError(
            "Optimizers are not passed in but optim_only is set to True."
        )

    options = options or StateDictOptions()

    fqn_param_mapping: Dict[
        Union[str, torch.Tensor], Union[Set[str], torch.Tensor]
    ] = {}
    all_fqns = set()
    for name, param in _iterate_valid_model_state(model):
        fqns = _get_fqns(model, name)
        if not isinstance(param, _EXTRA_STATE):
            fqn_param_mapping[param] = fqns
        for fqn in fqns:
            if not isinstance(param, _EXTRA_STATE):
                fqn_param_mapping[fqn] = param
            all_fqns.add(fqn)

    submodule_prefixes = set()
    if submodules:
        submodules = set(submodules)
        for name, module in model.named_modules():
            if module not in submodules:
                continue
            fqns = _get_fqns(model, name)
            assert len(fqns) == 1, "Submodule FQN should only have 1 instance"
            for fqn in fqns:
                submodule_prefixes.add(f"{fqn}.")

    fsdp_modules = FSDP.fsdp_modules(model)
    state_dict_config: StateDictConfig
    optim_state_dict_config: OptimStateDictConfig
    fsdp_context: Callable
    if fsdp_modules:
        # FSDP API only work if at least one FSDP instance exists.
        if options.full_state_dict:
            state_dict_config = FullStateDictConfig(
                offload_to_cpu=options.cpu_offload, rank0_only=options.cpu_offload
            )
            optim_state_dict_config = FullOptimStateDictConfig(
                offload_to_cpu=options.cpu_offload, rank0_only=options.cpu_offload
            )
            state_dict_type = StateDictType.FULL_STATE_DICT
        else:
            state_dict_config = ShardedStateDictConfig(
                offload_to_cpu=options.cpu_offload,
            )
            optim_state_dict_config = ShardedOptimStateDictConfig(
                offload_to_cpu=options.cpu_offload,
            )
            state_dict_type = StateDictType.SHARDED_STATE_DICT

        fsdp_context = functools.partial(
            FSDP.state_dict_type,
            module=model,
            state_dict_type=state_dict_type,
            state_dict_config=state_dict_config,
            optim_state_dict_config=optim_state_dict_config,
        )
    else:
        fsdp_context = contextlib.nullcontext

    return _StateDictInfo(
        **asdict(options),
        fqn_param_mapping=fqn_param_mapping,
        all_fqns=all_fqns,
        submodule_prefixes=submodule_prefixes,
        fsdp_context=fsdp_context,
        fsdp_modules=cast(List[nn.Module], fsdp_modules),
        handle_model=not optim_only,
        handle_optim=(len(optims) > 0),
    )


def _verify_state_dict(

    model_state_dict: Dict[str, ValueType],

    optim_state_dict: OptimizerStateType,

    info: _StateDictInfo,

) -> None:
    for module in info.fsdp_modules:
        fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
        assert fsdp_state is not None, "Expected a fsdp_state with a fsdp module."

    # Verify if the model_state_dict and optim_state_dict are valid. This API
    # should give the users an explicit error message to debug or report.
    if (
        info.handle_model
        and not model_state_dict
        and not info.submodule_prefixes
        and not info.ignore_frozen_params
        and not (info.cpu_offload and info.full_state_dict)
        and info.strict
    ):
        raise RuntimeError(
            "The option indicates that model state_dict is required to save "
            "or load, but model state_dict is empty."
            f"rank = {dist.get_rank()=}."
        )

    if info.handle_optim:
        if not (optim_state_dict and optim_state_dict[STATE]) and not (
            info.cpu_offload and info.full_state_dict
        ):
            raise RuntimeError(
                "The option indicates that model state_dict is required to save, "
                f"or load but optim state_dict is empty. {optim_state_dict}"
            )

    for key in model_state_dict.keys():
        if FLAT_PARAM in key:
            raise RuntimeError(
                f"{key} contains {FLAT_PARAM}. This can happen if the model "
                "is not the root module."
            )


def _state_dict_fn(obj: Union[nn.Module, torch.optim.Optimizer], api: str) -> Callable:
    call = getattr(obj, api)
    if call in _patched_state_dict:
        call = functools.partial(getattr(obj.__class__, api), self=obj)
    return call


def _get_model_state_dict(

    model: nn.Module, info: _StateDictInfo

) -> Dict[str, ValueType]:
    if not info.handle_model:
        return {}

    with info.fsdp_context():
        state_dict = _state_dict_fn(model, "state_dict")()

    for key in list(state_dict.keys()):
        fqns = _get_fqns(model, key)
        assert len(fqns) == 1
        fqn = next(iter(fqns))
        if fqn != key:
            # As we only support FSDP, DDP, and TP, the only cases are
            # wrapper-based DDP and compiler. Verify if the assumption
            # is correct.
            def verify(key, fqn) -> bool:
                if len(fqn) >= len(key):
                    return False
                fqn_split = fqn.split(".")
                key_split = key.split(".")
                fqn_idx = 0
                for key_idx, key_name in enumerate(key_split):
                    if key_name == fqn_split[fqn_idx]:
                        fqn_idx += 1
                        if fqn_idx == len(fqn_split):
                            return key_idx == len(key_split) - 1
                    elif key_name in ("module", "_orig_mod"):
                        continue
                    else:
                        return False
                return True

            if not verify(key, fqn):
                raise RuntimeError(f"An unexpected key, {key}, exists. FQN is {fqn}")
            state_dict[fqn] = state_dict.pop(key)

    if info.submodule_prefixes:
        new_state_dict: Dict[str, ValueType] = {}
        # TODO: make this faster.
        for fqn in state_dict.keys():
            for prefix in info.submodule_prefixes:
                if not fqn.startswith(prefix):
                    continue
                if info.keep_submodule_prefixes:
                    new_state_dict[fqn] = state_dict[fqn]
                else:
                    new_fqn = fqn[len(prefix) :]
                    new_state_dict[new_fqn] = state_dict[fqn]
        state_dict = new_state_dict

    if info.ignore_frozen_params:
        for key, param in model.named_parameters():
            if param.requires_grad:
                continue
            fqns = _get_fqns(model, key)
            for fqn in fqns:
                state_dict.pop(fqn)

    for key, p in list(state_dict.items()):
        if torch.is_tensor(p) and p.is_meta:
            state_dict.pop(key)

    if info.full_state_dict:
        ranks_only = tuple() if not info.cpu_offload else (0,)
        return _gather_state_dict(
            state_dict, cpu_offload=info.cpu_offload, ranks_only=ranks_only
        )
    elif info.cpu_offload:
        return _offload_state_dict_to_cpu(state_dict)
    else:
        return state_dict


def _load_model_state_dict(

    model: nn.Module,

    state_dict: Dict[str, ValueType],

    info: _StateDictInfo,

) -> _IncompatibleKeys:
    if not info.handle_model or not state_dict:
        return _IncompatibleKeys({}, {})

    for key, _ in _iterate_valid_model_state(model):
        fqns = _get_fqns(model, key)
        fqns_with_prefix = _get_fqns(
            model, key, skip_ddp_prefix=False, skip_compiler_prefix=False
        )
        for fqn, fqn_with_prefix in zip(fqns, fqns_with_prefix):
            if fqn != fqn_with_prefix:
                state_dict[fqn_with_prefix] = state_dict.pop(fqn)

    with info.fsdp_context():
        return cast(
            _IncompatibleKeys,
            _state_dict_fn(model, "load_state_dict")(
                state_dict=state_dict, strict=info.strict
            ),
        )


def _init_optim_state(optim: torch.optim.Optimizer) -> None:
    """

    Initialize optim states by calling the step() with zero grads.

    """
    if optim.state:
        # The optimizer state is initialized.
        return

    for param_group in optim.param_groups:
        for param in param_group[PARAMS]:
            if param.grad is not None:
                raise RuntimeError(
                    "state_dict can only be used if the optimizer "
                    "states are initialized (usually after one step() with "
                    "gradients) or gradients are None. For the later case, "
                    "state_dict will fake the gradients as zero "
                    "to initialize the optimizer states. However, the "
                    "gradients are not None."
                )
            if param.requires_grad:
                param.grad = torch.zeros_like(param)
    optim.step(closure=None)
    optim.zero_grad(set_to_none=True)


def _get_optim_state_dict(

    model: nn.Module,

    optimizers: Tuple[torch.optim.Optimizer, ...],

    info: _StateDictInfo,

) -> OptimizerStateType:
    if not info.handle_optim:
        return {}

    optim_state_dict: OptimizerStateType = {STATE: {}, PG: []}
    for optim in optimizers:
        _init_optim_state(optim)
        osd = _state_dict_fn(optim, "state_dict")()
        if info.fsdp_modules:
            with info.fsdp_context():
                osd = FSDP.optim_state_dict(model, optim, osd)

            # We need to specially handle FlatParameter FSDP as
            # FlatParameter FSDP converts the FQNs.
            # There are no easy ways to do this conversion systematically.
            # We can only use a string replacment without correctness check.
            if not osd:
                continue
            for k in list(osd[STATE].keys()):
                if "_orig_mod" in k:
                    osd[STATE][k.replace("_orig_mod.", "")] = osd[STATE].pop(k)
            for g in osd[PG]:
                params = [k.replace("_orig_mod.", "") for k in g[PARAMS]]
                g[PARAMS] = params
        else:
            params = list(chain.from_iterable(g[PARAMS] for g in optim.param_groups))
            param_pid_mapping = dict(zip(params, range(len(params))))
            fqn_pid_mapping = {}
            for key, param in model.named_parameters():
                fqns = _get_fqns(model, key)
                assert len(fqns) == 1
                fqn = next(iter(fqns))
                if param not in param_pid_mapping:
                    continue
                pid = param_pid_mapping[param]
                fqn_pid_mapping[fqn] = pid
                fqn_pid_mapping[pid] = fqn

            for key in list(osd[STATE].keys()):
                fqn = fqn_pid_mapping[key]
                osd[STATE][fqn] = osd[STATE].pop(key)

            for group in osd[PG]:
                group[PARAMS] = [fqn_pid_mapping[pid] for pid in group[PARAMS]]

        if not osd:
            continue

        cast(DictValueType, optim_state_dict[STATE]).update(osd[STATE])
        cast(ListDictValueType, optim_state_dict[PG]).extend(osd[PG])

    if info.full_state_dict:
        ranks_only = tuple() if not info.cpu_offload else (0,)
        return _gather_state_dict(
            optim_state_dict, cpu_offload=info.cpu_offload, ranks_only=ranks_only
        )
    elif info.cpu_offload:
        return _offload_state_dict_to_cpu(optim_state_dict)
    else:
        return optim_state_dict


def _split_optim_state_dict(

    model: nn.Module,

    optim: torch.optim.Optimizer,

    optim_state_dict: OptimizerStateType,

    info: _StateDictInfo,

) -> OptimizerStateType:
    """

    Extract the corresponding optim state_dict from ``optim_state_dict`` for

    ``optim`` and return the result optim state_dict.



    Args:

        model (nn.Module): the root model.

        optim (torch.optim.Optimizer): the optimizer.

        optim_state_dict (Dict[str, ValueType]): the superset optim state_dict that

            contains the optim state_dict of ``optim``.

        info (_StateDictInfo): state dict information.



    Returns:

        The optim state_dict of ``optim``.

    """

    state: DictValueType = {}
    pg_state: ListDictValueType = []
    return_osd: OptimizerStateType = {STATE: state, PG: pg_state}
    pg_mapping: Dict[int, int] = {}

    for param_group in optim.param_groups:
        pg_state.append({PARAMS: []})
        for param in param_group[PARAMS]:
            for fqn in info.fqn_param_mapping[param]:
                params = pg_state[-1][PARAMS]
                assert isinstance(params, list)
                params.append(fqn)
                if param.requires_grad:
                    state[fqn] = cast(DictValueType, optim_state_dict[STATE])[fqn]
                for loaded_param_group in cast(ListDictValueType, optim_state_dict[PG]):
                    params = loaded_param_group[PARAMS]
                    assert isinstance(params, list)
                    if fqn in params:
                        pg_mapping[id(loaded_param_group)] = len(return_osd[PG]) - 1

    for param_group in cast(ListDictValueType, optim_state_dict[PG]):
        idx = pg_mapping.get(id(param_group), -1)
        if idx == -1:
            continue
        for key, value in param_group.items():
            if key == PARAMS:
                continue
            # TODO: check if value is the same if exists.
            pg_state[idx][key] = value

    return return_osd


def _load_optim_state_dict(

    model: nn.Module,

    optimizers: Tuple[torch.optim.Optimizer, ...],

    state_dict: OptimizerStateType,

    info: _StateDictInfo,

) -> None:
    if not info.handle_optim:
        return

    for optim in optimizers:
        optim_state_dict = _split_optim_state_dict(model, optim, state_dict, info)
        if info.fsdp_modules:
            # We need to specially handle FlatParameter FSDP as
            # FlatParameter FSDP converts the FQNs.
            for original_fqn, _ in model.named_parameters():
                fqns = _get_fqns(model, original_fqn)
                fqns_with_compiler = _get_fqns(
                    model, original_fqn, skip_compiler_prefix=False
                )
                if fqns == fqns_with_compiler:
                    continue

                assert len(fqns) == 1
                fqn = fqns.pop()
                fqn_with_compiler = fqns_with_compiler.pop()
                for g in optim_state_dict[PG]:
                    val = cast(Dict[str, Any], g)
                    params = [
                        key.replace(fqn, fqn_with_compiler) for key in val[PARAMS]
                    ]
                    val[PARAMS] = params
                osd_state = cast(DictValueType, optim_state_dict[STATE])
                for k in list(osd_state.keys()):
                    if fqn in k:
                        osd_state[k.replace(fqn, fqn_with_compiler)] = osd_state.pop(k)

            with info.fsdp_context():
                optim_state_dict = FSDP.optim_state_dict_to_load(
                    model, optim, optim_state_dict
                )

        # Note that we do not have to convert the FQN back to param id here if
        # order in optim.param_groups[idx][PARAMS] is the same as the one in
        # optim_state_dict[PG][idx][PARAMS].
        _init_optim_state(optim)
        _state_dict_fn(optim, "load_state_dict")(state_dict=optim_state_dict)


def get_model_state_dict(

    model: nn.Module,

    *,

    submodules: Optional[Set[nn.Module]] = None,

    options: Optional[StateDictOptions] = None,

) -> Dict[str, ValueType]:
    """

    Return the model state_dict of ``model``.



    See ``get_state_dict`` for the detail usage.



    Args:

        model (nn.Module): the nn.Module to the model.

        submodules: Optional[Set[nn.Module]]: only return the model parameters

            that belong to the submodules.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be returned. See

            `StateDictOptions` for the details.



    Returns:

        The state_dict for ``model``.



    :rtype: typing.Dict[str, ValueType]

    """
    with gc_context():
        info = _verify_options(
            model,
            tuple(),
            optim_only=False,
            submodules=submodules,
            options=options,
        )
        model_state_dict = _get_model_state_dict(model, info)
        _verify_state_dict(model_state_dict, {}, info)
        return model_state_dict


def get_optimizer_state_dict(

    model: nn.Module,

    optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],

    *,

    submodules: Optional[Set[nn.Module]] = None,

    options: Optional[StateDictOptions] = None,

) -> OptimizerStateType:
    """

    Return the combined state_dict for optimizers.



    See ``get_state_dict`` for the detail usage.



    Args:

        model (nn.Module): the nn.Module to the model.

        optimizers (Union[None, Optimizer, Iterable[Optimizer]]):

            The optimizers that are used to optimize ``model``.

        submodules: Optional[Set[nn.Module]]: only return the model parameters

            that belong to the submodules.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be returned. See

            `StateDictOptions` for the details.



    Returns:

        The state_dict for ``optimizers``.



    :rtype: OptimizerStateType

    """
    with gc_context():
        optimizers = (
            (optimizers,)
            if isinstance(optimizers, torch.optim.Optimizer)
            else tuple(optimizers)
        )
        info = _verify_options(
            model,
            optimizers,
            optim_only=True,
            submodules=submodules,
            options=options,
        )
        optim_state_dict = _get_optim_state_dict(model, optimizers, info)
        _verify_state_dict({}, optim_state_dict, info)
        return optim_state_dict


def get_state_dict(

    model: nn.Module,

    optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],

    *,

    submodules: Optional[Set[nn.Module]] = None,

    options: Optional[StateDictOptions] = None,

) -> Tuple[Dict[str, ValueType], OptimizerStateType]:
    """

    Return the model state_dict and optimizers state_dict.



    ``get_state_dict`` can process any module that is parallelized by PyTorch

    FSDP/fully_shard, DDP/replicate, tensor_parallel/parallelize_module, and any

    combination of these parallelisms. The main functions of ``get_state_dict``

    are: 1.) returning a model and optimizer state_dict that can be resharded

    with a different number of trainers and/or different parallelisms.

    2.) hiding the parallelism-specific state_dict APIs. Users don't have to call

    these APIs.

    3.) sanity checking the result state_dict.



    The keys of the result state dictionary are the canonical FQNs (Fully

    Qualified Names).  A canonical FQN refers to the FQN based on a parameter's

    position in an nn.Module hierarchy. More specifically, a canonical FQN to a

    parameter is the FQN returned by ``module.named_parameters()`` or

    ``module.named_buffers()`` when the module is not distributed by any

    parallelisms. Since the optimizer internally uses parameter IDs to represent

    a parameter, there will be a conversion from the parameter IDs to the

    canonical FQNs when calling this API.



    ``get_state_dict`` can also process a module that is not parallelized. In

    such a case, ``get_state_dict`` only performs one function -- converting the

    optimizer parameter IDs to the canonical FQNs.



    Example:

        >>> # xdoctest: +SKIP

        >>> import torch

        >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

        >>> from torch.nn.parallel import DistributedDataParallel as DDP

        >>> from torch.distributed.checkpoint.state_dict import get_state_dict



        >>> fsdp_model = FSDP(copy.deepcopy(model))

        >>> fsdp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)

        >>> ddp_model = DDP(copy.deepcopy(model))

        >>> ddp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)





        >>> ddp_state_dict, ddp_optim_state_dict = get_state_dict(ddp_model, ddp_optim)

        >>> fsdp_state_dict, fsdp_optim_state_dict = get_state_dict(fsdp_model, fsdp_optim)



        >>> # if we simply call ddp_model.state_dict() and fsdp_model.state_dict(),

        >>> # the asserts will fail.

        >>> assert ddp_state_dict == fsdp_state_dict

        >>> assert ddp_optim_state == fsdp_optim_state_dict





    Args:

        model (nn.Module): the nn.Module to the model.

        optimizers (Union[None, Optimizer, Iterable[Optimizer]]):

            The optimizers that are used to optimize ``model``.

        submodules: Optional[Set[nn.Module]]: only return the model parameters

            that belong to the submodules.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be returned. See

            `StateDictOptions` for the details.



    Returns:

        ``Tuple`` that contain model state_dict and optimizer state_dict.



    :rtype: typing.Tuple[typing.Dict[str, ValueType], OptimizerStateType]

    """

    with gc_context():
        optimizers = (
            (optimizers,)
            if isinstance(optimizers, torch.optim.Optimizer)
            else tuple(optimizers)
        )
        info = _verify_options(
            model,
            optimizers,
            optim_only=False,
            submodules=submodules,
            options=options,
        )
        model_state_dict = _get_model_state_dict(model, info)
        optim_state_dict = _get_optim_state_dict(model, optimizers, info)
        _verify_state_dict(model_state_dict, optim_state_dict, info)
        return model_state_dict, optim_state_dict


def _unflatten_model_state_dict(

    model: nn.Module,

    state_dict: Union[Dict[nn.Module, Dict[str, ValueType]], Dict[str, ValueType]],

) -> Dict[str, ValueType]:
    if not state_dict:
        return {}

    if isinstance(next(iter(state_dict.keys())), nn.Module):
        cast_state_dict = cast(Dict[nn.Module, Dict[str, ValueType]], state_dict)
        new_state_dict: Dict[str, ValueType] = {}
        for submodule, sub_state_dict in cast_state_dict.items():
            for name, m in model.named_modules():
                if m != submodule:
                    continue

                fqns = _get_fqns(model, name)
                assert len(fqns) == 1, "FQNs for a submodule should only have 1 element"
                prefix = f"{next(iter(fqns))}."
                new_state_dict.update(
                    {prefix + subfqn: value for subfqn, value in sub_state_dict.items()}
                )
        return new_state_dict
    else:
        return cast(Dict[str, ValueType], state_dict)


def set_model_state_dict(

    model: nn.Module,

    model_state_dict: Dict[str, ValueType],

    *,

    options: Optional[StateDictOptions] = None,

) -> _IncompatibleKeys:
    """Load the model state_dict.



    The counterpart of ``get_model_state_dict`` to set the state_dict to the

    model. See ``set_state_dict`` for the detail usage.



    Args:

        model (nn.Module): the nn.Module to the model.

        model_state_dict: (Dict[str, ValueType]):

           the model state_dict to load. If the key of the ``model_state_dict``

           is nn.Module, the key is a submodule of ``model`` and the value should

           be the state_dict of the submodule. When loading the state_dict,

           the prefix of the submodule will be append to the state_dict.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be loaded. See

            `StateDictOptions` for the details.



    Returns:

        ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:

            * **missing_keys** is a list of str containing the missing keys

            * **unexpected_keys** is a list of str containing the unexpected keys



    :type model_state_dict: typing.Dict[str, ValueType]

    """
    model_state_dict: Dict[str, ValueType] = _unflatten_model_state_dict(
        model, model_state_dict
    )
    with gc_context():
        info = _verify_options(model, tuple(), optim_only=False, options=options)

        _verify_state_dict(model_state_dict, {}, info)
        return _load_model_state_dict(model, model_state_dict, info)


def set_optimizer_state_dict(

    model: nn.Module,

    optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],

    *,

    optim_state_dict: OptimizerStateType,

    options: Optional[StateDictOptions] = None,

) -> None:
    """Load the optimizers state_dict.



    The counterpart of ``get_optimizer_state_dict`` to set the state_dict to the

    optimizers. See ``set_state_dict`` for the detail usage.



    Args:

        model (nn.Module): the nn.Module to the model.

        optimizers (Union[Optimizer, Iterable[Optimizer]]):

            The optimizers that are used to optimize ``model``.

        optim_state_dict: OptimizerStateType:

            the optimizer state_dict to load.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be loaded. See

            `StateDictOptions` for the details.



    Returns:

        None



    :type optim_state_dict: typing.OptimizerStateType

    """
    with gc_context():
        optimizers = (
            (optimizers,)
            if isinstance(optimizers, torch.optim.Optimizer)
            else tuple(optimizers)
        )
        info = _verify_options(model, optimizers, optim_only=True, options=options)

        _verify_state_dict({}, optim_state_dict, info)
        _load_optim_state_dict(model, optimizers, optim_state_dict, info)


def set_state_dict(

    model: nn.Module,

    optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],

    *,

    model_state_dict: Dict[str, ValueType],

    optim_state_dict: OptimizerStateType,

    options: Optional[StateDictOptions] = None,

) -> _IncompatibleKeys:
    """Load the model state_dict and optimizers state_dict.



    The counterpart of ``get_state_dict`` to set the state_dict to the model and

    optimizers.  The given ``model_state_dict`` and ``optim_state_dict`` do not

    have to be returned by ``get_state_dict`` but must meet the following

    requirements: 1) all FQNs are canonical FQNs as defined in ``get_state_dict``,

    2) if a tensor is sharded, it must be either a ShardedTensor or DTensor,

    3) optimizer state_dict cannot contain the parameter IDs; the keys should be

    the canonical FQNs.



    Args:

        model (nn.Module): the nn.Module to the model.

        optimizers (Union[Optimizer, Iterable[Optimizer]]):

            The optimizers that are used to optimize ``model``.

        model_state_dict: (Union[Dict[nn.Module, Dict[str, ValueType]], Dict[str, ValueType]]):

           the model state_dict to load. If the key of the ``model_state_dict``

           is nn.Module, the key is a submodule of ``model`` and the value should

           be the state_dict of the submodule. When loading the state_dict,

           the prefix of the submodule will be append to the state_dict.

        optim_state_dict: OptimizerStateType:

            the optimizer state_dict to load.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be loaded. See

            `StateDictOptions` for the details.



    Returns:

        ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:

            * **missing_keys** is a list of str containing the missing keys of the model state_dict.

            * **unexpected_keys** is a list of str containing the unexpected keys of the model state_dict.



    :type model_state_dict: typing.Dict[str, ValueType]

    :type optim_state_dict: typing.OptimizerStateType

    """

    model_state_dict: Dict[str, ValueType] = _unflatten_model_state_dict(
        model, model_state_dict
    )
    with gc_context():
        optimizers = (
            (optimizers,)
            if isinstance(optimizers, torch.optim.Optimizer)
            else tuple(optimizers)
        )
        info = _verify_options(
            model, optimizers, optim_only=not model_state_dict, options=options
        )

        _verify_state_dict(model_state_dict, optim_state_dict, info)
        _load_optim_state_dict(model, optimizers, optim_state_dict, info)
        return _load_model_state_dict(model, model_state_dict, info)


# TODO: correct the state_dict function signature.
# TODO: this API is not yet fully tested. Make it private
@no_type_check
def _patch_model_state_dict(

    model: nn.Module,

    *,

    options: Optional[StateDictOptions] = None,

) -> None:
    """Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model``.



    Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model`` to

    be a partial function to call ``get_state_dict`` and ``set_state_dict``.



    Example:

        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

        from torch.distributed.checkpoint.state_dict import patch_model_state_dict



        model = fsdp(model)

        patch_model_state_dict(model)



    Args:

        model (nn.Module): the nn.Module to the model.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be loaded. See

            `StateDictOptions` for the details.

    Returns:

        None

    """

    _state_dict_call = functools.partial(
        get_model_state_dict,
        model=model,
        options=options,
    )

    def state_dict_call():
        return _state_dict_call()

    model.state_dict = state_dict_call

    _load_state_dict_call = functools.partial(
        set_model_state_dict,
        model=model,
        options=options,
    )

    def load_state_dict_call(state_dict: Dict[str, Any]):
        _load_state_dict_call(model_state_dict=state_dict)

    model.load_state_dict = load_state_dict_call

    _patched_state_dict.add(state_dict_call)
    _patched_state_dict.add(load_state_dict_call)


# TODO: correct the load_state_dict function signature.
# TODO: this API is not yet fully tested. Make it private
@no_type_check
def _patch_optimizer_state_dict(

    model: nn.Module,

    *,

    optimizers: Tuple[torch.optim.Optimizer, ...],

    options: Optional[StateDictOptions] = None,

) -> None:
    """Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers``.



    Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers`` to

    be a partial function to call ``get_state_dict`` and ``set_state_dict``.



    Note that if there are multiple optimizers, all of the optimizers will be patched.

    So users only need to call one of the state_dict() to get the full result.



    Example:

        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

        from torch.distributed.checkpoint.state_dict import patch_model_state_dict



        model = fsdp(model)

        patch_model_state_dict(model)



    Args:

        model (nn.Module): the nn.Module to the model.

        options (StateDictOptions): the options to control how

            model state_dict and optimizer state_dict should be loaded. See

            `StateDictOptions` for the details.

    Returns:

        None

    """

    _state_dict_call = functools.partial(
        get_optimizer_state_dict,
        model=model,
        optimizers=optimizers,
        options=options,
    )

    def state_dict_call():
        return _state_dict_call()

    _load_state_dict_call = functools.partial(
        set_optimizer_state_dict,
        model=model,
        optimizers=optimizers,
        options=options,
    )

    def load_state_dict_call(state_dict: Dict[str, Any]):
        _load_state_dict_call(optim_state_dict=state_dict)

    _patched_state_dict.add(state_dict_call)
    _patched_state_dict.add(load_state_dict_call)
    optimizers = (
        (optimizers,)
        if isinstance(optimizers, torch.optim.Optimizer)
        else tuple(optimizers)
    )
    for optim in optimizers:
        optim.state_dict = state_dict_call
        optim.load_state_dict = load_state_dict_call