File size: 2,240 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from dataclasses import dataclass
from typing import List, Union, Optional
from functools import reduce

from torch.distributed.remote_device import _remote_device

@dataclass
class ShardMetadata:
    """

    Represents a shard of the overall Tensor including its

    offsets, lengths and device placement.



    Args:

        shard_offsets(List[int]): Offsets in the original tensor indicating

            the start offsets for this shard. Should have the same rank as

            the original tensor.

        shard_sizes(List[int]): Integers indicating the size of each

            dimension for this shard. Should have the same rank as the

            original tensor.

        placement(:class:`torch.distributed._remote_device`):

            Specifies the placement of this shard.

    """

    __slots__ = ['shard_offsets', 'shard_sizes', 'placement']

    shard_offsets: List[int]
    shard_sizes: List[int]
    placement: Optional[_remote_device]

    def __init__(

        self,

        shard_offsets: List[int],

        shard_sizes: List[int],

        placement: Optional[Union[str, _remote_device]] = None

    ):
        self.shard_offsets = shard_offsets
        self.shard_sizes = shard_sizes
        if isinstance(placement, str):
            self.placement = _remote_device(placement)
        else:
            self.placement = placement
        if len(self.shard_offsets) != len(self.shard_sizes):
            raise ValueError(
                f'shard_offsets and shard_sizes should have '
                f'the same number of elements, found {len(self.shard_offsets)} '
                f'and {self.shard_sizes} respectively')

        for i in range(len(self.shard_offsets)):
            if self.shard_offsets[i] < 0:
                raise ValueError('shard_offsets should be >=0')
            if self.shard_sizes[i] < 0:
                raise ValueError('shard_sizes should be >= 0')

    def __hash__(self):
        def _hash_reduce(a, b):
            return (a << 8) + hash(b)

        res = reduce(_hash_reduce, self.shard_offsets, 37)
        res = reduce(_hash_reduce, self.shard_sizes, res)
        res = _hash_reduce(res, self.placement)
        return res