Spaces:
Running
Running
File size: 14,948 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from __future__ import annotations
from collections import OrderedDict
from typing import Any, Callable, Dict, Tuple, Union, List
import torch
from .fake_quantize import (
default_weight_fake_quant,
FixedQParamsFakeQuantize,
)
from .observer import (
_PartialWrapper,
default_fixed_qparams_range_0to1_observer,
default_fixed_qparams_range_neg1to1_observer,
default_placeholder_observer,
default_weight_observer,
)
from .qconfig import (
default_reuse_input_qconfig,
default_symmetric_qnnpack_qconfig,
default_symmetric_qnnpack_qat_qconfig,
get_default_qconfig,
get_default_qat_qconfig,
QConfig,
QConfigAny,
default_quint8_weight_qconfig
)
__all__ = [
"get_default_qconfig_mapping",
"get_default_qat_qconfig_mapping",
"QConfigMapping",
]
# TODO: replace all usages with these constants
_GLOBAL_DICT_KEY = ""
_OBJECT_TYPE_DICT_KEY = "object_type"
_MODULE_NAME_REGEX_DICT_KEY = "module_name_regex"
_MODULE_NAME_DICT_KEY = "module_name"
_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY = "module_name_object_type_order"
# TODO: derive this map from the BackendConfig
_FIXED_QPARAMS_OP_TO_OBSERVER: Dict[Union[Callable, str], _PartialWrapper] = {
torch.nn.Hardsigmoid: default_fixed_qparams_range_0to1_observer,
torch.nn.functional.hardsigmoid: default_fixed_qparams_range_0to1_observer,
"hardsigmoid": default_fixed_qparams_range_0to1_observer,
"hardsigmoid_": default_fixed_qparams_range_0to1_observer,
torch.nn.Sigmoid: default_fixed_qparams_range_0to1_observer,
torch.sigmoid: default_fixed_qparams_range_0to1_observer,
"sigmoid": default_fixed_qparams_range_0to1_observer,
"sigmoid_": default_fixed_qparams_range_0to1_observer,
torch.nn.Softmax: default_fixed_qparams_range_0to1_observer,
torch.nn.Tanh: default_fixed_qparams_range_neg1to1_observer,
torch.tanh: default_fixed_qparams_range_neg1to1_observer,
"tanh": default_fixed_qparams_range_neg1to1_observer,
"tanh_": default_fixed_qparams_range_neg1to1_observer,
}
def _get_default_qconfig_mapping(is_qat: bool, backend: str, version: int) -> QConfigMapping:
"""
Return the default QConfigMapping for the given quantization type and backend.
"""
if is_qat:
qconfig = get_default_qat_qconfig(backend, version)
else:
qconfig = get_default_qconfig(backend, version)
default_weight = default_weight_fake_quant if is_qat else default_weight_observer
# default_per_channel_weight_observer is not currently compatible with fbgemm backend
# so we have to modify the weight observer to default_weight_observer or another
# per tensor supported observer.
# see https://github.com/pytorch/pytorch/issues/47535
if backend in ("fbgemm", "x86"):
qconfig_transpose = QConfig(activation=qconfig.activation, weight=default_weight)
else:
qconfig_transpose = qconfig
# currently layernorm only supports float weights
# we have to add this because otherwise there will be a extra quantize-dequantize pair
qconfig_layernorm = QConfig(activation=qconfig.activation, weight=default_placeholder_observer)
qconfig_mapping = QConfigMapping() \
.set_global(qconfig) \
.set_object_type("reshape", default_reuse_input_qconfig) \
.set_object_type(torch.nn.ConvTranspose1d, qconfig_transpose) \
.set_object_type(torch.nn.ConvTranspose2d, qconfig_transpose) \
.set_object_type(torch.nn.ConvTranspose3d, qconfig_transpose) \
.set_object_type(torch.nn.functional.conv_transpose1d, qconfig_transpose) \
.set_object_type(torch.nn.functional.conv_transpose2d, qconfig_transpose) \
.set_object_type(torch.nn.functional.conv_transpose3d, qconfig_transpose) \
.set_object_type(torch.nn.functional.layer_norm, qconfig_layernorm) \
.set_object_type(torch.nn.LayerNorm, qconfig_layernorm) \
.set_object_type(torch.nn.PReLU, default_quint8_weight_qconfig) \
# Use special observers for ops with fixed qparams
fixed_qparams_observer_to_qconfig: Dict[Any, QConfigAny] = {}
for fixed_qparams_op, observer in _FIXED_QPARAMS_OP_TO_OBSERVER.items():
if observer in fixed_qparams_observer_to_qconfig:
fixed_qparams_qconfig = fixed_qparams_observer_to_qconfig[observer]
else:
if is_qat:
activation = FixedQParamsFakeQuantize.with_args(observer=observer)
else:
activation = observer
fixed_qparams_qconfig = QConfig(activation=activation, weight=default_weight)
fixed_qparams_observer_to_qconfig[observer] = fixed_qparams_qconfig
qconfig_mapping.set_object_type(fixed_qparams_op, fixed_qparams_qconfig)
# TODO Currently it's required that separate ops in a fused op/module have the same qconfig.
# Need to be able to support fusion of ops with different qconfigs
return qconfig_mapping
def get_default_qconfig_mapping(backend="x86", version=0) -> QConfigMapping:
"""
Return the default QConfigMapping for post training quantization.
Args:
* ``backend`` (str) : the quantization backend for the default qconfig mapping, should be
one of ["x86" (default), "fbgemm", "qnnpack", "onednn"]
* ``version`` (int) : the version for the default qconfig mapping
"""
# TODO: add assert for backend choices
return _get_default_qconfig_mapping(False, backend, version)
def get_default_qat_qconfig_mapping(backend="x86", version=1) -> QConfigMapping:
"""
Return the default QConfigMapping for quantization aware training.
Args:
* ``backend`` (str) : the quantization backend for the default qconfig mapping, should be
one of ["x86" (default), "fbgemm", "qnnpack", "onednn"]
* ``version`` (int) : the version for the default qconfig mapping
"""
return _get_default_qconfig_mapping(True, backend, version)
def _get_symmetric_qnnpack_qconfig_mapping() -> QConfigMapping:
"""
Return a QConfigMapping that uses `torch.ao.quantization.default_symmetric_qnnpack_qconfig`
as the default QConfig.
"""
default_qconfig = default_symmetric_qnnpack_qconfig
return _get_default_qconfig_mapping_with_default_qconfig(False, "qnnpack", default_qconfig)
def _get_symmetric_qnnpack_qat_qconfig_mapping() -> QConfigMapping:
"""
Return a QConfigMapping that uses `torch.ao.quantization.default_symmetric_qnnpack_qat_qconfig`
as the default QConfig.
"""
default_qconfig = default_symmetric_qnnpack_qat_qconfig
return _get_default_qconfig_mapping_with_default_qconfig(True, "qnnpack", default_qconfig)
def _get_default_qconfig_mapping_with_default_qconfig(
is_qat: bool,
backend: str,
default_qconfig: QConfig,
) -> QConfigMapping:
"""
Return a QConfigMapping that uses the provided qconfig as the default QConfig.
"""
if is_qat:
qconfig_mapping = get_default_qat_qconfig_mapping(backend)
else:
qconfig_mapping = get_default_qconfig_mapping(backend)
qconfig_mapping.set_global(default_qconfig)
for pattern in qconfig_mapping.object_type_qconfigs.keys():
if pattern not in _FIXED_QPARAMS_OP_TO_OBSERVER:
qconfig_mapping.set_object_type(pattern, default_qconfig)
return qconfig_mapping
_QCONFIG_STYLE_ORDER: List[str] = [
"global_qconfig",
"object_type_qconfigs",
"module_name_regex_qconfigs",
"module_name_qconfigs",
"module_name_object_type_order_qconfigs",
]
class QConfigMapping:
"""
Mapping from model ops to :class:`torch.ao.quantization.QConfig` s.
The user can specify QConfigs using the following methods (in increasing match priority):
``set_global`` : sets the global (default) QConfig
``set_object_type`` : sets the QConfig for a given module type, function, or method name
``set_module_name_regex`` : sets the QConfig for modules matching the given regex string
``set_module_name`` : sets the QConfig for modules matching the given module name
``set_module_name_object_type_order`` : sets the QConfig for modules matching a combination
of the given module name, object type, and the index at which the module appears
Example usage::
qconfig_mapping = QConfigMapping()
.set_global(global_qconfig)
.set_object_type(torch.nn.Linear, qconfig1)
.set_object_type(torch.nn.ReLU, qconfig1)
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
.set_module_name_regex("foo.*", qconfig2)
.set_module_name("module1", qconfig1)
.set_module_name("module2", qconfig2)
.set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3)
"""
def __init__(self):
# In increasing match priority:
self.global_qconfig: QConfigAny = None
self.object_type_qconfigs: OrderedDict[Union[Callable, str], QConfigAny] = OrderedDict()
self.module_name_regex_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
self.module_name_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
self.module_name_object_type_order_qconfigs: OrderedDict[Tuple[str, Callable, int], QConfigAny] =\
OrderedDict()
def set_global(self, global_qconfig: QConfigAny) -> QConfigMapping:
"""
Set the global (default) QConfig.
"""
self.global_qconfig = global_qconfig
return self
def set_object_type(self, object_type: Union[Callable, str], qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for a given module type, function, or method name.
If the QConfig for an existing object type was already set, the new QConfig will override the old one.
"""
self.object_type_qconfigs[object_type] = qconfig
return self
def set_module_name_regex(self, module_name_regex: str, qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching the given regex string.
Regexes will be matched in the order in which they are registered through this method.
Thus, the caller should register more specific patterns first, e.g.::
qconfig_mapping = QConfigMapping()
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
.set_module_name_regex("foo.*bar.*", qconfig2)
.set_module_name_regex("foo.*", qconfig3)
In this example, "foo.bar.conv0" would match qconfig1, "foo.bar.linear" would match qconfig2,
and "foo.baz.relu" would match qconfig3.
If the QConfig for an existing module name regex was already set, the new QConfig will override the
old one while preserving the order in which the regexes were originally registered.
"""
self.module_name_regex_qconfigs[module_name_regex] = qconfig
return self
def set_module_name(self, module_name: str, qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching the given module name.
If the QConfig for an existing module name was already set, the new QConfig will override the old one.
"""
self.module_name_qconfigs[module_name] = qconfig
return self
def set_module_name_object_type_order(
self,
module_name: str,
object_type: Callable,
index: int,
qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching a combination of the given module name, object type,
and the index at which the module appears.
If the QConfig for an existing (module name, object type, index) was already set, the new QConfig
will override the old one.
"""
self.module_name_object_type_order_qconfigs[(module_name, object_type, index)] = qconfig
return self
def __repr__(self) -> str:
output = self.__class__.__name__ + " ("
for style_name in _QCONFIG_STYLE_ORDER:
output += f"\n {style_name}"
qconfigs = getattr(self, style_name)
if isinstance(qconfigs, OrderedDict) and len(qconfigs) > 0:
for key, qconfig in qconfigs.items():
output += f"\n {key}: {qconfig}"
else:
output += f"\n {qconfigs}"
return output + "\n)"
# TODO: remove this
def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``QConfigMapping`` to a dictionary with the following keys:
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
"module_name_object_type_order"
The values of this dictionary are lists of tuples.
"""
return {
_GLOBAL_DICT_KEY: self.global_qconfig,
_OBJECT_TYPE_DICT_KEY: list(self.object_type_qconfigs.items()),
_MODULE_NAME_REGEX_DICT_KEY: list(self.module_name_regex_qconfigs.items()),
_MODULE_NAME_DICT_KEY: list(self.module_name_qconfigs.items()),
_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY: [
(*k, v) for k, v in self.module_name_object_type_order_qconfigs.items()
],
}
# TODO: remove this
@classmethod
def from_dict(cls, qconfig_dict: Dict[str, Any]) -> QConfigMapping:
"""
Create a ``QConfigMapping`` from a dictionary with the following keys (all optional):
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
"module_name_object_type_order"
The values of this dictionary are expected to be lists of tuples.
"""
conf = cls()
if _GLOBAL_DICT_KEY in qconfig_dict:
conf.set_global(qconfig_dict[_GLOBAL_DICT_KEY])
for object_type, qconfig in qconfig_dict.get(_OBJECT_TYPE_DICT_KEY, []):
conf.set_object_type(object_type, qconfig)
for module_name_regex, qconfig in qconfig_dict.get(_MODULE_NAME_REGEX_DICT_KEY, []):
conf.set_module_name_regex(module_name_regex, qconfig)
for module_name, qconfig in qconfig_dict.get(_MODULE_NAME_DICT_KEY, []):
conf.set_module_name(module_name, qconfig)
for module_name, object_type, index, qconfig in qconfig_dict.get(_MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY, []):
conf.set_module_name_object_type_order(module_name, object_type, index, qconfig)
return conf
|