File size: 83,400 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
import array
import enum
import functools
import logging
import operator
import struct
import sys
from typing import List, NamedTuple, Optional, Tuple

import torch


# TODO: Add type annotations
# TODO: Check tensor types for ops


LOG = logging.getLogger("nnapi_serialize")


class NNAPI_OperandCode:
    FLOAT32 = 0
    INT32 = 1
    UINT32 = 2
    TENSOR_FLOAT32 = 3
    TENSOR_INT32 = 4
    TENSOR_QUANT8_ASYMM = 5
    BOOL = 6
    TENSOR_QUANT16_SYMM = 7
    TENSOR_FLOAT16 = 8
    TENSOR_BOOL8 = 9
    FLOAT16 = 10
    TENSOR_QUANT8_SYMM_PER_CHANNEL = 11
    TENSOR_QUANT16_ASYMM = 12


class NNAPI_OperationCode:
    ADD = 0
    AVERAGE_POOL_2D = 1
    CONCATENATION = 2
    CONV_2D = 3
    DEPTHWISE_CONV_2D = 4
    DEPTH_TO_SPACE = 5
    DEQUANTIZE = 6
    EMBEDDING_LOOKUP = 7
    FLOOR = 8
    FULLY_CONNECTED = 9
    HASHTABLE_LOOKUP = 10
    L2_NORMALIZATION = 11
    L2_POOL_2D = 12
    LOCAL_RESPONSE_NORMALIZATION = 13
    LOGISTIC = 14
    LSH_PROJECTION = 15
    LSTM = 16
    MAX_POOL_2D = 17
    MUL = 18
    RELU = 19
    RELU1 = 20
    RELU6 = 21
    RESHAPE = 22
    RESIZE_BILINEAR = 23
    RNN = 24
    SOFTMAX = 25
    SPACE_TO_DEPTH = 26
    SVDF = 27
    TANH = 28
    BATCH_TO_SPACE_ND = 29
    DIV = 30
    MEAN = 31
    PAD = 32
    SPACE_TO_BATCH_ND = 33
    SQUEEZE = 34
    STRIDED_SLICE = 35
    SUB = 36
    TRANSPOSE = 37
    ABS = 38
    ARGMAX = 39
    ARGMIN = 40
    AXIS_ALIGNED_BBOX_TRANSFORM = 41
    BIDIRECTIONAL_SEQUENCE_LSTM = 42
    BIDIRECTIONAL_SEQUENCE_RNN = 43
    BOX_WITH_NMS_LIMIT = 44
    CAST = 45
    CHANNEL_SHUFFLE = 46
    DETECTION_POSTPROCESSING = 47
    EQUAL = 48
    EXP = 49
    EXPAND_DIMS = 50
    GATHER = 51
    GENERATE_PROPOSALS = 52
    GREATER = 53
    GREATER_EQUAL = 54
    GROUPED_CONV_2D = 55
    HEATMAP_MAX_KEYPOINT = 56
    INSTANCE_NORMALIZATION = 57
    LESS = 58
    LESS_EQUAL = 59
    LOG = 60
    LOGICAL_AND = 61
    LOGICAL_NOT = 62
    LOGICAL_OR = 63
    LOG_SOFTMAX = 64
    MAXIMUM = 65
    MINIMUM = 66
    NEG = 67
    NOT_EQUAL = 68
    PAD_V2 = 69
    POW = 70
    PRELU = 71
    QUANTIZE = 72
    QUANTIZED_16BIT_LSTM = 73
    RANDOM_MULTINOMIAL = 74
    REDUCE_ALL = 75
    REDUCE_ANY = 76
    REDUCE_MAX = 77
    REDUCE_MIN = 78
    REDUCE_PROD = 79
    REDUCE_SUM = 80
    ROI_ALIGN = 81
    ROI_POOLING = 82
    RSQRT = 83
    SELECT = 84
    SIN = 85
    SLICE = 86
    SPLIT = 87
    SQRT = 88
    TILE = 89
    TOPK_V2 = 90
    TRANSPOSE_CONV_2D = 91
    UNIDIRECTIONAL_SEQUENCE_LSTM = 92
    UNIDIRECTIONAL_SEQUENCE_RNN = 93
    RESIZE_NEAREST_NEIGHBOR = 94


class NNAPI_FuseCode:
    FUSED_NONE = 0
    FUSED_RELU = 1
    FUSED_RELU1 = 2
    FUSED_RELU6 = 3


class OperandValueSourceType:
    IMMEDIATE = 0
    NUMBERED_BUFFER = 2
    NUMBERED_MEMORY = 3


# Scalar types that appear explicitly in models.
# These must be kept in sync with
# AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
# TODO: Expose these directly to Python to avoid maintaining this list.
class TorchScalarTypes(enum.Enum):
    QUINT8 = 13


def approx_equal(lhs, rhs, tolerance=1e-6):
    return abs(lhs - rhs) <= tolerance * min(lhs, rhs)


def tensor_size(op_type, dims):
    ITEM_SIZES = {
        NNAPI_OperandCode.TENSOR_FLOAT32: 4,
        NNAPI_OperandCode.TENSOR_INT32: 4,
        NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: 1,
        NNAPI_OperandCode.TENSOR_QUANT16_SYMM: 2,
        NNAPI_OperandCode.TENSOR_QUANT16_ASYMM: 2,
    }
    size = ITEM_SIZES[op_type]
    for d in dims:
        size *= d
    return size


def change_element(tup, index, value):
    ls = list(tup)
    ls[index] = value
    return tuple(ls)


class ConvPoolArgs2d(NamedTuple):
    """Configuration arguments for a convolution."""

    kernel_h: int
    kernel_w: int
    stride_h: int
    stride_w: int
    pad_t: int
    pad_b: int
    pad_l: int
    pad_r: int
    dilation_h: int
    dilation_w: int
    group: int


class DimOrder(enum.Enum):
    PRESUMED_CONTIGUOUS = 0
    CHANNELS_LAST = 1
    SCALAR_OR_VECTOR = 2
    UNKNOWN_CONSTANT = 999


class Operand(NamedTuple):
    """Represenation of an NNAPI operand."""

    # NNAPI operand type.  One of NNAPI_OperandCode.
    # TODO: Make this an enum.
    op_type: int

    # This is always the PyTorch shape, which is NCHW for feature maps.
    # The actual NNAPI operand might have a transposed shape.
    # we use 0 for load time dynamic shapes & -1 for runtime dynamic shapes
    shape: Tuple[int, ...]

    # Specifies how the shape of the operand that we define in NNAPI
    # relates to the shape we track above.
    # - PRESUMED_CONTIGUOUS: physical NNAPI operand will exactly match
    #   the shape of the PyTorch tensor.
    # - CHANNELS_LAST: The PyTorch tensor is expected to be NCHW, and
    #   the NNAPI operand will be represented explicitly as NHWC.
    dim_order: DimOrder

    # Quantization params
    scale: float
    zero_point: int

    def use_nchw(self):
        if self.dim_order is DimOrder.PRESUMED_CONTIGUOUS:
            return True
        if self.dim_order is DimOrder.CHANNELS_LAST:
            return False
        raise Exception("Unknown dim order")


def broadcast_shapes(shape1, shape2):
    assert len(shape1) > 0
    assert len(shape2) > 0
    s1 = list(shape1)
    s2 = list(shape2)
    # TODO: Support non-equal-rank broadcast where semantics match.
    # This can be tricky for NHWC tensors because dimension orders
    # don't match between PT and NNAPI, even though semantics match.
    if len(s1) > len(s2):
        # s2 = [1] * (len(s1) - len(s2)) + s2
        raise Exception("Non-equal-rank broadcast is not supported yet.")
    if len(s2) > len(s1):
        # s3 = [1] * (len(s2) - len(s1)) + s1
        raise Exception("Non-equal-rank broadcast is not supported yet.")
    ret = []
    for d1, d2 in zip(s1, s2):
        if d1 == 1:
            ret.append(d2)
        elif d2 == 1:
            ret.append(d1)
        elif d1 == d2:
            ret.append(d1)
        else:
            raise Exception(f"Cannot broadcast shapes: {shape1} and {shape2}")
    return tuple(ret)


def get_conv_pool_shape(image_shape, args, out_ch, transpose):
    batch, in_c, in_h, in_w = image_shape

    # TODO: Handle dilation
    if args.dilation_h != 1 or args.dilation_w != 1:
        raise Exception("Dilation not supported yet.")

    if transpose:
        out_h = (in_h - 1) * args.stride_h + args.kernel_h - args.pad_t - args.pad_b
        out_w = (in_w - 1) * args.stride_w + args.kernel_w - args.pad_l - args.pad_l
    else:
        out_h = (in_h - args.kernel_h + args.pad_t + args.pad_b) // args.stride_h + 1
        out_w = (in_w - args.kernel_w + args.pad_l + args.pad_r) // args.stride_w + 1

    # Handle variable-sized tensors.
    if in_h == 0:
        out_h = 0
    if in_w == 0:
        out_w = 0

    out_shape = (batch, out_ch, out_h, out_w)
    return out_shape


def fix_shape(shape, dim_order):
    # Return the actual shape that an operand should have in NNAPI,
    # given a PyTorch shape and dimension order.  This is where we
    # convert from PyTorch's "always NCHW" shape to explicit NHWC.
    if dim_order is DimOrder.PRESUMED_CONTIGUOUS:
        return shape
    if dim_order is DimOrder.CHANNELS_LAST:
        return tuple([shape[0]] + list(shape[2:]) + [shape[1]])
    if dim_order is DimOrder.SCALAR_OR_VECTOR:
        assert len(shape) == 0 or len(shape) == 1
        return shape
    if dim_order is DimOrder.UNKNOWN_CONSTANT:
        # XXX think this through
        return shape
    raise Exception(f"Bad dim_order: {dim_order!r}.")


def reverse_map_dim(dim_order, d):
    # Return the original PyTorch dimension position for a given dimension.
    # d should be the dimension that NNAPI will see.
    # reverse_map_dim(PRESUMED_CONTIGUOUS, x) == x
    # reverse_map_dim(CHANNELS_LAST, 3) == 1
    if dim_order in (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.SCALAR_OR_VECTOR):
        return d
    assert dim_order is DimOrder.CHANNELS_LAST
    return [0, 2, 3, 1][d]


def flex_name(op_id, dim):
    # Return the local variable name for the computed flexible size
    # for a given op and dimension.
    return f"s_{op_id}_{dim}"


class _NnapiSerializer:
    def __init__(self, config, use_int16_for_qint16=False):
        self.operands = []
        self.values = []
        self.operations = []
        self.value_data = []
        self.operation_args = []
        self.inputs = []
        self.outputs = []
        self.flexible_shape_computation_lines = []

        self.modules = {}
        self.constants = {}
        self.tensor_sequences = {}
        self.jitval_operand_map = {}
        self.cached_immediates = {}
        self.used_weights = []
        self.weight_offset = 0
        self.use_int16_for_qint16 = use_int16_for_qint16

        if config is None:
            config = {}

    def get_next_operand_id(self):
        return len(self.operands)

    # Add a tensor operand corresponding to a JIT Value.
    # Returns the NNAPI operand ID.  Can be looked up later with
    # get_tensor_operand_by_jitval.
    def add_tensor_operand(self, jitval, oper):
        assert isinstance(oper, Operand)
        if jitval in self.jitval_operand_map:
            raise Exception(f"Duplicate tensor: {jitval!r}")

        operand_id = self.get_next_operand_id()
        self.operands.append(oper)
        self.jitval_operand_map[jitval] = operand_id
        return operand_id

    # Add a tensor operand that does not correspond to a JIT Value.
    # Useful for cases where multiple NNAPI operands are required
    # to implement one JIT IR node.  Returns the NNAPI operand ID.
    def add_anonymous_tensor_operand(self, oper):
        assert isinstance(oper, Operand)
        operand_id = self.get_next_operand_id()
        self.operands.append(oper)
        return operand_id

    def torch_tensor_to_operand(self, tensor, dim_order):
        dtype = str(tensor.dtype).replace("torch.", "")
        scale = 0.0
        zero_point = 0
        if dtype == "float32":
            op_type = NNAPI_OperandCode.TENSOR_FLOAT32
        elif dtype == "int32":
            op_type = NNAPI_OperandCode.TENSOR_INT32
        elif dtype == "quint8":
            op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
            scale = tensor.q_scale()
            zero_point = tensor.q_zero_point()
        elif dtype == "qint32":
            op_type = NNAPI_OperandCode.TENSOR_INT32
            scale = tensor.q_scale()
            zero_point = tensor.q_zero_point()
            assert zero_point == 0
        elif dtype == "int16":
            if self.use_int16_for_qint16:
                nnapi_dtype = getattr(tensor, "nnapi_dtype", None)
                op_codes = (
                    NNAPI_OperandCode.TENSOR_QUANT16_SYMM,
                    NNAPI_OperandCode.TENSOR_QUANT16_ASYMM,
                )
                if nnapi_dtype in op_codes:
                    op_type = nnapi_dtype
                    scale = tensor.nnapi_scale
                    zero_point = tensor.nnapi_zero_point
                else:
                    raise Exception(
                        f"`nnapi_type` needs to be one of {op_codes} for `int16`"
                    )
            else:
                raise Exception(
                    "`int16` isn't supported. If you're trying to represent NNAPI"
                    " qint16 with Pytorch int16, set `use_int16_for_qint16 = True`"
                )
        else:
            raise Exception(f"Can't handle input with dtype '{tensor.dtype}'")
        return Operand(
            shape=tuple(tensor.shape),
            op_type=op_type,
            dim_order=dim_order,
            scale=scale,
            zero_point=zero_point,
        )

    def add_tensor_operand_for_input(self, arg_idx, jitval, tensor):
        dim_order = (
            DimOrder.CHANNELS_LAST
            if getattr(tensor, "nnapi_nhwc", False)
            else DimOrder.PRESUMED_CONTIGUOUS
        )
        toper = self.torch_tensor_to_operand(tensor, dim_order)
        operand_id = self.add_tensor_operand(jitval, toper)
        self.inputs.append(operand_id)
        for dim, size in enumerate(tensor.shape):
            if size == 0:
                self.compute_operand_shape(
                    operand_id, dim, f"args[{arg_idx}].shape[{dim}]"
                )
        return operand_id

    def add_tensor_operand_for_weight(

        self, tensor, dim_order=DimOrder.UNKNOWN_CONSTANT

    ):
        toper = self.torch_tensor_to_operand(tensor, dim_order)
        operand_id = len(self.operands)
        self.operands.append(toper)
        tsize = tensor_size(toper.op_type, toper.shape)
        psize = ((tsize - 1) | 0x3) + 1
        self.values.append((operand_id, OperandValueSourceType.NUMBERED_BUFFER))
        buf_num = len(self.used_weights)
        offset = 0
        self.value_data.append(struct.pack("iii", buf_num, offset, tsize))
        # For NHWC NNAPI op, lay out data in the same dim order by permuting torch tensor
        if dim_order == DimOrder.CHANNELS_LAST:
            tensor = tensor.permute(0, 2, 3, 1)
        self.used_weights.append(tensor)
        return operand_id

    def add_immediate_operand(self, code, value, dims):
        assert isinstance(dims, tuple)
        cache_key = (code, value)
        if cache_key not in self.cached_immediates:
            operand_id = len(self.operands)
            self.operands.append(Operand(code, dims, DimOrder.SCALAR_OR_VECTOR, 0.0, 0))
            self.values.append((operand_id, OperandValueSourceType.IMMEDIATE))
            self.value_data.append(value)
            self.cached_immediates[cache_key] = operand_id
        return self.cached_immediates[cache_key]

    def add_immediate_int_scalar(self, value):
        return self.add_immediate_operand(
            NNAPI_OperandCode.INT32, struct.pack("i", value), ()
        )

    def add_immediate_float_scalar(self, value):
        return self.add_immediate_operand(
            NNAPI_OperandCode.FLOAT32, struct.pack("f", value), ()
        )

    def add_immediate_bool_scalar(self, value):
        return self.add_immediate_operand(
            NNAPI_OperandCode.BOOL, b"\x01" if value else b"\x00", ()
        )

    def add_immediate_int_vector(self, value):
        return self.add_immediate_operand(
            NNAPI_OperandCode.TENSOR_INT32,
            array.array("i", value).tobytes(),
            (len(value),),
        )

    def has_operand_for_jitval(self, jitval):
        return jitval in self.jitval_operand_map

    def get_tensor_operand_by_jitval(self, jitval):
        operand_id = self.jitval_operand_map[jitval]
        return (operand_id, self.operands[operand_id])

    def get_tensor_operand_by_jitval_fixed_size(self, jitval):
        op_id, oper = self.get_tensor_operand_by_jitval(jitval)
        for s in oper.shape:
            if s == 0:
                # TODO: Improve this error message, possibly after converting
                # many callsites to support flexible size.
                raise Exception("Flexible size is not supported for this operand.")
            if s < 0:
                # runtime flex
                LOG.warning("Operand %s has runtime flex shape", oper)
        return op_id, oper

    def get_tensor_operand_or_constant(

        self, jitval, dim_order=DimOrder.PRESUMED_CONTIGUOUS

    ):
        operand_id = self.jitval_operand_map.get(jitval)
        if operand_id is None:
            _, value = self.get_constant_value(jitval, "TensorType")
            operand_id = self.add_tensor_operand_for_weight(value, dim_order)
        return (operand_id, self.operands[operand_id])

    def get_tensor_operand_for_weight(self, jitval):
        _, value = self.get_constant_value(jitval, "TensorType")
        operand_id = self.add_tensor_operand_for_weight(value)
        return (operand_id, self.operands[operand_id])

    def add_operation(self, opcode, inputs, outputs):
        self.operations.append((opcode, len(inputs), len(outputs)))
        self.operation_args.extend(inputs + outputs)

    def add_tensor_sequence(self, jitval, values):
        assert jitval not in self.tensor_sequences
        self.tensor_sequences[jitval] = values

    def add_constant_value(self, jitval, ctype, value):
        assert jitval not in self.constants
        self.constants[jitval] = (ctype, value)

    def get_constant_value(self, jitval, typekind=None):
        record = self.constants.get(jitval)
        if record is None:
            raise Exception(f"Could not find constant value for '{jitval!r}'.")
        ctype, _ = record
        if typekind is not None and ctype.kind() != typekind:
            raise Exception(
                f"Expected constant value of type {typekind}, but got {ctype.kind()} for value '{jitval!r}'"
            )
        return record

    def operand_to_template_torchscript(self, op_id, oper, shape=None):
        """Return a TorchScript expression to build a template for a given operand."""
        if shape is None:
            shape = oper.shape
        else:
            assert len(shape) == len(oper.shape)

        shape_parts = ["("]
        for d, s in enumerate(shape):
            if s > 0:
                # Fixed shape dimension: just add the value.
                shape_parts.append(str(s))
            elif s == 0:
                # Load time flexible shape dimension: it should have been computed in a variable.
                shape_parts.append(flex_name(op_id, d))
            elif s == -1:
                # Runtime flexible shape
                shape_parts.append("0")
            else:
                raise Exception("Unknown dim value, dimensions should be >= -1")
            shape_parts.append(",")
        shape_parts.append(")")
        shape_code = "".join(shape_parts)
        if oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
            return f"torch.zeros({shape_code}, dtype=torch.float32)"
        elif oper.op_type == NNAPI_OperandCode.TENSOR_INT32:
            return f"torch.zeros({shape_code}, dtype=torch.int32)"
        elif oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
            return (
                f"torch.quantize_per_tensor("
                f"torch.zeros(1), scale={oper.scale}, zero_point={oper.zero_point}, dtype=torch.quint8)"
                f".expand({shape_code}).contiguous()"
            )
        elif oper.op_type in (
            NNAPI_OperandCode.TENSOR_QUANT16_ASYMM,
            NNAPI_OperandCode.TENSOR_QUANT16_SYMM,
        ):
            if self.use_int16_for_qint16:
                return f"torch.zeros({shape_code}, dtype=torch.int16)"
            else:
                raise Exception(
                    "`int16` isn't supported. If you're trying to represent NNAPI"
                    " qint16 with Pytorch int16, set `use_int16_for_qint16 = True`"
                )

        raise Exception(f"Unsupported output operand type: {oper.op_type}")

    def forward_operand_shape(self, out_op_id, out_dim, in_op_id, in_dim):
        self.compute_operand_shape(out_op_id, out_dim, flex_name(in_op_id, in_dim))

    def compute_operand_shape(self, op_id, dim, expr):
        self.flexible_shape_computation_lines.append(
            f"{flex_name(op_id, dim)} = {expr}"
        )

    def transpose_to_nhwc(self, in_id, oper):
        if oper.shape[2:] != (1, 1):
            raise Exception("Automatic transpose only supported for H,W == 1,1")

        out_oper = oper._replace(dim_order=DimOrder.CHANNELS_LAST)

        inputs = [None] * 2
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_vector([0, 2, 3, 1])

        outputs = [None] * 1
        outputs[0] = self.add_anonymous_tensor_operand(out_oper)

        self.add_operation(NNAPI_OperationCode.TRANSPOSE, inputs, outputs)

        return outputs[0], out_oper

    # Transpose inputs as necessary to allow broadcasting.
    def transpose_for_broadcast(self, in0_id, in0_oper, in1_id, in1_oper):
        if in0_oper.dim_order == in1_oper.dim_order:
            return in0_id, in0_oper, in1_id, in1_oper

        # Assume NHWC is preferred if there is a mismatch.
        orders = (in0_oper.dim_order, in1_oper.dim_order)
        if orders == (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.CHANNELS_LAST):
            return self.transpose_to_nhwc(in0_id, in0_oper) + (in1_id, in1_oper)
        if orders == (DimOrder.CHANNELS_LAST, DimOrder.PRESUMED_CONTIGUOUS):
            return (in0_id, in0_oper) + self.transpose_to_nhwc(in1_id, in1_oper)

        raise Exception(
            f"Automatic transpose not supported for dim_orders: {in0_oper.dim_order!r}, {in1_oper.dim_order!r}"
        )

    def get_size_arg(self, jitval):
        ctype, value = self.get_constant_value(jitval)
        if ctype.kind() == "ListType":
            assert ctype.getElementType().kind() == "IntType"
            return value
        raise Exception(f"Can't handle size arg of type '{ctype!r}' for '{jitval!r}'")

    def get_conv_pool_args_2d_from_pack(self, kernel_size, packed_config):
        pc = [i.item() for i in packed_config]
        assert pc[0] == 2
        strides = [pc[1], pc[2]]
        paddings = [pc[3], pc[4]]
        dilations = [pc[5], pc[6]]
        output_padding = [pc[7], pc[8]]
        group_num = pc[9]

        assert len(pc) == 11
        assert output_padding == [0, 0]

        return self.get_conv_pool_args_2d_common(
            kernel_size, strides, paddings, dilations, group_num
        )

    def get_conv_pool_args_2d_from_jit(

        self, kernel_size, stride, padding, dilation=None, group=None

    ):
        strides = self.get_size_arg(stride)
        paddings = self.get_size_arg(padding)
        if dilation is None:
            dilations = [1, 1]
        else:
            dilations = self.get_size_arg(dilation)
        if group is not None:
            _, group_num = self.get_constant_value(group, "IntType")
        else:
            group_num = None
        return self.get_conv_pool_args_2d_common(
            kernel_size, strides, paddings, dilations, group_num
        )

    def get_conv_pool_args_2d_common(

        self, kernel_size, strides, paddings, dilations, group_num

    ):
        kernels = list(kernel_size)

        assert len(kernels) == 2
        assert len(strides) == 2
        assert len(paddings) == 2
        assert len(dilations) == 2

        # NNAPI uses 4 values for padding.
        ph, pw = paddings
        real_paddings = [ph, ph, pw, pw]

        return ConvPoolArgs2d(
            *(kernels + strides + real_paddings + dilations + [group_num])
        )

    def serialize_model(self, model, inputs, return_shapes=None):
        self.add_immediate_bool_scalar(False)
        self.add_immediate_bool_scalar(True)

        inp_dim_orders = []
        out_dim_orders = []

        self_jitval = next(model.graph.inputs())
        self.add_constant_value(self_jitval, self_jitval.type(), model)

        for arg_idx, (input_value, input_tensor) in enumerate(
            zip(list(model.graph.inputs())[1:], inputs)
        ):
            op_id = self.add_tensor_operand_for_input(
                arg_idx, input_value, input_tensor
            )
            inp_dim_orders.append(self.operands[op_id].dim_order.value)

        for idx, node in enumerate(model.graph.nodes()):
            LOG.debug("Processing node #%d: %r", idx, node)
            self.add_node(node)

        retn = model.graph.return_node()
        assert retn.inputsSize() == 1
        assert retn.outputsSize() == 0
        retn_input = retn.inputsAt(0)
        template_return_lines = ["return ["]
        if retn_input.type().kind() == "TensorType":
            return_values = [retn_input]
            retval_count = -1
        elif retn_input.type().kind() == "TupleType":
            return_values = self.tensor_sequences[retn_input]
            retval_count = len(return_values)
        else:
            raise Exception(f"Unsupported return type: {retn_input.type()}")

        if return_shapes is not None:
            assert len(return_shapes) == len(return_values)
        for i, v in enumerate(return_values):
            op_id = self.jitval_operand_map[v]
            self.outputs.append(op_id)
            out_dim_orders.append(self.operands[op_id].dim_order.value)
            shape = return_shapes[i] if return_shapes else None
            template_return_lines.append(
                self.operand_to_template_torchscript(op_id, self.operands[op_id], shape)
                + ","
            )
        template_return_lines.append("]")

        model = []

        version = 1
        header = struct.pack(
            "iiiiii",
            version,
            len(self.operands),
            len(self.values),
            len(self.operations),
            len(self.inputs),
            len(self.outputs),
        )
        model.append(header)

        serialized_values, serialized_value_data = self.serialize_values()

        model.extend(
            struct.pack("iifi", t, len(d), s, z) for (t, d, _m, s, z) in self.operands
        )
        model.extend(serialized_values)
        model.extend(struct.pack("iii", *x) for x in self.operations)

        # Compact the model so we can get its length so far.
        model = [b"".join(model)]
        model_offset = len(model[0])
        # Model offset is the index into the model (in 32-bit words, not bytes)
        # of the next dimension we're about to serialize.  If it's 0,
        # generate code to mutate it before passing to NNAPI.
        assert model_offset % 4 == 0
        model_offset = int(model_offset / 4)

        for op_id, (_, dims, dim_order, _, _) in enumerate(self.operands):
            shape = fix_shape(dims, dim_order)
            for d, s in enumerate(shape):
                if s == 0:
                    pt_d = reverse_map_dim(dim_order, d)
                    self.flexible_shape_computation_lines.append(
                        f"ser_model[{model_offset}] = {flex_name(op_id, pt_d)}"
                    )
                model_offset += 1

            # convert runtime flex shape from -1 to 0
            shape = tuple(d if d != -1 else 0 for d in shape)
            model.append(self.serialize_ints(shape))

        model.extend(serialized_value_data)
        model.append(self.serialize_ints(self.operation_args))
        model.append(self.serialize_ints(self.inputs))
        model.append(self.serialize_ints(self.outputs))

        self.flexible_shape_computation_lines.extend(template_return_lines)

        return (
            array.array("i", b"".join(model)),
            self.used_weights,
            inp_dim_orders,
            out_dim_orders,
            self.flexible_shape_computation_lines,
            retval_count,
        )

    def serialize_values(self):
        serialized_values = []
        serialized_value_data = []
        assert len(self.values) == len(self.value_data)
        for (op_index, source_type), data in zip(self.values, self.value_data):
            source_length = len(data)

            # Pad with 0 bytes out to a multiple of 4 for alignment.
            physical_length = ((source_length - 1) | 0x3) + 1
            padded_data = data + (b"\0" * (physical_length - source_length))

            serialized_values.append(
                struct.pack("iii", op_index, source_type, source_length)
            )
            serialized_value_data.append(padded_data)

        return serialized_values, serialized_value_data

    @staticmethod
    def serialize_ints(ints):
        return array.array("i", ints).tobytes()

    ADDER_MAP = {
        "prim::GetAttr": lambda self, node: self.add_getattr(node),
        "prim::Constant": lambda self, node: self.add_constant_node(node),
        "prim::ListConstruct": lambda self, node: self.add_list_construct(node),
        "prim::TupleConstruct": lambda self, node: self.add_tuple_construct(node),
        "aten::unsqueeze": lambda self, node: self.add_unsqueeze(node),
        "aten::to": lambda self, node: self.add_to(node),
        "aten::detach": lambda self, node: self._identity(node),
        "aten::reshape": lambda self, node: self.add_reshape(node),
        "aten::flatten": lambda self, node: self.add_flatten(node),
        "aten::slice": lambda self, node: self.add_slice(node),
        "aten::size": lambda self, node: self.add_size(node),
        "aten::cat": lambda self, node: self.add_cat(node),
        "aten::mean": lambda self, node: self.add_mean(node),
        "aten::quantize_per_tensor": lambda self, node: self.add_quantize(node),
        "aten::dequantize": lambda self, node: self.add_dequantize(node),
        "aten::add": lambda self, node: self.add_add_sub_op(
            node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE
        ),
        "aten::sub": lambda self, node: self.add_add_sub_op(
            node, NNAPI_OperationCode.SUB, NNAPI_FuseCode.FUSED_NONE
        ),
        "aten::mul": lambda self, node: self.add_pointwise_simple_binary_broadcast_op(
            node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE
        ),
        "aten::div": lambda self, node: self.add_pointwise_simple_binary_broadcast_op(
            node, NNAPI_OperationCode.DIV, NNAPI_FuseCode.FUSED_NONE
        ),
        "aten::relu": lambda self, node: self.add_pointwise_simple_unary_op(
            node, NNAPI_OperationCode.RELU
        ),
        "aten::sigmoid": lambda self, node: self.add_pointwise_simple_unary_op(
            node, NNAPI_OperationCode.LOGISTIC
        ),
        "aten::softmax": lambda self, node: self.add_softmax(node),
        "aten::hardtanh": lambda self, node: self.add_hardtanh(node),
        "aten::avg_pool2d": lambda self, node: self.add_avg_pool2d(node),
        "aten::max_pool2d": lambda self, node: self.add_pool2d_node(
            node, NNAPI_OperationCode.MAX_POOL_2D
        ),
        "aten::adaptive_avg_pool2d": lambda self, node: self.add_adaptive_avg_pool2d(
            node
        ),
        "aten::upsample_nearest2d": lambda self, node: self.add_upsample_nearest2d(
            node
        ),
        "aten::prelu": lambda self, node: self.add_prelu_op(node),
        "aten::addmm": lambda self, node: self.add_addmm(node),
        "aten::linear": lambda self, node: self.add_linear(node),
        "aten::_convolution": lambda self, node: self.add_conv_underscore(node),
        "aten::conv2d": lambda self, node: self.add_conv2d(node),
        "aten::log_softmax": lambda self, node: self.add_log_softmax(node),
        "quantized::linear": lambda self, node: self.add_qlinear(node),
        "quantized::conv2d": lambda self, node: self.add_qconv2d(
            node, NNAPI_FuseCode.FUSED_NONE
        ),
        "quantized::conv2d_relu": lambda self, node: self.add_qconv2d(
            node, NNAPI_FuseCode.FUSED_RELU
        ),
        "quantized::conv_transpose2d": lambda self, node: self.add_qconv2d(
            node, NNAPI_FuseCode.FUSED_NONE, transpose=True
        ),
        "quantized::add": lambda self, node: self.add_qadd(
            node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE
        ),
        "quantized::add_relu": lambda self, node: self.add_qadd(
            node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_RELU
        ),
        "quantized::mul": lambda self, node: self.add_qadd(
            node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE
        ),
    }

    def add_node(self, node):
        adder = self.ADDER_MAP.get(node.kind())
        if not adder:
            raise Exception(f"Unsupported node kind ({node.kind()!r}) in node {node!r}")
        adder(self, node)

    def _identity(self, node):
        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
        jitval = node.outputsAt(0)
        self.jitval_operand_map[jitval] = in_id

    def add_getattr(self, node):
        assert node.inputsSize() == 1
        assert node.outputsSize() == 1
        obj_ctype, obj = self.get_constant_value(node.inputsAt(0))
        assert str(obj_ctype).startswith("__torch__.")
        name = node.s("name")
        value = getattr(obj, name)
        output = node.outputsAt(0)
        ctype = output.type()
        self.add_constant_value(output, ctype, value)

    def add_constant_node(self, node):
        assert node.inputsSize() == 0
        assert node.outputsSize() == 1
        output = node.outputsAt(0)
        ctype = output.type()
        value = output.toIValue()
        self.add_constant_value(output, ctype, value)

    def add_list_construct(self, node):
        assert node.outputsSize() == 1
        output = node.outputsAt(0)
        ctype = output.type()
        const_vals: Optional[List] = []
        tensors: Optional[List] = []
        for inp in node.inputs():
            if const_vals is not None and inp in self.constants:
                _, val = self.get_constant_value(inp)
                const_vals.append(val)
            else:
                const_vals = None
            if tensors is not None and inp.type().kind() == "TensorType":
                tensors.append(inp)
            else:
                tensors = None

        if const_vals is not None:
            # NOTE: Now that TorchScript supports list constants,
            # this code path might not be used anymore.
            self.add_constant_value(output, ctype, const_vals)
        if tensors is not None:
            self.add_tensor_sequence(output, tensors)
        if const_vals is None and tensors is None:
            raise Exception(
                f"Unable to handle ListConstruct node.  Neither all constants nor all tensors. {node!r}"
            )

    def add_tuple_construct(self, node):
        assert node.outputsSize() == 1
        output = node.outputsAt(0)
        values = list(node.inputs())
        self.add_tensor_sequence(output, values)

    def add_unsqueeze(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))

        _, dim = self.get_constant_value(node.inputsAt(1), "IntType")
        assert in_oper.dim_order == DimOrder.PRESUMED_CONTIGUOUS

        real_dim = dim if dim >= 0 else dim + len(in_oper.shape) + 1
        out_shape_list = list(in_oper.shape)
        out_shape_list.insert(real_dim, 1)
        out_shape = tuple(out_shape_list)
        out_oper = in_oper._replace(shape=out_shape)

        inputs = [None] * 2
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_scalar(dim)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.EXPAND_DIMS, inputs, outputs)

    def add_to(self, node):
        # Handle to("cpu") / to("gpu") case
        self._identity(node)

    def add_reshape(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))

        shape_ctype, shape = self.get_constant_value(node.inputsAt(1))
        assert shape_ctype.kind() == "ListType"
        assert shape_ctype.getElementType().kind() == "IntType"
        is_trivial_reshape = len(shape) == 2 and shape[1] == -1

        if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_reshape:
            raise Exception(
                "Currently, reshape is only supported on NHWC tensors if the target size is [X, -1]."
            )

        # Bit of a hack here.  Use a real tensor to infer the output shape.
        out_shape = torch.zeros(1).expand(in_oper.shape).reshape(shape).shape
        out_oper = in_oper._replace(
            shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS
        )

        inputs = [None] * 2
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_vector(shape)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs)

    def add_flatten(self, node):
        assert node.inputsSize() == 3
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))

        start_ctype, start_dim = self.get_constant_value(node.inputsAt(1), "IntType")
        end_ctype, end_dim = self.get_constant_value(node.inputsAt(2), "IntType")

        # channels last with channels == 1 or (height & width both 1)
        is_trivial_flatten = len(in_oper.shape) == 4 and (
            in_oper.shape[1] == 1 or (in_oper.shape[2] == 1 and in_oper.shape[3] == 1)
        )
        if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_flatten:
            raise Exception(
                "Currently, flatten is not supported on NHWC tensors unless C=1 or H=W=1"
            )

        if start_dim < 0:
            start_dim += len(in_oper.shape)
        if end_dim < 0:
            end_dim += len(in_oper.shape)

        out_shape = (
            in_oper.shape[:start_dim]
            + (functools.reduce(operator.mul, in_oper.shape[start_dim : end_dim + 1]),)
            + in_oper.shape[end_dim + 1 :]
        )

        if any(dim == 0 for dim in in_oper.shape[start_dim : end_dim + 1]):
            raise Exception("Flattening flexible dims is not supported yet")
        non_flattened_dims = in_oper.shape[:start_dim] + in_oper.shape[end_dim + 1 :]
        if non_flattened_dims.count(0) > 1:
            raise Exception("Only 1 dim can be flexible")

        out_oper = in_oper._replace(
            shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS
        )
        out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)

        for idx, dim in enumerate(out_shape):
            if dim == 0:
                self.forward_operand_shape(out_id, idx, in_id, in_oper.shape.index(0))

        inputs_1 = tuple(dim if dim != 0 else -1 for dim in out_shape)
        inputs = [None] * 2
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_vector(inputs_1)

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs)

    def add_slice(self, node):
        assert node.inputsSize() == 5
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
        _, dim_value = self.get_constant_value(node.inputsAt(1))
        _, start_value = self.get_constant_value(node.inputsAt(2))
        _, stop_value = self.get_constant_value(node.inputsAt(3))
        _, step_value = self.get_constant_value(node.inputsAt(4))

        if start_value is None:
            start_value = 0
        if stop_value is None:
            stop_value = sys.maxsize

        if start_value < 0:
            start_value += in_oper.shape[dim_value]
        elif start_value == sys.maxsize:
            start_value = 0

        if start_value == 0 and stop_value == sys.maxsize:
            self._identity(node)
            return

        if in_oper.shape[dim_value] == 0:
            raise Exception("Unable to slice with flexible shape")

        if stop_value < 0:
            stop_value += in_oper.shape[dim_value]
        elif stop_value == sys.maxsize:
            stop_value = in_oper.shape[dim_value]

        if start_value >= stop_value:
            raise Exception("Slice start value should be less than stop value")

        out_len = (stop_value - start_value) // step_value
        out_shape = tuple(
            out_len if i == dim_value else dim for i, dim in enumerate(in_oper.shape)
        )
        out_id = self.add_tensor_operand(
            node.outputsAt(0), in_oper._replace(shape=out_shape)
        )

        # flex inputs
        end_mask = 0
        for idx, dim in enumerate(out_shape):
            if dim == 0:
                self.forward_operand_shape(out_id, idx, in_id, idx)
                end_mask |= 1 << idx

        inputs = [None] * 7
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_vector(
            [start_value if i == dim_value else 0 for i in range(len(in_oper.shape))]
        )
        inputs[2] = self.add_immediate_int_vector(
            [
                stop_value if i == dim_value else dim
                for i, dim in enumerate(in_oper.shape)
            ]
        )
        inputs[3] = self.add_immediate_int_vector(
            [step_value if i == dim_value else 1 for i in range(len(in_oper.shape))]
        )
        inputs[4] = self.add_immediate_int_scalar(0)  # begin mask
        inputs[5] = self.add_immediate_int_scalar(end_mask)
        inputs[6] = self.add_immediate_int_scalar(0)  # shrink axis mas

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.STRIDED_SLICE, inputs, outputs)

    def add_size(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        _, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
        _, value = self.constants[node.inputsAt(1)]
        res = in_oper.shape[value]
        output = node.outputsAt(0)
        self.add_constant_value(output, output.type(), res)

    def add_cat(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        tensors = self.tensor_sequences[node.inputsAt(0)]
        _, dim = self.get_constant_value(node.inputsAt(1), "IntType")

        assert len(tensors) > 0
        in_ids = []
        out_oper = None
        out_dim_size = 0
        for inp in tensors:
            in_id, in_oper = self.get_tensor_operand_by_jitval(inp)
            if out_oper is None:
                out_shape = change_element(in_oper.shape, dim, -1)
                out_oper = in_oper._replace(shape=out_shape)
            assert in_oper.op_type == out_oper.op_type
            assert in_oper.dim_order == out_oper.dim_order
            assert change_element(in_oper.shape, dim, -1) == change_element(
                out_oper.shape, dim, -1
            )
            # TODO: Possibly check scale and zero point.
            in_ids.append(in_id)
            # TODO: Possibly support variable-sized inputs.
            out_dim_size += in_oper.shape[dim]

        assert out_oper is not None
        out_oper = out_oper._replace(
            shape=change_element(out_oper.shape, dim, out_dim_size)
        )

        if in_oper.dim_order == DimOrder.CHANNELS_LAST:  # type: ignore[possibly-undefined]
            assert len(out_oper.shape) == 4
            nnapi_dim = [0, 3, 1, 2][dim]
        else:
            nnapi_dim = dim

        out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
        for idx, d in enumerate(out_oper.shape):
            if d == 0:
                if idx == dim:
                    shape = " + ".join(flex_name(ip_id, dim) for ip_id in in_ids)
                    self.compute_operand_shape(out_id, idx, shape)
                else:
                    self.forward_operand_shape(out_id, idx, in_ids[0], idx)

        inputs = in_ids + [self.add_immediate_int_scalar(nnapi_dim)]

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.CONCATENATION, inputs, outputs)

    def add_mean(self, node):
        assert node.inputsSize() == 4
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
        dim_ctype, dim = self.get_constant_value(node.inputsAt(1))
        assert dim_ctype.kind() == "ListType"
        assert dim_ctype.getElementType().kind() == "IntType"
        _, keep_dim = self.get_constant_value(node.inputsAt(2), "BoolType")
        # Expect None for dtype
        self.get_constant_value(node.inputsAt(3), "NoneType")

        if in_oper.dim_order == DimOrder.CHANNELS_LAST:
            assert len(in_oper.shape) == 4
            nnapi_dim = [[0, 3, 1, 2][d] for d in dim]
        else:
            nnapi_dim = dim

        collapsed_dims = set()
        for d in dim:
            if d < 0:
                d += len(in_oper.shape)
            collapsed_dims.add(d)

        if in_oper.dim_order == DimOrder.CHANNELS_LAST and not keep_dim:
            assert collapsed_dims.issuperset({2, 3})
            out_dim_order = DimOrder.PRESUMED_CONTIGUOUS
        else:
            out_dim_order = in_oper.dim_order

        out_shape = []
        for i, s in enumerate(in_oper.shape):
            if i not in collapsed_dims:
                out_shape.append(s)
            elif keep_dim:
                out_shape.append(1)

        out_oper = in_oper._replace(shape=out_shape, dim_order=out_dim_order)

        inputs = [None] * 3
        inputs[0] = in_id
        inputs[1] = self.add_immediate_int_vector(nnapi_dim)
        inputs[2] = self.add_immediate_int_scalar(keep_dim)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.MEAN, inputs, outputs)

    def add_quantize(self, node):
        assert node.inputsSize() == 4
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
        if in_oper.dim_order != DimOrder.CHANNELS_LAST:
            raise Exception(
                "Most hardware backends prefer NHWC quantized tensors.  "
                "Try setting `t.nnapi_nhwc = True` on your tensor inputs.  "
            )
        _, scale = self.get_constant_value(node.inputsAt(1), "FloatType")
        _, zero_point = self.get_constant_value(node.inputsAt(2), "IntType")
        _, scalar_type = self.get_constant_value(node.inputsAt(3), "IntType")
        if scalar_type != TorchScalarTypes.QUINT8.value:
            raise Exception(
                "PyTorch NNAPI export only supports quantized tensors "
                "with the quint8 dtype."
            )
        op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM

        out_oper = in_oper._replace(
            op_type=op_type,
            scale=scale,
            zero_point=zero_point,
        )

        inputs = [None] * 1
        inputs[0] = in_id

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.QUANTIZE, inputs, outputs)

    def add_dequantize(self, node):
        assert node.inputsSize() == 1
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
        out_oper = in_oper._replace(
            op_type=NNAPI_OperandCode.TENSOR_FLOAT32,
            scale=0.0,
            zero_point=0,
        )

        inputs = [None] * 1
        inputs[0] = in_id

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.DEQUANTIZE, inputs, outputs)

    def add_pointwise_simple_unary_op(self, node, opcode):
        assert node.inputsSize() == 1
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))

        out_oper = in_oper
        if opcode == NNAPI_OperationCode.LOGISTIC:
            # NNAPI docs: For ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, the scale
            # must be 1.f / 256 and the zeroPoint must be 0.
            # https://fburl.com/h52stoog
            if in_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
                out_oper = in_oper._replace(zero_point=0, scale=1.0 / 256)

        out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)

        for idx, dim in enumerate(in_oper.shape):
            if dim == 0:
                self.forward_operand_shape(out_id, idx, in_id, idx)

        inputs = [None] * 1
        inputs[0] = in_id

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(opcode, inputs, outputs)

    def _do_add_binary(self, node, opcode, fuse_code, *, qparams=None):  # noqa: D401
        """Helper for pointwise binary broadcast ops with superfluous extra args."""
        assert node.outputsSize() == 1

        assert node.inputsAt(0).type().kind() == "TensorType"
        assert node.inputsAt(1).type().kind() == "TensorType"

        if self.has_operand_for_jitval(node.inputsAt(0)):
            in0_id, in0_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
            in1_id, in1_oper = self.get_tensor_operand_or_constant(
                node.inputsAt(1), in0_oper.dim_order
            )
        elif self.has_operand_for_jitval(node.inputsAt(1)):
            in1_id, in1_oper = self.get_tensor_operand_by_jitval(node.inputsAt(1))
            in0_id, in0_oper = self.get_tensor_operand_or_constant(
                node.inputsAt(0), in1_oper.dim_order
            )
        else:
            raise Exception(f"Can't do a NNAPI binary op: {opcode} on two constants")

        assert in0_oper.op_type == in1_oper.op_type
        in0_id, in0_oper, in1_id, in1_oper = self.transpose_for_broadcast(
            in0_id, in0_oper, in1_id, in1_oper
        )
        # NOTE: PyTorch and NNAPI have the same broadcast semantics.
        out_shape = broadcast_shapes(in0_oper.shape, in1_oper.shape)
        out_oper = in0_oper._replace(shape=out_shape)
        if qparams is not None:
            scale, zp = qparams
            out_oper = out_oper._replace(scale=scale, zero_point=zp)

        out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
        for idx, (d0, d1) in enumerate(zip(in0_oper.shape, in1_oper.shape)):
            if d0 == 1 and d1 == 0:
                self.forward_operand_shape(out_id, idx, in1_id, idx)
            elif d0 == 0 and d1 == 1:
                self.forward_operand_shape(out_id, idx, in0_id, idx)
            elif d0 == 0 and d1 == 0:
                self.flexible_shape_computation_lines.append(
                    f"assert {flex_name(in0_id, idx)} == {flex_name(in1_id, idx)}"
                )
                self.forward_operand_shape(out_id, idx, in0_id, idx)

        inputs = [None] * 3
        inputs[0] = in0_id
        inputs[1] = in1_id
        inputs[2] = self.add_immediate_int_scalar(fuse_code)

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(opcode, inputs, outputs)

    def add_pointwise_simple_binary_broadcast_op(self, node, opcode, fuse_code):
        assert node.inputsSize() == 2
        self._do_add_binary(node, opcode, fuse_code)

    def add_add_sub_op(self, node, opcode, fuse_code):
        assert node.inputsSize() == 3

        _, alpha = self.get_constant_value(node.inputsAt(2), "IntType")
        if alpha != 1:
            raise Exception("NNAPI does not support add/sub with alpha.")

        self._do_add_binary(node, opcode, fuse_code)

    def add_qadd(self, node, opcode, fuse_code):
        assert node.inputsSize() == 4

        _, scale = self.get_constant_value(node.inputsAt(2), "FloatType")
        _, zero_point = self.get_constant_value(node.inputsAt(3), "IntType")

        self._do_add_binary(node, opcode, fuse_code, qparams=(scale, zero_point))

    def add_softmax(self, node):
        assert node.inputsSize() == 3
        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))

        _, softmax_dim = self.get_constant_value(node.inputsAt(1), "IntType")

        out_id = self.add_tensor_operand(node.outputsAt(0), in_oper)
        for dim, size in enumerate(in_oper.shape):
            if size == 0:
                self.forward_operand_shape(out_id, dim, in_id, dim)

        inputs = [None] * 3
        inputs[0] = in_id
        inputs[1] = self.add_immediate_float_scalar(
            1.0
        )  # positive scaling factor of exponent, beta
        inputs[2] = self.add_immediate_int_scalar(softmax_dim)

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.SOFTMAX, inputs, outputs)

    def add_hardtanh(self, node):
        assert node.inputsSize() == 3
        assert node.outputsSize() == 1

        in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
        _, min_val = self.get_constant_value(node.inputsAt(1), "FloatType")
        _, max_val = self.get_constant_value(node.inputsAt(2), "FloatType")

        op_map = {
            (-1, 1): NNAPI_OperationCode.RELU1,
            (0, 6): NNAPI_OperationCode.RELU6,  # noqa: E201
        }

        opcode = op_map.get((min_val, max_val))
        if opcode is None:
            raise Exception("NNAPI only supports hardtanh with args (-1, 1) or (0, 6).")

        inputs = [None] * 1
        inputs[0] = in_id

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), in_oper)

        self.add_operation(opcode, inputs, outputs)

    def add_prelu_op(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        assert node.inputsAt(0).type().kind() == "TensorType"
        assert node.inputsAt(1).type().kind() == "TensorType"

        in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
        w_id, w_oper = self.get_tensor_operand_for_weight(node.inputsAt(1))
        assert len(w_oper.shape) == 1
        assert w_oper.shape[0] > 0
        if w_oper.shape[0] > 1:
            if in_oper.use_nchw():
                # TODO: Support this by adding trailing 1 dims.
                raise Exception(
                    "Per-channel PReLU only supports channels_last right now."
                )

        out_id = self.add_tensor_operand(node.outputsAt(0), in_oper)
        for dim, size in enumerate(in_oper.shape):
            if size > 0:
                pass
            elif dim <= 1:
                raise Exception("PReLU requires fixed size for dim 0 and dim 1.")
            else:
                self.forward_operand_shape(out_id, dim, in_id, dim)

        inputs = [None] * 2
        inputs[0] = in_id
        inputs[1] = w_id

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.PRELU, inputs, outputs)

    def add_pool2d_node(self, node, opcode):
        assert node.inputsSize() == 6
        assert node.outputsSize() == 1
        image, kernel, stride, padding, dilation, ceil_mode = node.inputs()

        stride = stride or kernel

        # TODO: Validate ceil_mode semantics.

        args = self.get_conv_pool_args_2d_from_jit(
            self.get_size_arg(kernel), stride, padding, dilation
        )
        if args.dilation_h != 1 or args.dilation_w != 1:
            raise Exception("NNAPI does not support dilated pooling.")

        image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(image)
        assert len(image_oper.shape) == 4

        out_shape = get_conv_pool_shape(
            image_oper.shape, args, image_oper.shape[1], False
        )
        use_nchw = image_oper.use_nchw()

        inputs = [None] * 11
        inputs[0] = image_id
        inputs[1] = self.add_immediate_int_scalar(args.pad_l)
        inputs[2] = self.add_immediate_int_scalar(args.pad_r)
        inputs[3] = self.add_immediate_int_scalar(args.pad_t)
        inputs[4] = self.add_immediate_int_scalar(args.pad_b)
        inputs[5] = self.add_immediate_int_scalar(args.stride_w)
        inputs[6] = self.add_immediate_int_scalar(args.stride_h)
        inputs[7] = self.add_immediate_int_scalar(args.kernel_w)
        inputs[8] = self.add_immediate_int_scalar(args.kernel_h)
        inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
        inputs[10] = self.add_immediate_bool_scalar(use_nchw)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(
            node.outputsAt(0), image_oper._replace(shape=out_shape)
        )

        self.add_operation(opcode, inputs, outputs)

    def add_avg_pool2d(self, node):
        assert node.inputsSize() == 7
        assert node.outputsSize() == 1
        (
            image,
            kernel,
            stride,
            padding,
            ceil_mode,
            count_include_pad,
            divisor_override,
        ) = node.inputs()

        _, count_include_pad_value = self.get_constant_value(count_include_pad)
        _, divisor_override_value = self.get_constant_value(divisor_override)
        if not count_include_pad_value or divisor_override_value:
            raise Exception(
                "NNAPI doesn't support count_include_pad=False or divisor_override"
            )

        args = self.get_conv_pool_args_2d_from_jit(
            self.get_size_arg(kernel), stride, padding
        )

        image_id, image_oper = self.get_tensor_operand_by_jitval(image)
        assert len(image_oper.shape) == 4

        out_shape = get_conv_pool_shape(
            image_oper.shape, args, image_oper.shape[1], False
        )
        use_nchw = image_oper.use_nchw()

        inputs = [None] * 11
        inputs[0] = image_id
        inputs[1] = self.add_immediate_int_scalar(args.pad_l)
        inputs[2] = self.add_immediate_int_scalar(args.pad_r)
        inputs[3] = self.add_immediate_int_scalar(args.pad_t)
        inputs[4] = self.add_immediate_int_scalar(args.pad_b)
        inputs[5] = self.add_immediate_int_scalar(args.stride_w)
        inputs[6] = self.add_immediate_int_scalar(args.stride_h)
        inputs[7] = self.add_immediate_int_scalar(args.kernel_w)
        inputs[8] = self.add_immediate_int_scalar(args.kernel_h)
        inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
        inputs[10] = self.add_immediate_bool_scalar(use_nchw)

        outputs = [None] * 1
        out_id = self.add_tensor_operand(
            node.outputsAt(0), image_oper._replace(shape=out_shape)
        )
        self._handle_conv_pool_flexible_input(out_id, image, args, False)
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs)

    def add_adaptive_avg_pool2d(self, node):
        assert node.inputsSize() == 2
        assert node.outputsSize() == 1

        image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(
            node.inputsAt(0)
        )
        assert len(image_oper.shape) == 4

        size_ctype, size_arg = self.get_constant_value(node.inputsAt(1))
        assert size_ctype.kind() == "ListType"
        assert size_ctype.getElementType().kind() == "IntType"
        if size_arg != [1, 1]:
            raise Exception(
                "NNAPI only supports adaptive_avg_pool2d with output size (1, 1)."
            )

        out_shape = image_oper.shape[0:2] + tuple(size_arg)
        use_nchw = image_oper.use_nchw()

        inputs = [None] * 11
        inputs[0] = image_id
        inputs[1] = self.add_immediate_int_scalar(0)
        inputs[2] = self.add_immediate_int_scalar(0)
        inputs[3] = self.add_immediate_int_scalar(0)
        inputs[4] = self.add_immediate_int_scalar(0)
        inputs[5] = self.add_immediate_int_scalar(1)
        inputs[6] = self.add_immediate_int_scalar(1)
        inputs[7] = self.add_immediate_int_scalar(image_oper.shape[3])
        inputs[8] = self.add_immediate_int_scalar(image_oper.shape[2])
        inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
        inputs[10] = self.add_immediate_bool_scalar(use_nchw)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(
            node.outputsAt(0), image_oper._replace(shape=out_shape)
        )

        self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs)

    def add_upsample_nearest2d(self, node):
        assert node.inputsSize() == 3 or node.inputsSize() == 4
        assert node.outputsSize() == 1
        if node.inputsSize() == 3:
            image, size_jit, scale_jit = node.inputs()
        else:
            image, size_jit, scale_h_jit, scale_w_jit = node.inputs()
        size_ctype, size_arg = self.get_constant_value(size_jit)

        if node.inputsSize() == 3:
            scale_ctype, scale_arg = self.get_constant_value(scale_jit)  # type: ignore[possibly-undefined]
        else:
            scale_h_ctype, scale_h_arg = self.get_constant_value(scale_h_jit)  # type: ignore[possibly-undefined]
            scale_w_ctype, scale_w_arg = self.get_constant_value(scale_w_jit)  # type: ignore[possibly-undefined]

            # The only way for the 4-argument overload of upsample_nearest2d to
            # have been added to the graph without error is if the scale_h and
            # scale_w arguments are None
            assert scale_h_ctype.kind() == "NoneType"
            assert scale_w_ctype.kind() == "NoneType"

            scale_ctype = scale_h_ctype
            scale_arg = scale_h_arg

        image_id, image_oper = self.get_tensor_operand_by_jitval(image)
        assert len(image_oper.shape) == 4

        if size_ctype.kind() != "NoneType" and scale_ctype.kind() != "NoneType":
            raise Exception("Size and scale cannot both be non-None.")
        elif size_ctype.kind() != "NoneType":
            assert size_ctype.kind() == "ListType"
            assert size_ctype.getElementType().kind() == "IntType"
            assert scale_ctype.kind() == "NoneType"
            assert scale_arg is None
            assert isinstance(size_arg, list)
            assert size_arg
            assert all(isinstance(val, int) for val in size_arg)
            if len(size_arg) == 1:
                size_arg = size_arg * 2
            assert len(size_arg) == 2
            out_h = size_arg[0]
            out_w = size_arg[1]
            arg_h = self.add_immediate_int_scalar(out_h)
            arg_w = self.add_immediate_int_scalar(out_w)
        elif scale_ctype.kind() != "NoneType":
            assert scale_ctype.kind() == "ListType"
            assert scale_ctype.getElementType().kind() == "FloatType"
            assert size_ctype.kind() == "NoneType"
            assert size_arg is None
            assert isinstance(scale_arg, list)
            assert scale_arg
            assert all(isinstance(val, float) for val in scale_arg)
            if len(scale_arg) == 1:
                scale_arg = scale_arg * 2
            assert len(scale_arg) == 2
            out_h = int(scale_arg[0] * image_oper.shape[2])
            out_w = int(scale_arg[1] * image_oper.shape[3])
            arg_h = self.add_immediate_float_scalar(scale_arg[0])
            arg_w = self.add_immediate_float_scalar(scale_arg[1])
        else:
            raise Exception("Size and scale cannot both be None.")

        out_shape = (image_oper.shape[0], image_oper.shape[1], out_h, out_w)
        use_nchw = image_oper.use_nchw()
        out_id = self.add_tensor_operand(
            node.outputsAt(0), image_oper._replace(shape=out_shape)
        )

        if image_oper.shape[0] == 0 or image_oper.shape[1] == 0:
            raise Exception("Flexible batch or channels not supported")

        # Handle variable input size
        for dim in (2, 3):  # h, w indices
            if image_oper.shape[dim] == 0:
                if size_ctype.kind() != "NoneType":
                    self.compute_operand_shape(out_id, dim, size_arg[dim - 2])
                elif scale_ctype.kind() != "NoneType":
                    self.compute_operand_shape(
                        out_id,
                        dim,
                        f"int({scale_arg[dim - 2]} * {flex_name(image_id, dim)})",
                    )
                else:
                    raise Exception("Size and scale cannot both be None.")

        inputs = [None] * 4
        inputs[0] = image_id
        inputs[1] = arg_w
        inputs[2] = arg_h
        inputs[3] = self.add_immediate_bool_scalar(use_nchw)

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.RESIZE_NEAREST_NEIGHBOR, inputs, outputs)

    def add_addmm(self, node):
        assert node.inputsSize() == 5
        assert node.outputsSize() == 1
        jit_bias, jit_input, jit_weight, jit_beta, jit_alpha = node.inputs()

        for jitval in (jit_beta, jit_alpha):
            scale_ctype, scale_value = self.get_constant_value(jitval)
            assert scale_ctype.kind() in ("IntType", "FloatType")
            if scale_value != 1:
                raise Exception(
                    "NNAPI Fully-Connected does not support alpha and beta."
                )

        self.add_addmm_or_linear(node, True, jit_input, jit_weight, jit_bias)

    def add_linear(self, node):
        assert node.inputsSize() == 3
        assert node.outputsSize() == 1
        jit_input, jit_weight, jit_bias = node.inputs()

        self.add_addmm_or_linear(node, False, jit_input, jit_weight, jit_bias)

    def add_addmm_or_linear(

        self, node, transpose_weight, jit_input, jit_weight, jit_bias

    ):
        input_id, input_oper = self.get_tensor_operand_by_jitval(jit_input)
        bias_id, bias_oper = self.get_tensor_operand_for_weight(jit_bias)

        assert len(input_oper.shape) == 2
        assert len(bias_oper.shape) == 1

        # TODO: Transform at load time to share weights with CPU model.
        _, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
        assert len(weight_tensor.shape) == 2
        if transpose_weight:
            nnapi_weight_tensor = weight_tensor.t().contiguous()
        else:
            nnapi_weight_tensor = weight_tensor.contiguous()
        weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
        weight_oper = self.operands[weight_id]

        out_shape = (input_oper.shape[0], weight_oper.shape[0])
        out_id = self.add_tensor_operand(
            node.outputsAt(0), input_oper._replace(shape=out_shape)
        )

        if input_oper.shape[0] == 0:
            self.forward_operand_shape(out_id, 0, input_id, 0)

        inputs = [None] * 4
        inputs[0] = input_id
        inputs[1] = weight_id
        inputs[2] = bias_id
        inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)

        outputs = [None] * 1
        outputs[0] = out_id

        self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)

    def add_qlinear(self, node):
        assert node.inputsSize() == 4
        assert node.outputsSize() == 1
        (
            jit_input,
            jit_packed_weight,
            jit_scale,
            jit_zero_point,
        ) = node.inputs()

        input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
        # TODO: Support automatic reshape
        assert len(input_oper.shape) == 2

        _, out_scale = self.get_constant_value(jit_scale, "FloatType")
        _, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
        weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
        assert weight_ctype.name() == "LinearPackedParamsBase"
        raw_weight, raw_bias = packed_weight.__getstate__()[0]
        assert raw_bias is not None

        assert len(raw_weight.shape) == 2
        assert len(raw_bias.shape) == 1
        assert raw_bias.shape[0] == raw_weight.shape[0]
        assert raw_weight.shape[1] == input_oper.shape[1]

        assert raw_weight.qscheme() == torch.per_tensor_affine
        if raw_weight.dtype == torch.quint8:
            unsigned_weight = raw_weight
        else:
            assert raw_weight.dtype == torch.qint8
            unsigned_weight = torch._make_per_tensor_quantized_tensor(
                (raw_weight.int_repr().int() + 128).to(torch.uint8),
                scale=raw_weight.q_scale(),
                zero_point=raw_weight.q_zero_point() + 128,
            )
        weight_scale = unsigned_weight.q_scale()
        bias_scale = input_oper.scale * weight_scale
        int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
        bias_id = self.add_tensor_operand_for_weight(int_bias)

        multiplier = input_oper.scale * weight_scale / out_scale
        assert multiplier > 0
        if multiplier >= 1:
            raise Exception(
                "Quantized convolution multiplier is greater than 1.  "
                "This is supported by NNAPI, but not by most hardware backends.  "
                "Try training a model without quantization-aware training.  "
            )

        # TODO: Transform at load time to share weights with CPU model.
        nnapi_weight_tensor = unsigned_weight.contiguous()
        weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
        weight_oper = self.operands[weight_id]

        out_shape = (input_oper.shape[0], weight_oper.shape[0])
        out_oper = input_oper._replace(
            shape=out_shape,
            scale=out_scale,
            zero_point=out_zero_point,
        )

        inputs = [None] * 4
        inputs[0] = input_id
        inputs[1] = weight_id
        inputs[2] = bias_id
        inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)

        self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)

    def get_optional_bias(self, jit_bias, weight_tensor, transpose=False):
        ctype, value = self.get_constant_value(jit_bias)
        if ctype.kind() == "NoneType":
            bias_idx = 1 if transpose else 0
            nnapi_bias_tensor = torch.zeros(
                weight_tensor.size()[bias_idx], dtype=weight_tensor.dtype
            )
            bias_id = self.add_tensor_operand_for_weight(nnapi_bias_tensor)
            bias_oper = self.operands[bias_id]
            return bias_id, bias_oper
        else:
            return self.get_tensor_operand_for_weight(jit_bias)

    def add_conv2d(self, node):
        assert node.inputsSize() == 7
        assert node.outputsSize() == 1

        (
            jit_image,
            jit_weight,
            jit_bias,
            jit_stride,
            jit_pad,
            jit_dilation,
            jit_groups,
        ) = node.inputs()

        _, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
        bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor)
        args = self.get_conv_pool_args_2d_from_jit(
            weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups
        )

        return self.add_conv2d_common(
            node.outputsAt(0),
            0.0,
            0,
            jit_image,
            weight_tensor,
            bias_id,
            args,
            False,  # transpose
            NNAPI_FuseCode.FUSED_NONE,
        )

    def add_conv_underscore(self, node):
        assert node.inputsSize() == 13
        assert node.outputsSize() == 1

        (
            jit_image,
            jit_weight,
            jit_bias,
            jit_stride,
            jit_pad,
            jit_dilation,
            jit_transpose,
            _,
            jit_groups,
            _,
            _,
            _,
            _,
        ) = node.inputs()

        _, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
        _, transpose = self.get_constant_value(jit_transpose)
        bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor, transpose)
        args = self.get_conv_pool_args_2d_from_jit(
            weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups
        )

        return self.add_conv2d_common(
            node.outputsAt(0),
            0.0,
            0,
            jit_image,
            weight_tensor,
            bias_id,
            args,
            transpose,
            NNAPI_FuseCode.FUSED_NONE,
        )

    def add_log_softmax(self, node):
        assert node.inputsSize() == 3
        assert node.outputsSize() == 1

        (jit_input, jit_dim, jit_half_to_float) = node.inputs()
        input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
        _, dim = self.get_constant_value(jit_dim, "IntType")

        out_shape = input_oper.shape

        inputs = [None] * 3
        inputs[0] = input_id
        # specifying 1 as the scaling factor for the exponent, beta
        inputs[1] = self.add_immediate_float_scalar(1)
        inputs[2] = self.add_immediate_int_scalar(dim)

        outputs = [None] * 1
        outputs[0] = self.add_tensor_operand(
            node.outputsAt(0), input_oper._replace(shape=out_shape)
        )
        self.add_operation(NNAPI_OperationCode.LOG_SOFTMAX, inputs, outputs)

    def add_qconv2d(self, node, fuse_code, transpose=False):
        assert node.inputsSize() == 4
        assert node.outputsSize() == 1

        (
            jit_image,
            jit_packed_weight,
            jit_scale,
            jit_zero_point,
        ) = node.inputs()

        _, out_scale = self.get_constant_value(jit_scale, "FloatType")
        _, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
        weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
        assert weight_ctype.name() == "Conv2dPackedParamsBase"
        (
            pack_version,
            tensors,
            opt_tensors,
        ) = packed_weight.__getstate__()[0]
        assert pack_version == "2"
        packed_config, raw_weight = tensors
        (raw_bias,) = opt_tensors
        assert raw_bias is not None
        args = self.get_conv_pool_args_2d_from_pack(
            raw_weight.shape[2:4], packed_config
        )

        assert raw_weight.qscheme() == torch.per_tensor_affine
        if raw_weight.dtype == torch.quint8:
            unsigned_weight = raw_weight
        else:
            assert raw_weight.dtype == torch.qint8
            unsigned_weight = torch._make_per_tensor_quantized_tensor(
                (raw_weight.int_repr().int() + 128).to(torch.uint8),
                scale=raw_weight.q_scale(),
                zero_point=raw_weight.q_zero_point() + 128,
            )
        weight_scale = unsigned_weight.q_scale()
        _, image_oper = self.get_tensor_operand_by_jitval(jit_image)
        bias_scale = image_oper.scale * weight_scale
        int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
        bias_id = self.add_tensor_operand_for_weight(int_bias)

        multiplier = image_oper.scale * weight_scale / out_scale
        assert multiplier > 0
        if multiplier >= 1:
            raise Exception(
                "Quantized convolution multiplier is greater than 1.  "
                "This is supported by NNAPI, but not by most hardware backends.  "
                "Try training a model without quantization-aware training.  "
            )

        return self.add_conv2d_common(
            node.outputsAt(0),
            out_scale,
            out_zero_point,
            jit_image,
            unsigned_weight,
            bias_id,
            args,
            transpose,
            fuse_code,
        )

    def add_conv2d_common(

        self,

        jit_out,

        out_scale,

        out_zero_point,

        jit_image,

        weight_tensor,

        bias_id,

        args,

        transpose,

        fuse_code,

    ):
        image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image)
        in_c = image_oper.shape[1]

        if args.group == 1:
            # Full convolution
            depthwise = False
            if transpose:
                weight_permutation = (1, 2, 3, 0)
            else:
                weight_permutation = (0, 2, 3, 1)
        elif args.group == in_c:
            # Depthwise convolution
            depthwise = True
            weight_permutation = (1, 2, 3, 0)
        else:
            raise Exception("Group convolution not supported yet.")

        # TODO: Transform at load time to share weights with CPU model.
        nnapi_weight_tensor = weight_tensor.permute(*weight_permutation).contiguous()
        weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
        weight_oper = self.operands[weight_id]

        bias_oper = self.operands[bias_id]

        if image_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
            assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
            assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
        elif image_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
            assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
            assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_INT32
            assert approx_equal(image_oper.scale * weight_oper.scale, bias_oper.scale)
            assert bias_oper.zero_point == 0
        else:
            raise Exception(f"Unsupported input type for conv2d: {image_oper.op_type}")

        assert len(image_oper.shape) == 4
        assert len(weight_oper.shape) == 4
        assert len(bias_oper.shape) == 1

        if depthwise:
            # Depthwise convolution
            one, kern_h, kern_w, out_c = weight_oper.shape
            assert one == 1
            assert out_c % in_c == 0
            channel_multiplier = out_c // in_c
            assert channel_multiplier == 1  # Don't support multiplier
            assert out_c == in_c
        else:
            # Full convolution
            out_c, kern_h, kern_w, kern_d = weight_oper.shape
            assert kern_d == in_c

        assert out_c == bias_oper.shape[0]

        use_nchw = image_oper.use_nchw()

        if depthwise:
            num_args = 12
            opcode = NNAPI_OperationCode.DEPTHWISE_CONV_2D
        else:
            num_args = 11
            if transpose:
                opcode = NNAPI_OperationCode.TRANSPOSE_CONV_2D
            else:
                opcode = NNAPI_OperationCode.CONV_2D

        inputs = [None] * num_args
        inputs[0] = image_id
        inputs[1] = weight_id
        inputs[2] = bias_id
        inputs[3] = self.add_immediate_int_scalar(args.pad_l)
        inputs[4] = self.add_immediate_int_scalar(args.pad_r)
        inputs[5] = self.add_immediate_int_scalar(args.pad_t)
        inputs[6] = self.add_immediate_int_scalar(args.pad_b)
        inputs[7] = self.add_immediate_int_scalar(args.stride_w)
        inputs[8] = self.add_immediate_int_scalar(args.stride_h)
        if depthwise:
            inputs[9] = self.add_immediate_int_scalar(1)
            inputs[10] = self.add_immediate_int_scalar(fuse_code)
            inputs[11] = self.add_immediate_bool_scalar(use_nchw)
        else:
            inputs[9] = self.add_immediate_int_scalar(fuse_code)
            inputs[10] = self.add_immediate_bool_scalar(use_nchw)

        outputs = [None] * 1
        out_shape = get_conv_pool_shape(image_oper.shape, args, out_c, transpose)
        out_oper = image_oper._replace(
            shape=out_shape,
            scale=out_scale,
            zero_point=out_zero_point,
        )
        out_id = self.add_tensor_operand(jit_out, out_oper)
        self._handle_conv_pool_flexible_input(out_id, jit_image, args, transpose)

        outputs[0] = out_id
        self.add_operation(opcode, inputs, outputs)

    def _handle_conv_pool_flexible_input(self, out_id, jit_image, args, transpose):
        image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image)
        batch, in_ch, in_h, in_w = image_oper.shape

        if batch == 0:
            self.forward_operand_shape(out_id, 0, image_id, 0)
        if in_ch == 0:
            raise Exception("Input channels can't be flexible")
        # H & W
        if transpose:
            if in_h == 0:
                self.compute_operand_shape(
                    out_id,
                    2,
                    f"({flex_name(image_id, 2)} - 1) * {args.stride_h} + {args.kernel_h} - {args.pad_t} - {args.pad_b}",
                )
            if in_w == 0:
                self.compute_operand_shape(
                    out_id,
                    3,
                    f"({flex_name(image_id, 3)} - 1) * {args.stride_w} + {args.kernel_w} - {args.pad_l} - {args.pad_r}",
                )
        else:
            if in_h == 0:
                self.compute_operand_shape(
                    out_id,
                    2,
                    f"({flex_name(image_id, 2)} - {args.kernel_h} + {args.pad_t} + {args.pad_b}) // {args.stride_h} + 1",
                )
            if in_w == 0:
                self.compute_operand_shape(
                    out_id,
                    3,
                    f"({flex_name(image_id, 3)} - {args.kernel_w} + {args.pad_l} + {args.pad_r}) // {args.stride_w} + 1",
                )


def serialize_model(

    module, inputs, *, config=None, return_shapes=None, use_int16_for_qint16=False

):
    """Convert to NNAPI and serialize torchscript module.



    Parameters:

        module: Torchscript module to convert

        inputs: Tensors used to specify input details for NNAPI

        config (optional): Optional config to attach to module

        return_shapes (optional): Specify shape of outputs if

            your module uses runtime flexible shapes to set output

            buffer size for NNAPI

        use_int16_for_qint16 (optional): Use Pytorch int16 to represent NNAPI qint16 values

    """
    return _NnapiSerializer(config, use_int16_for_qint16).serialize_model(
        module, inputs, return_shapes
    )