File size: 38,461 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
import copy
import torch
import torch.nn as nn
from torch.ao.quantization import (
    QConfigAny,
    QuantType,
)
from torch.ao.quantization.backend_config import (
    DTypeWithConstraints,
)
from torch.ao.quantization.fake_quantize import (
    FakeQuantizeBase,
    FixedQParamsFakeQuantize,
)
from torch.ao.quantization.observer import (
    FixedQParamsObserver,
    ObserverBase,
)
from torch.ao.quantization.qconfig import (
    float16_static_qconfig,
    float16_dynamic_qconfig,
    qconfig_equals,
)
from torch.ao.quantization.stubs import DeQuantStub
from torch.ao.quantization.utils import (
    activation_is_statically_quantized,
)
from torch.ao.quantization.observer import _is_activation_post_process
from torch.ao.quantization.qconfig_mapping import QConfigMapping

from torch.fx import GraphModule, map_arg

from torch.fx.graph import (
    Graph,
    Node,
)
from .custom_config import PrepareCustomConfig
# importing the lib so that the quantized_decomposed ops are registered
from ._decomposed import quantized_decomposed_lib  # noqa: F401

from typing import Callable, Optional, List, Dict, Any, Set, Tuple, Union, Type
from dataclasses import dataclass
from collections import namedtuple
import operator
import warnings

# TODO: revisit this list. Many helper methods shouldn't be public
__all__ = [
    "all_node_args_except_first",
    "all_node_args_have_no_tensors",
    "assert_and_get_unique_device",
    "collect_producer_nodes",
    "create_getattr_from_value",
    "create_node_from_old_node_preserve_meta",
    "EMPTY_ARG_DICT",
    "get_custom_module_class_keys",
    "get_linear_prepack_op_for_dtype",
    "get_new_attr_name_with_prefix",
    "get_non_observable_arg_indexes_and_types",
    "get_qconv_prepack_op",
    "get_skipped_module_name_and_classes",
    "graph_module_from_producer_nodes",
    "maybe_get_next_module",
    "NodeInfo",
    "node_arg_is_bias",
    "node_arg_is_weight",
    "NON_OBSERVABLE_ARG_DICT",
    "NON_QUANTIZABLE_WEIGHT_OPS",
    "return_arg_list",
    "ObservedGraphModuleAttrs",
]

NON_QUANTIZABLE_WEIGHT_OPS = {torch.nn.functional.layer_norm, torch.nn.functional.group_norm, torch.nn.functional.instance_norm}

@dataclass
class ObservedGraphModuleAttrs:
    node_name_to_qconfig: Dict[str, QConfigAny]
    node_name_to_scope: Dict[str, Tuple[str, type]]
    prepare_custom_config: PrepareCustomConfig
    equalization_node_name_to_qconfig: Dict[str, Any]
    qconfig_mapping: QConfigMapping
    is_qat: bool
    observed_node_names: Set[str]
    is_observed_standalone_module: bool = False
    standalone_module_input_quantized_idxs: Optional[List[int]] = None
    standalone_module_output_quantized_idxs: Optional[List[int]] = None

def node_arg_is_weight(node: Node, arg: Any) -> bool:
    """Returns if node arg is weight"""
    weight_index = None
    if "target_dtype_info" in node.meta:
        weight_index = node.meta["target_dtype_info"].get("weight_index", None)
    if weight_index is not None and weight_index < len(node.args) and node.args[weight_index] is arg:
        return True
    return node.kwargs.get("weight") is arg

def node_arg_is_bias(node: Node, arg: Any) -> bool:
    """Returns if node arg is bias"""
    bias_index = None
    if "target_dtype_info" in node.meta:
        bias_index = node.meta["target_dtype_info"].get("bias_index", None)
    if bias_index is not None and bias_index < len(node.args) and node.args[bias_index] is arg:
        return True
    return node.kwargs.get("bias") is arg

def get_custom_module_class_keys(custom_module_mapping: Dict[QuantType, Dict[Type, Type]]) -> List[Any]:
    r""" Get all the unique custom module keys in the custom config dict

    e.g.

    Input:

    {

        QuantType.STATIC: {

            CustomModule1: ObservedCustomModule

        },

        QuantType.DYNAMIC: {

            CustomModule2: DynamicObservedCustomModule

        },

        QuantType.WEIGHT_ONLY: {

            CustomModule3: WeightOnlyObservedCustomModule

        },

    }



    Output:

    # extract the keys across all inner STATIC, DYNAMIC, and WEIGHT_ONLY dicts

    [CustomModule1, CustomModule2, CustomModule3]

    """
    # using set to dedup
    float_custom_module_classes : Set[Any] = set()
    for quant_mode in [QuantType.STATIC, QuantType.DYNAMIC, QuantType.WEIGHT_ONLY]:
        quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {})
        quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys())
        float_custom_module_classes |= quant_mode_custom_module_classes
    return list(float_custom_module_classes)

def get_linear_prepack_op_for_dtype(dtype):
    if dtype == torch.float16:
        return torch.ops.quantized.linear_prepack_fp16
    elif dtype == torch.qint8:
        return torch.ops.quantized.linear_prepack
    else:
        raise Exception("can't get linear prepack op for dtype:", dtype)

def get_qconv_prepack_op(conv_op: Callable) -> Callable:
    prepack_ops = {
        torch.nn.functional.conv1d: torch.ops.quantized.conv1d_prepack,
        torch.nn.functional.conv2d: torch.ops.quantized.conv2d_prepack,
        torch.nn.functional.conv3d: torch.ops.quantized.conv3d_prepack,
        torch.nn.functional.conv_transpose1d: torch.ops.quantized.conv_transpose1d_prepack,
        torch.nn.functional.conv_transpose2d: torch.ops.quantized.conv_transpose2d_prepack,
        torch.nn.functional.conv_transpose3d: torch.ops.quantized.conv_transpose3d_prepack,
    }
    prepack_op = prepack_ops.get(conv_op, None)
    assert prepack_op, f"Didn't find prepack op for {conv_op}"
    return prepack_op

# Returns a function that can get a new attribute name for module with given
# prefix, for example,
# >> get_new_observer_name = get_new_attr_name_with_prefix('_observer')
# >> new_name = get_new_observer_name(module)
# new_name will be an unused attribute name on module, e.g. `_observer_1`
def get_new_attr_name_with_prefix(prefix: str) -> Callable:
    prefix = prefix.replace(".", "_")

    def get_new_attr_name(module: torch.nn.Module):
        def get_attr_name(i: int):
            return prefix + str(i)
        i = 0
        attr_name = get_attr_name(i)
        while hasattr(module, attr_name):
            i += 1
            attr_name = get_attr_name(i)
        return attr_name
    return get_new_attr_name

def collect_producer_nodes(node: Node) -> Optional[List[Node]]:
    r''' Starting from a target node, trace back until we hit inpu or

    getattr node. This is used to extract the chain of operators

    starting from getattr to the target node, for example

    def forward(self, x):

      observed = self.observer(self.weight)

      return F.linear(x, observed)

    collect_producer_nodes(observed) will either return a list of nodes that

    produces the observed node or None if we can't extract a self contained

    graph without free variables(inputs of the forward function).

    '''
    nodes = [node]
    frontier = [node]
    while frontier:
        node = frontier.pop()
        all_args = list(node.args) + list(node.kwargs.values())
        for arg in all_args:
            if not isinstance(arg, Node):
                continue
            if arg.op == 'placeholder':
                # hit input, can't fold in this case
                return None
            nodes.append(arg)
            if not (arg.op == 'call_function' and arg.target == getattr):
                frontier.append(arg)
    return nodes

def graph_module_from_producer_nodes(

        root: GraphModule, producer_nodes: List[Node]) -> GraphModule:
    r''' Construct a graph module from extracted producer nodes

    from `collect_producer_nodes` function

    Args:

      root: the root module for the original graph

      producer_nodes: a list of nodes we use to construct the graph

    Return:

      A graph module constructed from the producer nodes

    '''
    assert len(producer_nodes) > 0, 'list of producer nodes can not be empty'
    # since we traced back from node to getattr
    producer_nodes.reverse()
    graph = Graph()
    env: Dict[Any, Any] = {}

    def load_arg(a):
        return map_arg(a, lambda node: env[node])
    for producer_node in producer_nodes:
        env[producer_node] = graph.node_copy(producer_node, load_arg)
    graph.output(load_arg(producer_nodes[-1]))
    graph_module = GraphModule(root, graph)
    return graph_module

def assert_and_get_unique_device(module: torch.nn.Module) -> Any:
    """

    Returns the unique device for a module, or None if no device is found.

    Throws an error if multiple devices are detected.

    """
    devices = {p.device for p in module.parameters()} | \
        {p.device for p in module.buffers()}
    """

    As a temp workaround for AIMP HHC publish we added CPU check.remove it later. T163614564

    """
    if {torch.device("cpu"), torch.device("meta")} == devices:
        warnings.warn("Both 'meta' and 'cpu' are present in the list of devices. Module can have one device. We Select 'cpu'.")
        devices = {torch.device("cpu")}
    ""
    assert len(devices) <= 1, (
        "prepare only works with cpu or single-device CUDA modules, "
        f"but got devices {devices}"
    )
    device = next(iter(devices)) if len(devices) > 0 else None
    return device

def create_getattr_from_value(module: torch.nn.Module, graph: Graph, prefix: str, value: Any) -> Node:
    """

    Given a value of any type, creates a getattr node corresponding to the value and

    registers the value as a buffer to the module.

    """
    get_new_attr_name = get_new_attr_name_with_prefix(prefix)
    attr_name = get_new_attr_name(module)
    device = assert_and_get_unique_device(module)
    new_value = value.clone().detach() if isinstance(value, torch.Tensor) \
        else torch.tensor(value, device=device)
    module.register_buffer(attr_name, new_value)
    # Create get_attr with value
    attr_node = graph.create_node("get_attr", attr_name)
    return attr_node

def all_node_args_have_no_tensors(node: Node, modules: Dict[str, torch.nn.Module], cache: Dict[Node, bool]) -> bool:
    """

    If we know for sure that all of this node's args have no

    tensors (are primitives), return True.  If we either

    find a tensor or are not sure, return False. Note: this

    function is not exact.

    """
    if cache and node in cache:
        return cache[node]

    result = False  # will be overwritten
    if not isinstance(node, Node):
        result = True
    elif node.op == 'placeholder':
        result = False
    elif node.op == 'call_module':
        assert isinstance(node.target, str)
        if _is_activation_post_process(modules[node.target]):
            result = all_node_args_have_no_tensors(node.args[0], modules, cache)  # type: ignore[arg-type]
    elif node.op == 'call_module':
        result = False
    elif node.op == 'call_function' and node.target is operator.getitem:
        result = all_node_args_have_no_tensors(node.args[0], modules, cache)  # type: ignore[arg-type]
    elif node.op == 'get_attr':
        result = False
    elif node.target is getattr and node.args[1] in ['ndim', 'shape']:
        # x1 = x0.ndim
        result = True
    elif node.op == 'call_method' and node.target == 'size':
        # x1 = x0.size(0)
        result = True
    else:
        found_one_tensor = False
        for arg in node.args:
            if isinstance(arg, list):
                for list_el in arg:
                    if isinstance(list_el, Node):
                        this_list_el_args_have_no_tensors = \
                            all_node_args_have_no_tensors(list_el, modules, cache)
                        found_one_tensor = found_one_tensor or \
                            (not this_list_el_args_have_no_tensors)
                        # If found_one_tensor is True, there is no point in
                        # recursing further as the end result will always
                        # be True.
                        # TODO(future PR): remove this entire function  and
                        # change to dtype inference without recursion.
                        if found_one_tensor:
                            result = not found_one_tensor
                            if cache:
                                cache[node] = result
                            return result
            elif isinstance(arg, int):
                pass
            else:
                if isinstance(arg, Node):
                    this_arg_args_have_no_tensors = all_node_args_have_no_tensors(arg, modules, cache)
                    found_one_tensor = found_one_tensor or \
                        (not this_arg_args_have_no_tensors)
                    # If found_one_tensor is True, there is no point in
                    # recursing further as the end result will always
                    # be True.
                    # TODO(future PR): remove this entire function  and
                    # change to dtype inference without recursion.
                    if found_one_tensor:
                        result = not found_one_tensor
                        if cache:
                            cache[node] = result
                        return result
                else:
                    found_one_tensor = True
            result = not found_one_tensor
    if cache:
        cache[node] = result
    return result

def all_node_args_except_first(node: Node) -> List[int]:
    """

    Returns all node arg indices after first

    """
    return list(range(1, len(node.args)))

def return_arg_list(arg_indices: List[int]) -> Callable[[Node], List[int]]:
    """

    Constructs a function that takes a node as arg and returns the arg_indices

    that are valid for node.args

    """
    def arg_indices_func(node: Node) -> List[int]:
        return [i for i in arg_indices if i < len(node.args)]
    return arg_indices_func

NodeInfo = namedtuple("NodeInfo", "op target")

# this dict identifies which indices of a node are non tensors
# so that they can be propagated correctly since inserting observers
# for them would cause errors

NON_OBSERVABLE_ARG_DICT: Dict[NodeInfo, Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]] = {
    NodeInfo("call_method", "masked_fill") : {
        torch.bool: return_arg_list([1]),
        float: return_arg_list([2])
    },
    NodeInfo("call_method", "permute") : {
        int: all_node_args_except_first
    },
    NodeInfo("call_method", "repeat") : {
        int: all_node_args_except_first
    },
    NodeInfo("call_method", "reshape") : {
        int: all_node_args_except_first
    },
    NodeInfo("call_method", "size") : {
        int: return_arg_list([1])
    },
    NodeInfo("call_method", "transpose") : {
        int: all_node_args_except_first
    },
    NodeInfo("call_method", torch.transpose) : {
        int: all_node_args_except_first
    },
    NodeInfo("call_method", "unsqueeze") : {
        int: return_arg_list([1])
    },
    NodeInfo("call_method", "unsqueeze_") : {
        int: return_arg_list([1])
    },
    NodeInfo("call_method", torch.unsqueeze) : {
        int: return_arg_list([1])
    },
    NodeInfo("call_method", "view") : {
        int: all_node_args_except_first
    },
}

EMPTY_ARG_DICT: Dict[Union[type, torch.dtype], Callable[[Node], List[int]]] = {}

def get_non_observable_arg_indexes_and_types(node: Node) -> Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]:
    """

    Returns a dict with of non float tensor types as keys and values which correspond to a

    function to retrieve the list (which takes the node as an argument)

    """
    info = NodeInfo(node.op, node.target)

    return NON_OBSERVABLE_ARG_DICT.get(info, EMPTY_ARG_DICT)

def maybe_get_next_module(

    node: Node,

    modules: Dict[str, nn.Module],

    target_module_type: Optional[Type[nn.Module]] = None,

    target_functional_type: Any = None,

) -> Optional[Node]:
    """ Gets the next module that matches what is needed in

    is_target_module_type if it exists



    Args:

        node: The node whose users we want to look at

        target_module_type: Module type that we want to check

        target_functional_type: Functional type that we want to check

    """

    for user in node.users.keys():
        if user.op == 'call_module' and target_module_type is not None and \
           isinstance(modules[str(user.target)], target_module_type):
            return user
        elif (user.op == 'call_function' and target_functional_type is not None and
              user.target == target_functional_type):
            return user

    return None

def create_node_from_old_node_preserve_meta(

    quantized_graph: Graph,

    create_node_args: Tuple[Any, ...],

    old_node: Node,

) -> Node:
    """

    Creates `new_node` and copies the necessary metadata to it from `old_node`.

    """
    new_node = quantized_graph.create_node(*create_node_args)
    new_node.stack_trace = old_node.stack_trace
    return new_node

def get_skipped_module_name_and_classes(

        prepare_custom_config: PrepareCustomConfig,

        is_standalone_module: bool) -> Tuple[List[str], List[Type[Any]]]:
    skipped_module_names = copy.copy(prepare_custom_config.non_traceable_module_names)
    skipped_module_classes = copy.copy(prepare_custom_config.non_traceable_module_classes)
    if not is_standalone_module:
        # standalone module and custom module config are applied in top level module
        skipped_module_names += list(prepare_custom_config.standalone_module_names.keys())
        skipped_module_classes += list(prepare_custom_config.standalone_module_classes.keys())
        skipped_module_classes += get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping)

    return skipped_module_names, skipped_module_classes

def _is_custom_module_lstm(

        node: Node,

        named_modules: Dict[str, torch.nn.Module],

        qconfig: QConfigAny = None,

        # QuantizeHandler, but we cannot include the type here due to circular imports

        qhandler: Optional[Any] = None,

) -> bool:
    """

    Return whether this refers to the custom module LSTM flow.

    """
    mod = _get_module(node, named_modules)
    if qconfig is not None and qhandler is not None:
        assert isinstance(qhandler, torch.ao.quantization.fx.quantize_handler.QuantizeHandler)  # type: ignore[attr-defined]
        return isinstance(mod, torch.nn.LSTM) and \
            activation_is_statically_quantized(qconfig) and \
            qhandler.is_custom_module()
    else:
        return isinstance(mod, torch.ao.nn.quantizable.LSTM)

def _is_custom_module_mha(

        node: Node,

        named_modules: Dict[str, torch.nn.Module],

        qconfig: QConfigAny = None,

        # QuantizeHandler, but we cannot include the type here due to circular imports

        qhandler: Optional[Any] = None,

) -> bool:
    """

    Return whether this refers to the custom module MultiheadAttention flow.

    """
    mod = _get_module(node, named_modules)
    if qconfig is not None and qhandler is not None:
        assert isinstance(qhandler, torch.ao.quantization.fx.quantize_handler.QuantizeHandler)  # type: ignore[attr-defined]
        return isinstance(mod, torch.nn.MultiheadAttention) and \
            activation_is_statically_quantized(qconfig) and \
            qhandler.is_custom_module()
    else:
        return isinstance(mod, torch.ao.nn.quantizable.MultiheadAttention)

def _get_module(node: Node, named_modules: Dict[str, torch.nn.Module]) -> Optional[torch.nn.Module]:
    """

    If `node` refers to a call_module node, return the module, else None.

    """
    if node.op == "call_module" and str(node.target) in named_modules:
        return named_modules[str(node.target)]
    else:
        return None

def _insert_dequant_stub(

    node: Node,

    model: torch.nn.Module,

    named_modules: Dict[str, torch.nn.Module],

    graph: Graph,

) -> Node:
    """

    Attach a `DeQuantStub` to the model and create a node that calls this

    `DeQuantStub` on the output of `node`, similar to how observers are inserted.

    """
    prefix = "dequant_stub_"
    get_new_dequant_stub_name = get_new_attr_name_with_prefix(prefix)
    dequant_stub_name = get_new_dequant_stub_name(model)
    dequant_stub = DeQuantStub()
    setattr(model, dequant_stub_name, dequant_stub)
    named_modules[dequant_stub_name] = dequant_stub
    with graph.inserting_after(node):
        return graph.call_module(dequant_stub_name, (node,))

def _insert_dequant_stubs_for_custom_module_lstm_output(

    node: Node,

    model: torch.nn.Module,

    named_modules: Dict[str, torch.nn.Module],

    graph: Graph,

) -> Node:
    """

    Insert DeQuantStubs after each internal output node of custom module LSTM.



    Custom module LSTM outputs are nested tuples of the structure (output, (hidden0, hidden1)),

    Since we cannot dequantize a tuple as a whole, we must first break down the tuple into its

    components through `getitem`. This function transforms the graph as follows:



      (1) Split the LSTM node into (output, (hidden0, hidden1))

      (2) Insert a DeQuantStub after each internal node

      (3) Recombine the DeQuantStubs into the same structure as before

      (4) Reroute all consumers of the original LSTM node and its sub-nodes

          (e.g. lstm[0])



    Before:

                   lstm_output

                        |

                        v

                  original_user(s)

    After:

                   lstm_output

                  /           \\

                 /  (getitem)  \\

                /               \\

               v                 v

             output            hidden

               |               /   \\

         (DeQuantStub)        (getitem)

               |             /       \\

               v            v         v

           output_dq     hidden0    hidden1

               |            |         |

               |    (DeQuantStub) (DeQuantStub)

               |            |         |

               |            v         v

               |      hidden0_dq  hidden1_dq

               |            \\       /

               |              (tuple)

               |              \\   /

               |               v  v

               |             hidden_dq

               \\               /

                \\   (tuple)   /

                 v            v

                 lstm_output_dq

                       |

                       v

                original_user(s)



    For step (4), reroute all users of the original LSTM node(s) as follows:

      lstm_output -> lstm_output_dq

      lstm_output[0] -> output_dq

      lstm_output[1] -> hidden_dq

      lstm_output[1][0] -> hidden0_dq

      lstm_output[1][1] -> hidden1_dq



    Return the node `lstm_output_dq`.

    """
    # (1) Split the LSTM node into (output, (hidden0, hidden1))
    # (2) Insert a DeQuantStub after each internal node
    with graph.inserting_after(node):
        output = graph.call_function(operator.getitem, (node, 0))
        output_dq = _insert_dequant_stub(output, model, named_modules, graph)
    with graph.inserting_after(output_dq):
        hidden = graph.call_function(operator.getitem, (node, 1))
    with graph.inserting_after(hidden):
        hidden0 = graph.call_function(operator.getitem, (hidden, 0))
        hidden0_dq = _insert_dequant_stub(hidden0, model, named_modules, graph)
    with graph.inserting_after(hidden0_dq):
        hidden1 = graph.call_function(operator.getitem, (hidden, 1))
        hidden1_dq = _insert_dequant_stub(hidden1, model, named_modules, graph)

    # (3) Recombine the DeQuantStubs into the same structure as before
    with graph.inserting_after(hidden1_dq):
        hidden_dq = graph.call_function(tuple, ([hidden0_dq, hidden1_dq],))
    with graph.inserting_after(hidden_dq):
        lstm_output_dq = graph.call_function(tuple, ([output_dq, hidden_dq],))

    # (4) Reroute all consumers of the original LSTM node and its sub-nodes
    for user in list(node.users.keys()):
        if user != output and user != hidden:
            user.replace_input_with(node, lstm_output_dq)
    # The getitem and tuple nodes we added here may interfere with reference quantized
    # pattern matching, so we need to redirect the consumers of internal nodes to the
    # corresponding nodes with DeQuantStubs (e.g. lstm_output_dq[0] -> output_dq) attached,
    # in order to preserve reference patterns like "dequantize - consumer - quantize".
    _reroute_tuple_getitem_pattern(graph)
    return lstm_output_dq

def _maybe_get_custom_module_lstm_from_node_arg(

    arg: Node,

    named_modules: Dict[str, torch.nn.Module],

) -> Optional[Node]:
    """

    Given an argument of a node, if the argument refers to the path through which the node

    is a consumer of custom module LSTM, return the custom module LSTM node, or None otherwise.



    This is used to determine whether a node is a consumer of custom module LSTM, and, if so,

    skip inserting input observers for this node. This is because custom module LSTM produces

    quantized outputs, so inserting an input observer for the consumer of custom module LSTM

    would unnecessarily quantize the outputs again.



      lstm -> consumer



    In practice, however, custom module LSTM outputs a tuple (output, (hidden0, hidden1)) with

    DeQuantStubs attached to each internal node (see `_insert_dequant_stubs_for_custom_module_lstm_output`).

    This tuple can be consumed in one of four ways:



      lstm -> getitem -> DeQuantStub -> consumer                       # consume lstm[0]

      lstm -> getitem -> getitem -> DeQuantStub -> tuple -> consumer   # consume lstm[1]

      lstm -> getitem -> getitem -> DeQuantStub -> consumer            # consume lstm[1][0] or lstm[1][1]

      lstm -> getitem -> DeQuantStub -> tuple -> consumer              # consume lstm



    Thus, we must match against the above patterns instead of simply checking the parent node

    to determine whether this node is a consumer of a custom module LSTM.

    """
    def match_dq(a):
        return isinstance(_get_module(a, named_modules), DeQuantStub)

    def match_lstm(a):
        return _is_custom_module_lstm(a, named_modules)

    def match_getitem(a):
        return a.op == "call_function" and a.target == operator.getitem

    def match_tuple(a):
        return a.op == "call_function" and a.target == tuple

    def _match_pattern(match_pattern: List[Callable]) -> Optional[Node]:
        """

        Traverse up the graph and match the args one by one.

        If there is a match, return the last matched node, or None otherwise.

        """
        a = arg
        for i, match in enumerate(match_pattern):
            if not match(a):
                return None
            # Match next arg, for tuple the arg is a tuple of a list, e.g. ([dq_1, other_node],)
            if i < len(match_pattern) - 1:
                if match == match_tuple:
                    a = a.args[0][0]  # type: ignore[assignment,index]
                else:
                    a = a.args[0]  # type: ignore[assignment]
        return a

    all_match_patterns = [
        [match_dq, match_getitem, match_lstm],
        [match_tuple, match_dq, match_getitem, match_getitem, match_lstm],
        [match_dq, match_getitem, match_getitem, match_lstm],
        [match_tuple, match_dq, match_getitem, match_lstm],
    ]

    for p in all_match_patterns:
        matched_node = _match_pattern(p)
        if matched_node is not None:
            return matched_node
    return None

def _reroute_tuple_getitem_pattern(graph: Graph):
    """

    Search for patterns where N consecutive `tuple` call_function nodes are followed by

    N consecutive `getitem` call_function nodes that are "reverses" of the `tuple` nodes.

    If we find this pattern, reroute the consumers of the last `getitem` to skip these

    N `tuple` and `getitem` nodes.



    Before:



        a   b     c

        |   \\   /

        \\   tuple

         \\   /

          tuple

            |

        getitem(1)

            |

        getitem(0)

            |

            d



    After:



        b

        |

        d

    """
    def find_patterns(

            node: Node,

            index_stack: List[int],

            current_pattern: List[Node],

            matched_patterns: List[List[Node]],

            seen: Set[Tuple[Node, Tuple[int, ...]]]):
        """

        Traverse the graph recursively to match for the N-tuple - N-getitem patterns,

        starting at the given node.



        We use a stack to keep track of the expected `getitem` indices, since these are

        reversed from the `tuple` indices. In the above example, the stack after

        (b -> tuple -> tuple) will be [0, 1], which will be popped by getitem(1) first

        and then by getitem(0).



        TODO: traverse upwards from the output and handle the case when tuple is not a

        separate node, e.g. graph.call_function(operator.getitem, args=(a, (b, c)))

        """
        if len(index_stack) == 0 and len(current_pattern) > 0:
            matched_patterns.append(copy.copy(current_pattern))
            current_pattern.clear()

        # Avoid duplicating work
        state = (node, tuple(index_stack))
        if state in seen:
            return
        seen.add(state)

        # Iterate through users of this node to find tuple/getitem nodes to match
        for user in node.users:
            if user.op == "call_function" and user.target == tuple:
                for i, user_arg in enumerate(user.args[0]):  # type: ignore[arg-type]
                    if user_arg == node:
                        index_stack.append(i)
                        current_pattern.append(user)
                        find_patterns(user, index_stack, current_pattern, matched_patterns, seen)
            elif user.op == "call_function" and user.target == operator.getitem:
                if len(index_stack) > 0:
                    if user.args[1] == index_stack[-1]:
                        index_stack.pop()
                        current_pattern.append(user)
                        find_patterns(user, index_stack, current_pattern, matched_patterns, seen)
        return matched_patterns

    # Collect all matched patterns
    matched_patterns: List[List[Node]] = []
    seen: Set[Tuple[Node, Tuple[int, ...]]] = set()  # (node, index_stack)
    for node in graph.nodes:
        find_patterns(node, [], [], matched_patterns, seen)

    # For each pattern, redirect all consumers of the last getitem node to the correct input
    # of the first tuple node
    for pattern in matched_patterns:
        first_tuple = pattern[0]
        last_getitem = pattern[-1]
        assert first_tuple.op == "call_function" and first_tuple.target == tuple
        assert last_getitem.op == "call_function" and last_getitem.target == operator.getitem
        last_getitem_index = last_getitem.args[1]
        new_input = first_tuple.args[0][last_getitem_index]  # type: ignore[index]
        for user in list(last_getitem.users.keys()):
            user.replace_input_with(last_getitem, new_input)

def _get_observer_from_activation_post_process(

    activation_post_process: Union[ObserverBase, FakeQuantizeBase],

) -> ObserverBase:
    """

    If `activation_post_process` is an observer, return the observer.

    If `activation_post_process` is a fake quantize, return the internal observer.

    """
    if isinstance(activation_post_process, ObserverBase):
        return activation_post_process
    else:
        assert isinstance(activation_post_process, FakeQuantizeBase)
        return activation_post_process.activation_post_process  # type: ignore[return-value]

def _qconfig_satisfies_dtype_config_constraints(

        qconfig: QConfigAny,

        dtype_with_constraints: DTypeWithConstraints,

        is_activation: bool = True) -> bool:
    """

    Return whether `qconfig` satisfies the following constraints from the backend,

    specified through the activation and weight DTypeWithConstraints.



        1. QConfig specified a quantization range that falls within the backend's, if any

        2. QConfig specified a min scale value that is >= the backend's, if any

        3. QConfig specified a FixedQParamsObserver or FixedQParamsFakeQuantize that has

           scale and zero point that match the backend's, if any



    If `is_activation` is True, we check `qconfig.activation`, else we check `qconfig.weight`.

    If `qconfig` or `dtype_with_constraints.dtype` is None, or the dtypes do not match, return True.

    """
    # TODO: log warnings only when the user enabled a debug flag
    def _activation_post_process_satisfies_dtype_config_constraints(

            activation_post_process: Union[ObserverBase, FakeQuantizeBase],

            dtype_with_constraints: DTypeWithConstraints,

            debug_string: str) -> bool:
        observer = _get_observer_from_activation_post_process(activation_post_process)
        app_quant_min = getattr(observer, "quant_min", None)
        app_quant_max = getattr(observer, "quant_max", None)
        # TODO: for now, just use the existing eps value as scale_min. In the future, we should
        # resolve the differences between the two, either by renaming eps or some other way
        app_scale_min = getattr(observer, "eps", None)
        backend_quant_min = dtype_with_constraints.quant_min_lower_bound
        backend_quant_max = dtype_with_constraints.quant_max_upper_bound
        backend_scale_min = dtype_with_constraints.scale_min_lower_bound
        backend_scale_exact_match = dtype_with_constraints.scale_exact_match
        backend_zero_point_exact_match = dtype_with_constraints.zero_point_exact_match
        # check quantization ranges
        if backend_quant_min is not None and backend_quant_max is not None:
            if app_quant_min is None or app_quant_max is None:
                warnings.warn(f"QConfig {debug_string} must specify 'quant_min' and 'quant_max', ignoring {qconfig}")
                return False
            elif app_quant_min < backend_quant_min or app_quant_max > backend_quant_max:
                warnings.warn(
                    f"QConfig {debug_string} quantization range must fall within the backend's:\n"
                    f"QConfig range = ({app_quant_min}, {app_quant_max}), "
                    f"BackendConfig range = ({backend_quant_min}, {backend_quant_max}), "
                    f"ignoring {qconfig}"
                )
                return False
        # check scale min
        if backend_scale_min is not None:
            if app_scale_min is None:
                warnings.warn(f"QConfig {debug_string} must specify 'eps', ignoring {qconfig}")
                return False
            if app_scale_min < backend_scale_min:
                warnings.warn(
                    f"QConfig {debug_string} eps ({app_scale_min}) must be greater than or equal to "
                    f"the backend's min scale value ({backend_scale_min}), ignoring {qconfig}"
                )
                return False
        # check fixed scale and zero point
        if backend_scale_exact_match is not None and backend_zero_point_exact_match is not None:
            # For tests only, accept the following qconfigs for now
            # TODO: handle fp16 qconfigs properly
            for accepted_qconfig in [float16_static_qconfig, float16_dynamic_qconfig]:
                if qconfig_equals(qconfig, accepted_qconfig):
                    return True
            suggestion_str = (
                "Please use torch.ao.quantization.get_default_qconfig_mapping or "
                "torch.ao.quantization.get_default_qat_qconfig_mapping. Example:\n"
                "    qconfig_mapping = get_default_qconfig_mapping(\"fbgemm\")\n"
                "    model = prepare_fx(model, qconfig_mapping, example_inputs)"
            )
            if not isinstance(activation_post_process, FixedQParamsObserver) and \
                    not isinstance(activation_post_process, FixedQParamsFakeQuantize):
                warnings.warn(
                    f"QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize "
                    f"for fixed qparams ops, ignoring {qconfig}.\n{suggestion_str}"
                )
                return False
            if observer.scale != backend_scale_exact_match or observer.zero_point != backend_zero_point_exact_match:
                warnings.warn(
                    f"QConfig fixed scale ({observer.scale}) and zero point ({observer.zero_point}) "
                    f"do not match the backend's ({backend_scale_exact_match} and {backend_zero_point_exact_match}), "
                    f"ignoring {qconfig}.\n{suggestion_str}"
                )
                return False
        return True

    if qconfig is None or dtype_with_constraints.dtype is None:
        return True

    activation_post_process_ctr = qconfig.activation if is_activation else qconfig.weight
    debug_string = "activation" if is_activation else "weight"
    satisfies_constraints = True
    if activation_post_process_ctr is not None:
        activation_post_process = activation_post_process_ctr()
        assert _is_activation_post_process(activation_post_process)
        # If dtypes don't match, don't check the activation_post_process and return True early
        if activation_post_process.dtype != dtype_with_constraints.dtype:
            return True
        satisfies_constraints = _activation_post_process_satisfies_dtype_config_constraints(
            activation_post_process, dtype_with_constraints, debug_string)
    return satisfies_constraints