File size: 13,368 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from typing import Any

import torch

from torch.utils._contextlib import (
    _DecoratorContextManager,
    _NoParamDecoratorContextManager,
    F,
)

__all__ = [
    "no_grad",
    "enable_grad",
    "set_grad_enabled",
    "inference_mode",
    "set_multithreading_enabled",
]


class no_grad(_NoParamDecoratorContextManager):
    r"""Context-manager that disables gradient calculation.



    Disabling gradient calculation is useful for inference, when you are sure

    that you will not call :meth:`Tensor.backward()`. It will reduce memory

    consumption for computations that would otherwise have `requires_grad=True`.



    In this mode, the result of every computation will have

    `requires_grad=False`, even when the inputs have `requires_grad=True`.

    There is an exception! All factory functions, or functions that create

    a new Tensor and take a requires_grad kwarg, will NOT be affected by

    this mode.



    This context manager is thread local; it will not affect computation

    in other threads.



    Also functions as a decorator.



    .. note::

        No-grad is one of several mechanisms that can enable or

        disable gradients locally see :ref:`locally-disable-grad-doc` for

        more information on how they compare.



    .. note::

        This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.

        If you want to disable forward AD for a computation, you can unpack

        your dual tensors.



    Example::

        >>> # xdoctest: +SKIP

        >>> x = torch.tensor([1.], requires_grad=True)

        >>> with torch.no_grad():

        ...     y = x * 2

        >>> y.requires_grad

        False

        >>> @torch.no_grad()

        ... def doubler(x):

        ...     return x * 2

        >>> z = doubler(x)

        >>> z.requires_grad

        False

        >>> @torch.no_grad

        ... def tripler(x):

        ...     return x * 3

        >>> z = tripler(x)

        >>> z.requires_grad

        False

        >>> # factory function exception

        >>> with torch.no_grad():

        ...     a = torch.nn.Parameter(torch.rand(10))

        >>> a.requires_grad

        True

    """

    def __init__(self) -> None:
        if not torch._jit_internal.is_scripting():
            super().__init__()
        self.prev = False

    def __enter__(self) -> None:
        self.prev = torch.is_grad_enabled()
        torch.set_grad_enabled(False)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        torch.set_grad_enabled(self.prev)


class enable_grad(_NoParamDecoratorContextManager):
    r"""Context-manager that enables gradient calculation.



    Enables gradient calculation, if it has been disabled via :class:`~no_grad`

    or :class:`~set_grad_enabled`.



    This context manager is thread local; it will not affect computation

    in other threads.



    Also functions as a decorator.



    .. note::

        enable_grad is one of several mechanisms that can enable or

        disable gradients locally see :ref:`locally-disable-grad-doc` for

        more information on how they compare.



    .. note::

        This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.



    Example::

        >>> # xdoctest: +SKIP

        >>> x = torch.tensor([1.], requires_grad=True)

        >>> with torch.no_grad():

        ...     with torch.enable_grad():

        ...         y = x * 2

        >>> y.requires_grad

        True

        >>> y.backward()

        >>> x.grad

        tensor([2.])

        >>> @torch.enable_grad()

        ... def doubler(x):

        ...     return x * 2

        >>> with torch.no_grad():

        ...     z = doubler(x)

        >>> z.requires_grad

        True

        >>> @torch.enable_grad

        ... def tripler(x):

        ...     return x * 3

        >>> with torch.no_grad():

        ...     z = tripler(x)

        >>> z.requires_grad

        True



    """

    def __enter__(self) -> None:
        self.prev = torch.is_grad_enabled()
        torch._C._set_grad_enabled(True)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        torch._C._set_grad_enabled(self.prev)


class set_grad_enabled(_DecoratorContextManager):
    r"""Context-manager that sets gradient calculation on or off.



    ``set_grad_enabled`` will enable or disable grads based on its argument :attr:`mode`.

    It can be used as a context-manager or as a function.



    This context manager is thread local; it will not affect computation

    in other threads.



    Args:

        mode (bool): Flag whether to enable grad (``True``), or disable

                     (``False``). This can be used to conditionally enable

                     gradients.



    .. note::

        set_grad_enabled is one of several mechanisms that can enable or

        disable gradients locally see :ref:`locally-disable-grad-doc` for

        more information on how they compare.



    .. note::

        This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.



    Example::

        >>> # xdoctest: +SKIP

        >>> x = torch.tensor([1.], requires_grad=True)

        >>> is_train = False

        >>> with torch.set_grad_enabled(is_train):

        ...     y = x * 2

        >>> y.requires_grad

        False

        >>> _ = torch.set_grad_enabled(True)

        >>> y = x * 2

        >>> y.requires_grad

        True

        >>> _ = torch.set_grad_enabled(False)

        >>> y = x * 2

        >>> y.requires_grad

        False



    """

    def __init__(self, mode: bool) -> None:
        self.prev = torch.is_grad_enabled()
        self.mode = mode
        torch._C._set_grad_enabled(mode)

    def __call__(self, orig_func: F) -> F:
        torch._C._set_grad_enabled(self.prev)
        return super().__call__(orig_func)

    def __enter__(self) -> None:
        torch._C._set_grad_enabled(self.mode)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        torch._C._set_grad_enabled(self.prev)

    def clone(self) -> "set_grad_enabled":
        r"""

        Create a copy of this class

        """
        return self.__class__(self.mode)


class inference_mode(_DecoratorContextManager):
    r"""Context-manager that enables or disables inference mode.



    InferenceMode is a new context manager analogous to :class:`~no_grad`

    to be used when you are certain your operations will have no interactions

    with autograd (e.g., model training). Code run under this mode gets better

    performance by disabling view tracking and version counter bumps. Note that

    unlike some other mechanisms that locally enable or disable grad,

    entering inference_mode also disables to :ref:`forward-mode AD <forward-mode-ad>`.



    This context manager is thread local; it will not affect computation

    in other threads.



    Also functions as a decorator.



    .. note::

        Inference mode is one of several mechanisms that can enable or

        disable gradients locally see :ref:`locally-disable-grad-doc` for

        more information on how they compare.



    Args:

        mode (bool or function): Either a boolean flag whether to enable or

            disable inference mode or a Python function to decorate with

            inference mode enabled



    Example::

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)

        >>> import torch

        >>> x = torch.ones(1, 2, 3, requires_grad=True)

        >>> with torch.inference_mode():

        ...     y = x * x

        >>> y.requires_grad

        False

        >>> # xdoctest: +SKIP("want string isnt quite right")

        >>> y._version

        Traceback (most recent call last):

        File "<stdin>", line 1, in <module>

        RuntimeError: Inference tensors do not track version counter.

        >>> @torch.inference_mode()

        ... def func(x):

        ...     return x * x

        >>> out = func(x)

        >>> out.requires_grad

        False

        >>> @torch.inference_mode

        ... def doubler(x):

        ...     return x * 2

        >>> out = doubler(x)

        >>> out.requires_grad

        False



    """

    def __init__(self, mode: bool = True) -> None:
        if not torch._jit_internal.is_scripting():
            super().__init__()
        self.mode = mode

    def __new__(cls, mode=True):
        if isinstance(mode, bool):
            return super().__new__(cls)
        return cls()(mode)

    def __enter__(self) -> None:
        self._inference_mode_context = torch._C._InferenceMode(self.mode)
        self._inference_mode_context.__enter__()

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        self._inference_mode_context.__exit__(exc_type, exc_value, traceback)

    def clone(self) -> "inference_mode":
        r"""

        Create a copy of this class

        """
        return self.__class__(self.mode)


def _enter_inference_mode(mode):
    mode_context = torch._C._InferenceMode(mode)
    mode_context.__enter__()
    return mode_context


def _exit_inference_mode(mode):
    mode.__exit__(None, None, None)


class set_multithreading_enabled(_DecoratorContextManager):
    r"""Context-manager that sets multithreaded backwards on or off.



    ``set_multithreading_enabled`` will enable or disable multithreaded backwards based on its argument :attr:`mode`.

    It can be used as a context-manager or as a function.



    This context manager is thread local; it will not affect computation

    in other threads.



    Args:

        mode (bool): Flag whether to enable multithreaded backwards (``True``), or disable

                     (``False``).



    .. note::

        This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.



    """

    def __init__(self, mode: bool) -> None:
        self.prev = torch._C._is_multithreading_enabled()
        torch._C._set_multithreading_enabled(mode)
        self.mode = mode

    def __enter__(self) -> None:
        pass

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        torch._C._set_multithreading_enabled(self.prev)

    def clone(self) -> "set_multithreading_enabled":
        r"""

        Create a copy of this class

        """
        return self.__class__(self.mode)


class _force_original_view_tracking(_DecoratorContextManager):
    r"""Context-manager that sets whether or not to always enable view-replay in autograd.



    ``set_view_replay_enabled`` will enable or disable view-replay based on its argument :attr:`mode`.

    It can be used as a context-manager or as a function.



    This context manager is thread local; it will not affect computation

    in other threads.



    When a tensor view is mutated, the autograd engine needs to decide whether or not

    to regenerate the "updated view" by either replaying the chain of views from the updated base,

    or with a single call to as_strided.



    If set_view_replay_enabled is set to True, then autograd will always use view replay.

    Otherwise, it will fall back to its existing logic.



    Args:

        mode (bool): Flag whether to enable view-replay (``True``), or disable

                     (``False``).



    """

    def __init__(self, mode: bool) -> None:
        self.prev = torch._C._is_view_replay_enabled()
        torch._C._set_view_replay_enabled(mode)
        self.mode = mode

    def __enter__(self) -> None:
        pass

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        torch._C._set_view_replay_enabled(self.prev)

    def clone(self):
        return self.__class__(self.mode)


class _unsafe_preserve_version_counter(_DecoratorContextManager):
    r"""DO NOT USE THIS UNLESS YOU KNOW EXACTLY WHAT YOU'RE DOING.



    This context manager can lead to arbitrary silent-correctness issues in any other part of your code

    (even the ones not touched directly by the context manager)!



    Ordinarily, autograd will track mutations to tensors by incrementing it's `._version` attribute.

    This is generally important for correctness, as for example, mutating a tensor that autograd has saved

    for the backwards pass can result in incorrect gradients, and autograd uses the version counter to detect

    and error out in this situation.



    However, there are rare instances where it might be useful to hide mutations from autograd. For example:

    if a tensor is very large, and you'd like to free its memory by storing it elsewhere, and re-populate

    the tensor right before it is needed by autograd.



    Args:

        tensor (torch.Tensor): the tensor in question, that you would like to preserve the version counter of.



    .. note::

        This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.



    """

    def __init__(self, tensor: torch.Tensor) -> None:
        self.tensor = tensor
        self.prev_version = tensor._version

    def __enter__(self) -> None:
        pass

    def __exit__(self, *args) -> None:
        torch._C._autograd._unsafe_set_version_counter(self.tensor, self.prev_version)