Spaces:
Running
Running
File size: 84,930 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 |
import copy
import torch
import warnings
from torch.fx import (
GraphModule,
)
from torch.fx.graph import (
Graph,
Node,
)
from torch.fx.node import Argument
from ..quantize import (
propagate_qconfig_,
)
from ..observer import (
_is_activation_post_process,
_PartialWrapper,
)
from ..qconfig import (
_is_reuse_input_qconfig,
QConfigAny,
)
from ..qconfig_mapping import (
QConfigMapping,
)
from .qconfig_mapping_utils import (
_generate_node_name_to_qconfig,
_update_qconfig_for_fusion,
_get_flattened_qconfig_dict,
_update_qconfig_for_qat,
)
from .quantize_handler import (
_default_root_node_getter,
_get_pattern_to_quantize_handlers,
QuantizeHandler,
)
from torch.ao.quantization import (
ObserverBase,
FixedQParamsObserver,
FixedQParamsFakeQuantize,
_DerivedObserverOrFakeQuantize,
)
from torch.ao.quantization.utils import (
Pattern,
NodePattern,
)
from ._equalize import (
is_equalization_observer,
node_supports_equalization,
)
from .pattern_utils import (
_sorted_patterns_dict,
)
from .match_utils import (
_MatchResultWithQConfig,
_find_matches,
)
from .utils import (
_insert_dequant_stubs_for_custom_module_lstm_output,
_is_custom_module_lstm,
_maybe_get_custom_module_lstm_from_node_arg,
_qconfig_satisfies_dtype_config_constraints,
get_custom_module_class_keys,
all_node_args_have_no_tensors,
assert_and_get_unique_device,
get_non_observable_arg_indexes_and_types,
get_new_attr_name_with_prefix,
node_arg_is_weight,
node_arg_is_bias,
NON_QUANTIZABLE_WEIGHT_OPS,
ObservedGraphModuleAttrs,
)
from torch.ao.quantization import (
PlaceholderObserver
)
from torch.ao.quantization.quantize import (
convert
)
from ..utils import (
_parent_name,
get_qconfig_dtypes,
get_swapped_custom_module_class,
)
from ..backend_config.utils import (
get_pattern_to_dtype_configs,
get_module_to_qat_module,
get_fusion_pattern_to_root_node_getter,
)
from ..backend_config import (
BackendConfig,
DTypeConfig,
get_native_backend_config,
)
from .custom_config import (
PrepareCustomConfig,
StandaloneModuleConfigEntry,
)
from torch.ao.quantization.quantizer import (
EdgeOrNode,
QuantizationSpec,
QuantizationSpecBase,
FixedQParamsQuantizationSpec,
SharedQuantizationSpec,
DerivedQuantizationSpec,
)
from torch.ao.quantization import ObserverOrFakeQuantize
from torch._subclasses import FakeTensor
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
from dataclasses import asdict
__all__ = [
"insert_observers_for_model",
"prepare",
"propagate_dtypes_for_known_nodes",
]
# list of dtypes to not add observers to
_DO_NOT_OBS_DTYPE_LIST = [int, float, torch.bool, None]
_OBS_DTYPE_LIST = [
torch.quint8,
torch.qint8,
torch.qint32,
torch.float16,
torch.uint8,
torch.int8,
torch.int16,
torch.int32
]
_DEFAULT_FP32_OBS_OR_FQ_CTR = PlaceholderObserver.with_args(dtype=torch.float)
# note: the following default target dtype info dicts are temporary,
# should be moved to the new programmable API class soon
_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO = {
"input_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig.activation,
"output_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig.activation
}
_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO = {
"input_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_quint8_placeholder_qconfig.activation,
"output_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_quint8_placeholder_qconfig.activation
}
def _get_observer_kwargs(quant_spec: Union[QuantizationSpec, FixedQParamsQuantizationSpec]):
kwargs_dict = asdict(quant_spec)
return copy.deepcopy(kwargs_dict)
def _get_qspec_for_arg(
arg: Node,
input_qspec_map: Dict[Node, QuantizationSpecBase],
named_modules: Dict[str, torch.nn.Module]
) -> Optional[QuantizationSpecBase]:
while _is_activation_post_process_node(arg, named_modules):
arg = arg.args[0] # type: ignore[assignment]
return input_qspec_map.get(arg, None)
def _create_obs_or_fq_from_qspec(
quantization_spec: Optional[QuantizationSpecBase],
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
):
""" Create observer or fake quantize objects based on quantization spec
Args:
quantization_spec: used to store parameters to create the observer or fake quantizer
obs_or_fq_map: this is a map from edge/output to the corresponding observer/fake_quant
instance, it may be reused for different edge/output depending on configuration
"""
if quantization_spec is None:
return None
if isinstance(quantization_spec, SharedQuantizationSpec):
edge_or_node = quantization_spec.edge_or_node
assert edge_or_node in obs_or_fq_map, \
"please make sure only refer to edge or node that has " \
f"observer/fake_quant inserted: '{edge_or_node}' not in\n{obs_or_fq_map.keys()}"
return obs_or_fq_map[edge_or_node]
elif isinstance(quantization_spec, DerivedQuantizationSpec):
# can't use asdict, so not calling get_observer_kwargs here
kwargs = {
"dtype": quantization_spec.dtype,
"derive_qparams_fn": quantization_spec.derive_qparams_fn,
"quant_min": quantization_spec.quant_min,
"quant_max": quantization_spec.quant_max,
"qscheme": quantization_spec.qscheme,
"ch_axis": quantization_spec.ch_axis,
}
edge_or_nodes = quantization_spec.derived_from
obs_or_fqs = [obs_or_fq_map[k] for k in edge_or_nodes]
kwargs["obs_or_fqs"] = obs_or_fqs
return _DerivedObserverOrFakeQuantize.with_args(**kwargs)()
elif isinstance(quantization_spec, FixedQParamsQuantizationSpec):
kwargs = _get_observer_kwargs(quantization_spec)
observer_ctr = FixedQParamsObserver.with_args(**kwargs)
if is_qat:
return FixedQParamsFakeQuantize.with_args(observer=observer_ctr)
else:
return observer_ctr()
assert isinstance(quantization_spec, QuantizationSpec)
observer_or_fake_quant_ctr = quantization_spec.observer_or_fake_quant_ctr
kwargs = _get_observer_kwargs(quantization_spec)
kwargs.pop("observer_or_fake_quant_ctr")
# we will remove is_dynamic from QuantizationSpec because
# it seems that dynamic range quantization
obs_or_fq_class = observer_or_fake_quant_ctr
if isinstance(observer_or_fake_quant_ctr, _PartialWrapper):
obs_or_fq_class = observer_or_fake_quant_ctr.p.func # type: ignore[union-attr, assignment]
if "PerChannel" not in obs_or_fq_class.__name__: # type: ignore[operator, union-attr]
kwargs.pop("ch_axis")
return observer_or_fake_quant_ctr.with_args(**kwargs)()
def _needs_obs_or_fq(
prev_output_dtype: Any,
prev_output_is_dynamic: bool,
cur_target_dtype: Any,
cur_target_is_dynamic: bool,
reuse_input_obs_or_fq: bool,
is_zeroth_arg: bool = False) -> bool:
"""
note: we will treat "not specified" as torch.float for now
utility function that checks if we should insert an observer or fake quant node
base on the requested dtype for the nodes from user
is_zeroth_arg: we only dynamically quantize the first arg of the node right now
this should be removed when we enable configuring dynamic quantization
for a specific argument, this can be removed if we deprecate fx graph mode
quantization
"""
# need to insert placeholder observer for dynamic quantization so that it can
# be converted to choose_qparams -> q -> dq in convert step
if cur_target_is_dynamic:
assert cur_target_dtype in _OBS_DTYPE_LIST, \
f"Expected cur_target_dtype to be torch.float, but got: {cur_target_dtype}"
assert prev_output_dtype not in _DO_NOT_OBS_DTYPE_LIST
return is_zeroth_arg
if reuse_input_obs_or_fq:
return False
# non dynamic quantization
if cur_target_dtype in _OBS_DTYPE_LIST:
return prev_output_dtype in _OBS_DTYPE_LIST + [torch.float] and cur_target_dtype != prev_output_dtype
# lots of error checking are skipped here for now
return False
def _is_activation_post_process_node(node: Node, named_modules: Dict[str, torch.nn.Module]) -> bool:
return isinstance(node, torch.fx.Node) and node.op == "call_module" and \
_is_activation_post_process(named_modules[str(node.target)])
def _get_dtype_and_is_dynamic(obs_or_fq: Optional[ObserverOrFakeQuantize]) -> Tuple[Optional[torch.dtype], bool]:
""" Given a constructor for observer or fake quant module, returns
a Tuple of dtype and is_dynamic
"""
# TODO: instead of instantiating the instance, we can use inspect to get the default args
if obs_or_fq is None:
return None, False
else:
return obs_or_fq.dtype, getattr(obs_or_fq, "is_dynamic", False) # type: ignore[return-value]
def _is_input_arg_dtype_supported_by_backend(
arg: Argument,
node: Node,
qconfig: QConfigAny,
dtype_config: DTypeConfig,
backend_config: BackendConfig,
) -> bool:
""" Check if the configured qconfig for the argument
is supported by the backend or not
"""
if isinstance(arg, (list, tuple)):
return all(_is_input_arg_dtype_supported_by_backend(
a, node, qconfig,
dtype_config, backend_config) for a in arg)
if not isinstance(arg, Node):
return True
# TODO: support check for standalone module
is_weight = node_arg_is_weight(node, arg)
is_bias = node_arg_is_bias(node, arg)
is_activation = not is_weight and not is_bias
if is_activation:
input_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr")
input_act_obs_or_fq = input_act_obs_or_fq_ctr() if input_act_obs_or_fq_ctr else None
qconfig_dtype, qconfig_is_dynamic = _get_dtype_and_is_dynamic(input_act_obs_or_fq)
# TODO(future PR): remove the cast to bool below after figuring
# out why backend_config has is_dynamic set to None in some cases.
return (dtype_config.input_dtype is None) or (
dtype_config.input_dtype == qconfig_dtype and
bool(dtype_config.is_dynamic) == bool(qconfig_is_dynamic) and
_qconfig_satisfies_dtype_config_constraints(qconfig, dtype_config.input_dtype_with_constraints)
)
elif is_weight:
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
weight_obs_or_fq_ctr = node.meta["target_dtype_info"].get("weight_obs_or_fq_ctr", None)
weight_obs_or_fq = weight_obs_or_fq_ctr() if weight_obs_or_fq_ctr else None
qconfig_weight_dtype, _ = _get_dtype_and_is_dynamic(weight_obs_or_fq)
backend_config_weight_dtype = dtype_config.weight_dtype
dtype_matches = qconfig_weight_dtype == backend_config_weight_dtype
qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
qconfig, dtype_config.weight_dtype_with_constraints, is_activation=False)
return backend_config_weight_dtype is None or (dtype_matches and qconfig_satisfies_constraints)
else: # bias
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
bias_obs_or_fq_ctr = node.meta["target_dtype_info"].get("bias_obs_or_fq_ctr", None)
bias_obs_or_fq = bias_obs_or_fq_ctr() if bias_obs_or_fq_ctr else None
qconfig_bias_dtype, _ = _get_dtype_and_is_dynamic(bias_obs_or_fq)
backend_config_bias_dtype = dtype_config.bias_dtype
return backend_config_bias_dtype is None or qconfig_bias_dtype == backend_config_bias_dtype
def _is_output_dtype_supported_by_backend(
node: Node,
qconfig: QConfigAny,
dtype_config: DTypeConfig,
) -> bool:
""" Check if the configured qconfig for the output
is supported by the backend or not
"""
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
backend_config_output_dtype = dtype_config.output_dtype
# TODO: we should check is_dynamic here as well, the code from _is_input_arg_dtype_supported_by_backend
# from input activation check can be reused here
qconfig_output_dtype = None
output_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
qconfig_output_dtype, qconfig_output_is_dynamic = _get_dtype_and_is_dynamic(output_act_obs_or_fq)
# TODO: this is a hack because we can only specify one activation_obs_or_fq for
# qconfig (qconfig.activation), and we are only supporting dynamically quantized
# linear op which has fp32 output dtype, this should be removed if we generalize
# the structure of qconfig in the future
if qconfig_output_is_dynamic:
qconfig_output_dtype = torch.float32
dtype_matches = qconfig_output_dtype == backend_config_output_dtype
qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
qconfig, dtype_config.output_dtype_with_constraints)
return backend_config_output_dtype is None or (dtype_matches and qconfig_satisfies_constraints)
def _is_observer_in_same_graph(
node: Node,
named_modules: Dict[str, torch.nn.Module],
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat,
):
""" Check if observer in same graph
when the node output is not fp32 and input is 'placeholder'
the input is assumed to be quantized, so it is observed
in a different place rather than not observed.
"""
node_output_dtype = _get_arg_target_dtype_as_output(node, named_modules, obs_or_fq_map, is_qat)
if len(node.args) > 0 and isinstance(node.args[0], Node):
if node_output_dtype in [torch.quint8, torch.uint8] and node.args[0].op == 'placeholder':
return False
return True
def _is_pattern_dtype_config_and_qconfig_supported_by_backend(
pattern: Optional[Pattern],
matched_node_pattern: Optional[List[Node]],
qconfig: QConfigAny,
backend_config: BackendConfig,
) -> bool:
""" Check if the dtype configuration of a pattern is supported by
the backend or not, and whether the qconfig satisfies constraints
specified in the corresponding dtype config.
"""
if backend_config is None or pattern is None:
return True
assert matched_node_pattern is not None and len(matched_node_pattern) >= 1
pattern_to_dtype_configs = get_pattern_to_dtype_configs(backend_config)
dtype_configs: List[DTypeConfig] = pattern_to_dtype_configs.get(pattern, [])
pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
root_node_getter = pattern_to_root_node_getter.get(pattern, _default_root_node_getter)
root_node = root_node_getter(matched_node_pattern)
input_node = root_node
output_node = matched_node_pattern[0]
for dtype_config in dtype_configs:
# check if arg dtype are supported
supported = True
for arg in list(input_node.args) + list(input_node.kwargs.values()):
supported = supported and _is_input_arg_dtype_supported_by_backend(
arg, input_node, qconfig, dtype_config, backend_config)
# check if output dtype is supported
supported = supported and _is_output_dtype_supported_by_backend(
output_node, qconfig, dtype_config)
if supported:
return True
return False
def _get_standalone_module_configs(
node: Node,
named_modules: Dict[str, torch.nn.Module],
prepare_custom_config: PrepareCustomConfig,
parent_qconfig: QConfigAny,
parent_backend_config: Optional[BackendConfig],
) -> Tuple[QConfigMapping, Tuple[Any, ...], PrepareCustomConfig, Optional[BackendConfig]]:
"""
Returns the standalone module QConfigMapping and PrepareCustomConfig
for `node`, assuming that the module pointed to by `node` is
a standalone modules.
"""
module_name = str(node.target)
module_type = type(named_modules[module_name]) # type: ignore[index]
# name config has precedence over type config
config_entry = StandaloneModuleConfigEntry(None, (), None, None)
config_entry = prepare_custom_config.standalone_module_classes.get(module_type, config_entry)
config_entry = prepare_custom_config.standalone_module_names.get(module_name, config_entry)
# fallback to use parent module's qconfig if user didn't specify qconfig dict
qconfig_mapping = config_entry.qconfig_mapping or QConfigMapping().set_global(parent_qconfig)
example_inputs = config_entry.example_inputs
prepare_custom_config = config_entry.prepare_custom_config or PrepareCustomConfig()
backend_config = config_entry.backend_config or parent_backend_config
return (qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
def _qat_swap_modules(
root: torch.nn.Module,
module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]]) -> None:
convert(root, mapping=module_to_qat_module, inplace=True, remove_qconfig=False)
def _add_matched_node_name_to_set(matched_node_pattern: NodePattern, s: Set[str]):
if isinstance(matched_node_pattern, Node):
s.add(matched_node_pattern.name)
elif isinstance(matched_node_pattern, (list, tuple)):
for maybe_node in matched_node_pattern:
_add_matched_node_name_to_set(maybe_node, s)
def _insert_obs_or_fq(
node: Node,
obs_or_fq: ObserverOrFakeQuantize,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
) -> Node:
"""
Attaches `obs_or_fq` to `model`, and creates a node which calls
`obs_or_fq` on the output of `node`.
obs_or_fq: an instance of Observer or FakeQuantize module
"""
model_device = assert_and_get_unique_device(model)
if model_device:
obs_or_fq.to(model_device)
# add obs_or_fq module as attribute
if is_equalization_observer(obs_or_fq):
prefix = node.name + '_equalization_process_'
else:
prefix = 'activation_post_process_'
get_new_obs_or_fq_name = get_new_attr_name_with_prefix(prefix)
obs_or_fq_name = get_new_obs_or_fq_name(model)
setattr(model, obs_or_fq_name, obs_or_fq)
named_modules[obs_or_fq_name] = obs_or_fq
with graph.inserting_after(node):
new_obs = graph.create_node(
'call_module', obs_or_fq_name, (node,), {})
return new_obs
def _set_target_dtype_info_for_matched_node_pattern(
matched_node_pattern: NodePattern,
last_node: Node,
qconfig: QConfigAny,
qhandler: Optional[QuantizeHandler],
backend_config: BackendConfig,
named_modules: Dict[str, torch.nn.Module],
cache_for_no_tensor_check: Dict[Node, bool],
processed_nodes: Set[Node],
) -> None:
""" Sets the target_dtype_info for each node in matched_node_pattern
Note: processed_nodes is used to ensure we only process each node once
"""
if isinstance(matched_node_pattern, (list, tuple)):
for node_pattern in matched_node_pattern:
_set_target_dtype_info_for_matched_node_pattern(
node_pattern,
last_node,
qconfig,
qhandler,
backend_config,
named_modules,
cache_for_no_tensor_check,
processed_nodes
)
# set target_dtype_info if matched_node_pattern is a Node
# other types of matched object, e.g. int, float literals, are ignored
elif isinstance(matched_node_pattern, Node):
# for pyre
assert isinstance(matched_node_pattern, Node)
node = matched_node_pattern
if node in processed_nodes:
return
processed_nodes.add(node)
if qconfig is None:
return
# TODO: refactor the following code in terms of apply a qconfig to a pattern
# e.g. for a pattern with op1 -> op2 -> op3, and qconfig = QConfig(input_act=obs0, output_act=obs1)
# we set the input_obs_or_fq_ctr for the arguments of op1 to based on qconfig.input_act,
# and set output_obs_or_fq_ctr based on qconfig.output_act
# this also requires we extend the structure of QConfig to support more fine
# grained configurations
target_dtype_info: Dict[str, Any] = (
_get_target_activation_dtype_for_node(
node,
qconfig,
qhandler,
named_modules,
backend_config,
cache_for_no_tensor_check,
)
)
node.meta["target_dtype_info"] = target_dtype_info
def _get_target_activation_dtype_for_node(
node: Node,
qconfig: QConfigAny,
qhandler: Optional[QuantizeHandler],
named_modules: Dict[str, torch.nn.Module],
backend_config: BackendConfig,
cache_for_no_tensor_check: Dict[Node, bool],
) -> Dict[str, Any]:
"""
For each op attribute in the op's input activation, output activation,
weight, bias - returns the settings of dtype and is_dynamic we expect
for the `quantize` call in the reference model representation, or None
if there is no `quantize` call needed.
For example, if we have a node corresponding to `op0` in
x0 -> op0 -> x1
And we want a reference quantized representation to be
x0 -> quant_static -> dequant -> op0 -> quant_dynamic -> dequant -> x1
Then this function will return
{
"input_act_obs_or_fq_ctr": MinMaxObserver.with_args(dtype=torch.quint8, is_dynamic=False),
"output_act_obs_or_fq_ctr": MinMaxObserver.with_args(dtype=torch.quint8, is_dynamic=False),
}
TODO(future PR, if needed): explicitly spell out the non-Tensor
dtypes.
"""
args_have_no_tensors = \
all_node_args_have_no_tensors(
node, named_modules, cache_for_no_tensor_check)
if args_have_no_tensors:
return {
"input_act_obs_or_fq_ctr": None,
"output_act_obs_or_fq_ctr": None,
}
# get qconfig to determine the eventual dtype of this node
if qconfig is not None:
act_dtype, weight_dtype, input_act_is_dynamic = \
get_qconfig_dtypes(qconfig)
# Currently `QConfig` only has one `activation` field.
# For static quantization, it is reused for both input
# and output activation. For dynamic quantization, this
# field is currently only used for the input activation,
# with the output activation being in fp32.
# In the future this may change as we add more fields
# to the `QConfig` object.
output_act_dtype = act_dtype \
if (not input_act_is_dynamic) else torch.float
bias_dtype = torch.float16 \
if (
act_dtype == torch.float16
and weight_dtype == torch.float16
and (not input_act_is_dynamic)
) else torch.float
is_general_tensor_value_op = \
(qhandler is not None and qhandler.is_general_tensor_value_op())
_is_standalone_module = (
qhandler is not None and qhandler.is_standalone_module()
)
weight_index = None
if isinstance(node, Node) and node.op == "call_function" and \
node.target in backend_config._pattern_complex_format_to_config:
weight_index = backend_config._pattern_complex_format_to_config[node.target]._input_type_to_index.get("weight")
bias_index = None
if isinstance(node, Node) and node.op == "call_function" and \
node.target in backend_config._pattern_complex_format_to_config:
bias_index = backend_config._pattern_complex_format_to_config[node.target]._input_type_to_index.get("bias")
return {
"input_act_obs_or_fq_ctr": qconfig.activation,
"weight_obs_or_fq_ctr": qconfig.weight,
"bias_obs_or_fq_ctr": PlaceholderObserver.with_args(dtype=bias_dtype),
"weight_index": weight_index,
"bias_index": bias_index,
"output_act_obs_or_fq_ctr": qconfig.activation,
"reuse_input_obs_or_fq": _is_reuse_input_qconfig(qconfig),
"input_output_share_observers": is_general_tensor_value_op,
"_is_standalone_module": _is_standalone_module,
}
return copy.copy(_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO)
def _get_output_act_obs_or_fq(
arg: Node,
named_modules: Dict[str, torch.nn.Module],
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
) -> ObserverOrFakeQuantize:
""" Get the constructor for observer or fake quant object for
the argument in the original graph as the output of previous node,
skipping inserted observers
We are assuming that the observers are inserted correctly, and the dtype for
argument in quantized graph will match what is specified by the qconfig
"""
assert isinstance(arg, Node)
if "quantization_annotation" in arg.meta:
return _create_obs_or_fq_from_qspec(arg.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat)
# Custom module LSTM output is a tuple that we broke down into the internal nodes in order
# to insert DeQuantStubs (see `_insert_dequant_stubs_for_custom_module_lstm_output`).
# Since we modified the graph in this case, we must trace back from the args through
# the specific nodes we added in order to reach the original LSTM node. Otherwise, we would
# not be able to accurately detect whether this node is a consumer of custom module LSTM.
custom_module_lstm_node = _maybe_get_custom_module_lstm_from_node_arg(arg, named_modules)
output_act_obs_or_fq_ctr = None
if custom_module_lstm_node is not None:
output_act_obs_or_fq_ctr = custom_module_lstm_node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
elif _is_activation_post_process_node(arg, named_modules):
observed_arg = arg.args[0]
assert isinstance(observed_arg, Node), "Currently we only support observing Node"
if "quantization_annotation" in observed_arg.meta:
output_act_obs_or_fq = \
_create_obs_or_fq_from_qspec(
observed_arg.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat)
else:
assert "target_dtype_info" in observed_arg.meta
output_act_obs_or_fq_ctr = observed_arg.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
else:
if "target_dtype_info" in arg.meta:
output_act_obs_or_fq_ctr = \
arg.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
else:
output_act_obs_or_fq_ctr = _DEFAULT_FP32_OBS_OR_FQ_CTR
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
return output_act_obs_or_fq
def _get_arg_target_dtype_as_output(
arg: Node,
named_modules: Dict[str, torch.nn.Module],
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
) -> Optional[torch.dtype]:
arg_as_output_act_obs_or_fq = _get_output_act_obs_or_fq(arg, named_modules, obs_or_fq_map, is_qat)
arg_as_output_target_dtype, _ = _get_dtype_and_is_dynamic(arg_as_output_act_obs_or_fq)
return arg_as_output_target_dtype
def _get_arg_as_input_act_obs_or_fq(
arg: Node,
node: Node,
named_modules: Dict[str, torch.nn.Module],
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
) -> Optional[ObserverOrFakeQuantize]:
""" Get the observer or fake quant constructor for the Argument `arg`, as input
to Node `node`
"""
assert isinstance(arg, Node)
# "input_qspec_map" is the more general design we'll use for pt2e path
# it is a map from input argument node to observer or fake quant constructor, for example
# for the following graph:
# x -> conv -> output
#
# we may annotate conv node like the following:
# conv.meta[...] = QuantizationAnnotation("input_qspec_map": {x: MinMaxObserver.with_args(dtype=torch.qint8)}, ...)
#
if "quantization_annotation" in node.meta:
input_qspec_map = node.meta["quantization_annotation"].input_qspec_map
input_arg_qspec = _get_qspec_for_arg(arg, input_qspec_map, named_modules)
if input_arg_qspec is None:
input_arg_obs_or_fq = _DEFAULT_FP32_OBS_OR_FQ_CTR()
else:
input_arg_obs_or_fq = _create_obs_or_fq_from_qspec(input_arg_qspec, obs_or_fq_map, is_qat)
return input_arg_obs_or_fq
# we can remove the following path in the future if fx graph mode quantization is
# no longer used
is_weight = node_arg_is_weight(node, arg)
is_bias = node_arg_is_bias(node, arg)
is_activation = not is_weight and not is_bias
obs_or_fq_ctr = None
if is_activation:
obs_or_fq_ctr = node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
elif is_weight:
if node.target not in NON_QUANTIZABLE_WEIGHT_OPS:
obs_or_fq_ctr = node.meta["target_dtype_info"].get("weight_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
else:
obs_or_fq_ctr = node.meta["target_dtype_info"].get("bias_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
return obs_or_fq_ctr() if obs_or_fq_ctr else None
def _maybe_insert_input_observer_for_arg_or_kwarg(
node: Union[Node, Any],
arg: Argument,
qconfig: QConfigAny,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
qhandler: Optional[QuantizeHandler],
prepare_custom_config: PrepareCustomConfig,
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
backend_config: Optional[BackendConfig] = None,
) -> Argument:
"""
Given a `node` and an `arg`, inserts an input observer between
`node` and `arg` if necessary.
"""
# for ops such as torch.cat([x0, x1]),
# traverse through the list
if isinstance(arg, (list, tuple)):
new_arg_to_return = []
for inner_arg in arg:
new_inner_arg = _maybe_insert_input_observer_for_arg_or_kwarg(
node, inner_arg, qconfig, model, named_modules,
graph,
qhandler,
prepare_custom_config,
obs_or_fq_map,
is_qat,
backend_config)
new_arg_to_return.append(new_inner_arg)
return type(arg)(new_arg_to_return)
if not isinstance(arg, Node):
return arg
assert isinstance(arg, Node)
# default (no observer)
new_arg = arg
is_standalone_module = qhandler is not None and qhandler.is_standalone_module()
# TODO: move this to a separate function
if not is_standalone_module:
# Note: qconfig can be None in this branch this we are getting act/fq from
# node.meta now
# regular flow for most nodes, except standalone modules
if "quantization_annotation" in node.meta:
reuse_input_obs_or_fq = node.meta["quantization_annotation"]._reuse_input_obs_or_fq
else:
assert "target_dtype_info" in node.meta
# TODO: we are assuming "target_dtype_info" exists here, maybe
# a default value also need to be provided here
target_dtype_info = node.meta["target_dtype_info"]
# for nodes that doesn't have `reuse_input_obs_or_fq` configured,
# we'll default to False, this makes configuring this field optional for users
reuse_input_obs_or_fq = target_dtype_info.get("reuse_input_obs_or_fq", False)
arg_as_input_act_obs_or_fq = _get_arg_as_input_act_obs_or_fq(arg, node, named_modules, obs_or_fq_map, is_qat)
arg_as_input_target_dtype, arg_as_input_target_is_dynamic = _get_dtype_and_is_dynamic(arg_as_input_act_obs_or_fq)
arg_as_output_act_obs_or_fq = _get_output_act_obs_or_fq(arg, named_modules, obs_or_fq_map, is_qat)
arg_as_output_target_dtype, arg_as_output_target_is_dynamic = _get_dtype_and_is_dynamic(arg_as_output_act_obs_or_fq)
needs_obs_or_fq = _needs_obs_or_fq(
arg_as_output_target_dtype,
arg_as_output_target_is_dynamic,
arg_as_input_target_dtype,
arg_as_input_target_is_dynamic,
reuse_input_obs_or_fq,
is_zeroth_arg=len(node.args) > 0 and arg is node.args[0],
)
else:
assert qconfig is not None
# custom flow for standalone modules
_, _, sm_prepare_custom_config, _ = \
_get_standalone_module_configs(
node, named_modules, prepare_custom_config, qconfig, backend_config)
sm_input_quantized_idxs = sm_prepare_custom_config.input_quantized_indexes
# for args, this is set to the index of the current arg
# for kwargs, this is left at None
cur_input_idx = None
for arg_idx, arg_to_check in enumerate(node.args):
if arg_to_check is arg:
cur_input_idx = arg_idx
break
if cur_input_idx is None:
needs_obs_or_fq = False
else:
arg_as_output_target_dtype = _get_arg_target_dtype_as_output(arg, named_modules, obs_or_fq_map, is_qat)
arg_as_input_target_dtype = torch.quint8 if cur_input_idx in sm_input_quantized_idxs \
else torch.float
needs_obs_or_fq = (
(arg_as_output_target_dtype != arg_as_input_target_dtype) and
(arg_as_input_target_dtype != torch.float)
)
act_post_process_ctr = qconfig.activation
arg_as_input_act_obs_or_fq = act_post_process_ctr() if act_post_process_ctr else None
if needs_obs_or_fq:
existing_obs_node = None
# Before using the new observer, check if an observer
# of the correct type already exists. If it does, use it.
# This prevents duplicate observer insertions if a node is
# used by multiple nodes.
# TODO: this is looking into how the value is used in the future
# we should remove this
# removing this means we insert one observer for each use, even if they
# have the same dtype, we can have an extra pass that removes the extra observers
for maybe_obs_node in arg.users.keys():
if maybe_obs_node.op == 'call_module':
maybe_obs_mod = named_modules[maybe_obs_node.target] # type: ignore[index]
if (
type(maybe_obs_mod) == type(arg_as_input_act_obs_or_fq) and
maybe_obs_mod.dtype == arg_as_input_target_dtype # type: ignore[possibly-undefined]
):
arg_as_input_act_obs_or_fq = maybe_obs_mod # type: ignore[assignment]
existing_obs_node = maybe_obs_node
break
assert arg_as_input_act_obs_or_fq is not None
obs_or_fq_map[(arg, node)] = arg_as_input_act_obs_or_fq
if existing_obs_node is None:
new_obs_node = _insert_obs_or_fq(
arg, arg_as_input_act_obs_or_fq, model, named_modules, graph)
# override this arg to be the observed arg
new_arg = new_obs_node
else:
new_arg = existing_obs_node
return new_arg
def _maybe_insert_input_observers_for_node(
node: Node,
qconfig: QConfigAny,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
qhandler: Optional[QuantizeHandler],
prepare_custom_config: PrepareCustomConfig,
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
backend_config: Optional[BackendConfig] = None
) -> None:
"""
If needed, inserts observers to the input args and kwargs of `node`.
Note: modifies `node` inplace.
For example, if cur_node needs an observer after prev_node, we change from
prev_node -> cur_node
To
prev_node -> obs -> cur_node
Note: backend_config only needed for standalone_module node
"""
# Look through every input arg. If that arg's target dtype does not
# match the current node's target dtype, insert an observer.
new_args = []
for arg in node.args:
new_arg = _maybe_insert_input_observer_for_arg_or_kwarg(
node, arg, qconfig, model, named_modules, graph,
qhandler,
prepare_custom_config,
obs_or_fq_map,
is_qat,
backend_config)
new_args.append(new_arg)
new_kwargs = {}
for k, kwarg in node.kwargs.items():
new_kwarg = _maybe_insert_input_observer_for_arg_or_kwarg(
node, kwarg, qconfig, model, named_modules, graph,
qhandler,
prepare_custom_config,
obs_or_fq_map,
is_qat,
backend_config)
new_kwargs[k] = new_kwarg
# assign the new args and kwargs to the node, inplace
node.args = tuple(new_args)
node.kwargs = new_kwargs
def _maybe_insert_input_equalization_observers_for_node(
node: Node,
equalization_qconfig: Any,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
is_branch: bool,
) -> None:
"""
If `node` needs to be equalized, find the input/weight observers it needs in
`equalization_qconfig`, creates them, and inserts it into `graph`.
If `node` does not need an equalization observer, returns None.
"""
if equalization_qconfig is None or not node_supports_equalization(node, named_modules):
return
if is_branch:
warnings.warn(
f"Cannot equalize {node} because it is part of a branch."
)
return
new_args = []
for arg in node.args:
if not isinstance(arg, Node) or node_arg_is_bias(node, arg):
new_args.append(arg)
continue
is_weight = node_arg_is_weight(node, arg)
act_eq_process_ctr = equalization_qconfig.weight if is_weight else \
equalization_qconfig.input_activation
new_eq_obs_mod = act_eq_process_ctr()
new_eq_obs_node = _insert_obs_or_fq(
arg, new_eq_obs_mod, model, named_modules, graph)
new_args.append(new_eq_obs_node)
# assign the new args and kwargs to the node, inplace
node.args = tuple(new_args)
def _maybe_insert_output_observer_for_node(
node: Node,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
) -> Optional[Node]:
"""
If `node` needs an output observer, creates it, inserts it into `graph`
and returns it.
If `node` does not need an output observer, returns None.
Note: inserting dynamic quantization ops for output is not supported in fx graph mode
quantization code path right now
"""
assert node.op != 'output', 'observer insertion for outputs is handled elsewhere'
is_standalone_module = False
if "quantization_annotation" in node.meta:
output_act_obs_or_fq = _create_obs_or_fq_from_qspec(
node.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat
)
else:
assert "target_dtype_info" in node.meta
is_standalone_module = node.meta["target_dtype_info"].get("_is_standalone_module", False)
output_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr")
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
target_dtype, target_is_dynamic = _get_dtype_and_is_dynamic(output_act_obs_or_fq)
# uncomment after we support reuse_input_obs_or_fq properly by having separate
# implemntations for this key instead of reusing the input_output_share_observers
# code
# reuse_input_obs_or_fq = node.meta["target_dtype_info"].get("reuse_input_obs_or_fq", False)
# for now we set this to False since reuse_input_obs_or_fq for
# the output of a node is implementation in the same code path as observer sharing,
# we should refactor this part to make it clearer in the future
# and we would be able to read this from config directly
reuse_input_obs_or_fq = False
# Note: prev_output_dtype = torch.float and prev_output_is_dynamic=False
# because the prev_output is the output of an fp32 op, althought technically
# we should get the dtype of the output from node.meta["val"] in the future
# if we deprecate fx graph mode quantization
needs_obs_or_fq = _needs_obs_or_fq(torch.float, False, target_dtype, target_is_dynamic, reuse_input_obs_or_fq)
# currently the activation in QConfig(activation=...,) is for both input
# and output, and when the activation is configured to be dynamic quantization
# e.g. PlaceholderObserver(dtype=torch.quint8, is_dynamic=True, ...), it means
# the input should by dynamically quantized, but output should not be quantized
#
# there is no way we can specify different observer/fq for input and output
# activation through QConfig today, this limitation is lifted in the
# quantizer/annotation API in pytorch 2.0 export quantization code path,
# but since this code is reused, annotating output to be dynamically quantized
# would not work either for that.
# we can change QConfig to support input/output activation if we want
# to remove the following check, or if we can deprecate fx graph mode quantization
if target_is_dynamic:
needs_obs_or_fq = False
# we never insert observers to output of standalone module, we assume
# if needed, they are inserted inside the standalone module
needs_obs_or_fq = needs_obs_or_fq and \
(not is_standalone_module)
if needs_obs_or_fq:
obs_or_fq_map[node] = output_act_obs_or_fq
return _insert_obs_or_fq(node, output_act_obs_or_fq, model, named_modules, graph)
else:
return None
def _maybe_insert_observers_before_graph_output(
graph_output_node: Node,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
is_qat: bool,
) -> None:
"""
If the output needs to be quantized and there are any nodes
in the output which are not already observed, inserts observers
for those nodes.
"""
def _recursive_maybe_replace_node_with_obs(
maybe_node: Argument,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
graph: Graph,
) -> Argument:
"""
Navigate an arbitrary data structure of lists, tuples, dicts.
For each container type, recurse on all inputs. Once any Node
is found, insert an observer if needed and do not recurse further.
For example, given a structure of
{'foo1': [[bar1]], 'foo2': {'foo3': [[[bar3]]]}}
we recurse down to bar1 and bar3, observe them if necessary,
and if we inserted an observer then replace the original node
with its observer.
Returns the data structure with all nodes needing observation being
replaced by their observers.
"""
if isinstance(maybe_node, Node):
# check dtype of this node
arg_as_output_target_dtype = _get_arg_target_dtype_as_output(maybe_node, named_modules, obs_or_fq_map, is_qat)
observer_mod = None
arg_as_input_target_dtype = torch.float
if "target_dtype_info" in maybe_node.meta:
observer_cls = maybe_node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr", None)
if observer_cls is not None:
observer_mod = observer_cls()
arg_as_input_target_dtype = observer_mod.dtype
# TODO: this does not handle dynamic quantization yet
need_obs = (
arg_as_output_target_dtype != arg_as_input_target_dtype and
arg_as_input_target_dtype != torch.float
)
if need_obs:
assert observer_mod is not None
# insert observer
observer_node = _insert_obs_or_fq(
maybe_node, observer_mod, model, named_modules, graph)
return observer_node
else:
return maybe_node
elif isinstance(maybe_node, (list, tuple)):
results = []
for inner_node in maybe_node:
results.append(_recursive_maybe_replace_node_with_obs(
inner_node, model, named_modules, graph))
if isinstance(maybe_node, list):
return results
else:
return tuple(results)
elif isinstance(maybe_node, dict):
results_dict = {}
for k, inner_v in maybe_node.items():
results_dict[k] = _recursive_maybe_replace_node_with_obs(
inner_v, model, named_modules, graph)
return results_dict
elif maybe_node is None:
return None
else:
raise Exception("Unhandled type for returned node:", maybe_node)
new_args = []
for old_arg in graph_output_node.args:
new_args.append(
_recursive_maybe_replace_node_with_obs(
old_arg, model, named_modules, graph))
graph_output_node.args = tuple(new_args) # type: ignore[assignment]
def _maybe_propagate_dtype_for_node(
node: Node,
target_dtype: Union[torch.dtype, type],
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
) -> None:
"""
Assigns `target_dtype` to `node`, setting `is_dynamic` to False. If `node`
is a general tensor shape op, also call this function recursively on
the first argument, to propagate the dtype to the caller.
"""
node.meta["target_dtype_info"]["input_act_obs_or_fq_ctr"] = None
node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"] = None
# if this is a copy node, propagate to first arg
root_node, _, pattern, qhandler, qconfig = node_name_to_match_result_with_qconfig.get(
node.name, (None, None, None, None, None))
# TODO: probably need to remove `is_general_tensor_value_op`
if qhandler is not None and qhandler.is_general_tensor_value_op():
prev_node = node.args[0]
if isinstance(prev_node, Node):
_maybe_propagate_dtype_for_node(
prev_node, target_dtype, node_name_to_match_result_with_qconfig)
def propagate_dtypes_for_known_nodes(
graph: Graph,
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
) -> None:
"""
Currently we assume that inputs to the graph are either `torch.float` or
`torch.quint8`, which is not always correct. For ops such as
`x.masked_fill(mask, value)`, we know that the dtype of `mask` is a
`BoolTensor`. Propagate this information throughout the graph.
Note: not all dtypes in the graph will be correct after this pass, but a
higher percentage of them will be correct. Hopefully in the future we can
replace this with a better way to reason about dtypes of tensors.
"""
for node in graph.nodes:
non_observable_arg_dict = get_non_observable_arg_indexes_and_types(node)
for arg_type in non_observable_arg_dict:
non_observable_indices = non_observable_arg_dict[arg_type](node)
for index in non_observable_indices:
arg = node.args[index]
# when an argument is a tuple, it does not show up as another node so we need to go through
# all elements of the tuple manually
if isinstance(arg, (tuple, list)):
arg_list = list(arg)
else:
arg_list = [arg]
for cur_arg in arg_list:
# hard coded arguments show up but aren't `Node` typed and do not need dtype propagated
if isinstance(cur_arg, torch.fx.node.Node):
_maybe_propagate_dtype_for_node(
cur_arg, arg_type, node_name_to_match_result_with_qconfig)
def _maybe_make_input_output_share_observers(
node: Node,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module],
) -> bool:
"""
Ensures that we share an observer
for all input arguments as well as the output argument. In detail, given
a graph of
x0 -> obs0 -> op -> x2
/
x1 -> obs1 /
where node obs0 points to observer instance observer0,
obs1 points to observer1 and obs2 points to observer2, we make nodes obs1
and ob2 point to observer0.
Returns: whether the operation succeeded or not
"""
first_arg = None
# find the first non-Tensor arg
for i in range(len(node.args)):
if isinstance(node.args[i], (Node, list, tuple)):
first_arg = node.args[i]
break
# if there is no non-Tensor arg, return directly
if first_arg is None:
return False
if isinstance(first_arg, (list, tuple)):
first_arg_arg = first_arg[0]
elif isinstance(first_arg, Node):
first_arg_arg = first_arg
else:
return False
# if we have a graph such as
# observed_node -> non_observed_node -> cat
# we need to navigate up to the first observer
iteration_guard = 0
while not _is_activation_post_process_node(first_arg_arg, named_modules):
if not isinstance(first_arg_arg, Node):
return False
# did not find an activation_post_process for the op
if first_arg_arg.op == "placeholder":
return False
# trace back the args until we found the first Tensor/Node
trace_back_node = None
for i in range(len(first_arg_arg.args)):
trace_back_node = first_arg_arg.args[i]
if isinstance(trace_back_node, Node):
break
if trace_back_node is None:
return False
first_arg_arg = trace_back_node
iteration_guard += 1
if iteration_guard > 10000:
raise AssertionError('Unable to find observer of previous node')
assert isinstance(first_arg_arg, Node)
target_to_use = first_arg_arg.target
assert isinstance(target_to_use, str)
obs_mod_to_use = named_modules[target_to_use]
if isinstance(first_arg, (list, tuple)):
# set all other input observer nodes to use that module
for input_idx, input_arg in enumerate(first_arg):
if input_idx == 0:
continue
iteration_guard = 0
while not _is_activation_post_process_node(input_arg, named_modules):
# failed to trace back since no input arg for the current node
if len(input_arg.args) < 1:
return False
input_arg = input_arg.args[0]
iteration_guard += 1
if iteration_guard > 10000:
raise AssertionError('Unable to find observer of previous node')
parent_name, name = _parent_name(input_arg.target)
setattr(named_modules[parent_name], name, obs_mod_to_use)
# set the output observer node to use that module
for output_obs_node in node.users.keys():
assert _is_activation_post_process_node(output_obs_node, named_modules)
parent_name, name = _parent_name(output_obs_node.target)
setattr(named_modules[parent_name], name, obs_mod_to_use)
# TODO(future PR): delete the orphaned observer modules
return True
def _remove_output_observer(
node: Node,
model: torch.nn.Module,
named_modules: Dict[str, torch.nn.Module]):
items = list(node.users.items())
for output_obs_node, _ in items:
assert _is_activation_post_process_node(output_obs_node, named_modules)
output_obs_node.replace_all_uses_with(node)
model.graph.erase_node(output_obs_node) # type: ignore[union-attr, operator]
def _swap_custom_module_to_observed(
node: Node,
qconfig: QConfigAny,
named_modules: Dict[str, torch.nn.Module],
prepare_custom_config: PrepareCustomConfig):
custom_module = named_modules[node.target] # type: ignore[index]
custom_module_class_mapping = prepare_custom_config.float_to_observed_mapping
observed_custom_module_class = \
get_swapped_custom_module_class(
custom_module, custom_module_class_mapping, qconfig)
observed_custom_module = \
observed_custom_module_class.from_float(custom_module)
parent_name, name = _parent_name(node.target)
setattr(named_modules[parent_name], name, observed_custom_module)
def insert_observers_for_model(
model: GraphModule,
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
node_name_to_qconfig: Dict[str, QConfigAny],
prepare_custom_config: PrepareCustomConfig,
equalization_config_map: Dict[str, Any],
backend_config: BackendConfig,
observed_node_names: Set[str],
is_qat: bool,
) -> Optional[Node]:
"""
Inserts observers, using the following high level algorithm:
For each node in the graph:
1. determine the target dtype of this node in the quantized graph, and save
it for future steps
2. determine the target dtype or all args and kwargs of this node
3. if any arg or kwarg's target dtype does not match the current node's
dtype, insert an observer
4. if the current node needs an output observer, insert it
For example:
- starting graph:
x0 -> linear -> x1
- observed graph after processing x0:
x0(fp32)
- observed graph after processing linear:
x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8)
- observed graph after processing x1:
x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8) -> x1
After a node is processed, the naive observer placement is guaranteed to be
complete for that node and all of its predecessors. There can be future
passes which optimize the graph by deduplicating observers, etc.
"""
# node.meta["target_dtype_info"] stores the target dtype information
# that's derived from qconfig for the Node, for example, if we have
# a conv2d node that has a qconfig
# qconfig = QConfig(activation=..., weight=...)
# # information for input and bias node omitted
# # for getattr node
# # weight = getattr(self, 'weight')
# weight.meta["target_dtype_info"] = {
# 'output_act_obs_or_fq_ctr': qconfig.weight,
# }
# # for conv2d node
# # conv2d = call_function[target=torch.nn.functional.conv2d](
# # args=(input, weight, bias))
# conv2d.meta["target_dtype_info"] = {
# 'input_act_obs_or_fq_ctr': qconfig.activation
# 'weight_obs_or_fq_ctr': qconfig.weight,
# 'bias_obs_or_fq_ctr': PlaceholderObserver.with_args(dtype=torch.float32),
# 'output_act_obs_or_fq_ctr': qconfig.activation,
# }
#
cache_for_no_tensor_check: Dict[Node, bool] = {}
# first, populate the dtype map based only on qconfig and qhandler
# this assumes:
# graph inputs are fp32 by default, and int8 where overriden
# other nodes output dtype is specified by the qconfig
named_modules = dict(model.named_modules(remove_duplicate=False))
input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
processed_nodes: Set[Node] = set()
# initialize target_dtype_info
for node in model.graph.nodes:
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO)
inputs_seen_counter = 0
outputs_seen_counter = 0
placeholder_node_to_input_index: Dict[Node, int] = {}
# TODO: we probably don't need this counter since each graph will only have
# one output node?
output_node_to_output_index: Dict[Node, int] = {}
for node in model.graph.nodes:
if node.op == "placeholder":
placeholder_node_to_input_index[node] = inputs_seen_counter
inputs_seen_counter += 1
if node.op == "output":
output_node_to_output_index[node] = outputs_seen_counter
outputs_seen_counter += 1
# Step 1, set the observer or fake quantize module constructor for each node in the
# matched_node_pattern
for match_res_with_qconfig in node_name_to_match_result_with_qconfig.values():
last_node, matched_node_pattern, pattern, qhandler, qconfig = match_res_with_qconfig
assert qhandler is not None
_set_target_dtype_info_for_matched_node_pattern(
matched_node_pattern,
last_node,
qconfig,
qhandler,
backend_config,
named_modules,
cache_for_no_tensor_check,
processed_nodes
)
# Step 2. Special cases for some operators, we might be able to remove them
# in the future if we know dtype information of each node better
# Step 2.1. some settings are not based on patterns, we need to process each node
# instead
for node in model.graph.nodes:
if node.op == "placeholder" and placeholder_node_to_input_index[node] in input_quantized_idxs:
# users are not supposed to call calculate_qparams on PlaceholderObserver, and
# this is OK because we are using this as a way to encode the dtypes of input
# tensor, we won't actually insert these observers in the graph and won't
# actually call calculate_qparams
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO)
elif node.op in ("call_module", "call_method", "call_function"):
args_have_no_tensors = \
all_node_args_have_no_tensors(
node, named_modules, cache_for_no_tensor_check)
if args_have_no_tensors:
node.meta["target_dtype_info"] = {
"input_act_obs_or_fq_ctr": None,
"output_act_obs_or_fq_ctr": None,
}
elif node.op == "output" and output_node_to_output_index[node] in output_quantized_idxs:
# TODO(future PR): update the output_quantized_idxs API to match
# arbitrary data structures. There is always a single output, and
# that output can have arbitrary nesting of values. List[int] is
# not the right data type for this.
# TODO(future PR): support more dtypes in model outputs, if necessary
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO)
# Step 2.2, for nodes with known input dtypes, propagate them throughout the
# graph. For example, if there is a call such as
# x1 = x0.masked_fill(mask, 1)
# we propagate the type of mask to be torch.bool
propagate_dtypes_for_known_nodes(model.graph, node_name_to_match_result_with_qconfig)
# Step 3, check if the requested target_dtype_info is supported by backend or not
# if not, we'll reset the target_dtye_info to use the default (float Tensor)
# reset the counters and set of processed_nodes
processed_nodes: Set[Node] = set()
for match_res_with_qconfig in node_name_to_match_result_with_qconfig.values():
last_node, matched_node_pattern, pattern, qhandler, qconfig = match_res_with_qconfig
is_supported_by_backend = _is_pattern_dtype_config_and_qconfig_supported_by_backend(
pattern, matched_node_pattern, qconfig, backend_config)
assert qhandler is not None
# get output_act_dtype so that we don't also reset the special typed nodes
# TODO: we might want to handle these more uniformly with the default path
# this can be improved if we can use node.meta["val"]
output_act_or_fq_ctr = node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
output_act_or_fq = output_act_or_fq_ctr() if output_act_or_fq_ctr else None
output_act_dtype, _ = _get_dtype_and_is_dynamic(output_act_or_fq)
if not is_supported_by_backend and output_act_dtype not in [None, int, float, torch.bool]:
# restore target_dtype_info to default if it is not supported by backend
_set_target_dtype_info_for_matched_node_pattern(
matched_node_pattern,
last_node,
torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig,
None,
backend_config,
named_modules,
cache_for_no_tensor_check,
processed_nodes
)
# After this point, the current node and all of its arguments
# have a target_dtype_info assigned. Now, we insert observers for inputs
# of this node (if needed for this node), and the output of this node
# (if needed for this node).
# Since we are mutating the graph as we go, we iterate over the original
# nodes before observer insertion, instead of model.graph.nodes.
nodes_before_observation = list(model.graph.nodes)
# Avoid duplicates custom module swaps for multiple nodes with same target.
custom_module_names_already_swapped: Set[str] = set()
# TODO: reuse placeholder_node_to_input_index and output_node_to_output_index
# reset inputs/outputs counters
inputs_seen_counter = 0
outputs_seen_counter = 0
results_node = None
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize] = {}
# TODO: change this to insert obs/fq by pattern instead of by node
for node in nodes_before_observation:
if node.op == 'placeholder':
# if a graph input is in fp32, it does not need observation
# if a graph input is in int8, we assume the observation happens
# outside of the graph, and no additional observation is needed
pass
elif node.op in ('call_module', 'call_method', 'call_function', 'output'):
# check for matches
last_node, matched_node_pattern, pattern, qhandler, qconfig = (
node_name_to_match_result_with_qconfig.get(node.name, (None, None, None, None, None)) # type: ignore[assignment]
)
equalization_qconfig = equalization_config_map.get(node.name, None)
this_node_dtype_info = node.meta["target_dtype_info"]
if "val" in node.meta:
output_is_a_tensor = (
this_node_dtype_info is not None and
isinstance(node.meta["val"], FakeTensor)
)
else:
output_is_a_tensor = this_node_dtype_info is not None
skip_inserting_observers = (
(qconfig is None) or
not output_is_a_tensor
) and (
not node.op == 'output'
)
# TODO: take a closer look to see if we can remove this check
# right now it is here because of `observed_node_names`, we are using
# it as an indicator for swapping the modules to reference modules in
# convert
is_supported_by_backend = _is_pattern_dtype_config_and_qconfig_supported_by_backend(
pattern, matched_node_pattern, qconfig, backend_config)
if not skip_inserting_observers and is_supported_by_backend:
named_modules = dict(model.named_modules(remove_duplicate=False))
if node.op != 'output':
assert matched_node_pattern is not None
# add matched nodes to the observed node name set
_add_matched_node_name_to_set(matched_node_pattern, observed_node_names)
# This is currently only used for equalization.
# Checks if the current node is in a branch in which the two
# first layers are both being quantized.
#
# ex. conv2
# /
# x -> conv1
#
# If this is the case, we will not apply equalization to the
# initial two layers.
is_quantized_branch = False
if (
len(node.args) > 0 and
isinstance(node.args[0], Node) and
len(node.args[0].users) > 1
):
for user in node.args[0].users:
# Checks if there exists another user being quantized
is_user_quantized = (
node_name_to_qconfig.get(user.name, None) is not None or
(user.op == 'call_module' and isinstance(named_modules[str(user.target)], ObserverBase))
)
if user != node and is_user_quantized:
is_quantized_branch = True
pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
root_node_getter = pattern_to_root_node_getter.get(pattern, _default_root_node_getter)
root_node = root_node_getter(matched_node_pattern)
is_input_node_of_the_pattern = node is root_node
if is_input_node_of_the_pattern:
# this modifies node inplace
_maybe_insert_input_observers_for_node(
node, qconfig, model, named_modules, model.graph,
qhandler,
prepare_custom_config,
obs_or_fq_map,
is_qat,
backend_config)
# insert equalization input observers if needed
_maybe_insert_input_equalization_observers_for_node(
node, equalization_qconfig, model, named_modules, model.graph,
is_quantized_branch)
is_last_node_of_pattern = node is last_node
input_output_share_observers = node.meta["target_dtype_info"].get("input_output_share_observers", False)
reuse_input_obs_or_fq = node.meta["target_dtype_info"].get("reuse_input_obs_or_fq", False)
if is_last_node_of_pattern:
if _is_custom_module_lstm(node, named_modules, qconfig, qhandler):
# Currently custom module outputs are assumed to be already quantized,
# so we need to insert a DeQuantStub after the output. For custom module
# LSTM specifically, the outputs are also a nested tuple, so we must first
# break down the tuple to insert DeQuantStubs after the internal nodes.
# TODO: This currently diverges from how custom modules are handled today,
# where we insert observers after the output instead of DeQuantStubs, and
# replace these observers with "dequantize" nodes during convert. Conceptually,
# these output observers are the same as DeQuantStubs. In the future, we
# should resolve this inconsistency by inserting DeQuantStubs for all custom
# modules, not just for LSTM.
_insert_dequant_stubs_for_custom_module_lstm_output(node, model, named_modules, model.graph)
if node.target not in custom_module_names_already_swapped:
custom_module_names_already_swapped.add(node.target)
_swap_custom_module_to_observed(node, qconfig, named_modules, prepare_custom_config)
else:
# this returns the new observer node if it was needed
maybe_output_obs_node = _maybe_insert_output_observer_for_node(
node, model, named_modules, model.graph, obs_or_fq_map, is_qat)
if maybe_output_obs_node is not None:
# Update users of original node to use the output observer
# instead. For example, change
#
# next_node
# /
# cur_node -> obs
#
# to
#
# next_node
# /
# cur_node -> obs
#
# We need to save orig users before updating uses because
# the list of users will change as we update uses
orig_users = list(node.users.keys())
for user_node in orig_users:
if user_node is maybe_output_obs_node:
continue
user_node.replace_input_with(node, maybe_output_obs_node)
_is_observer_in_same_graph_ = _is_observer_in_same_graph(
node, named_modules, obs_or_fq_map, is_qat)
# for ops whose inputs and outputs share observer/fqs, we modify the graph
# to make all inputs and outputs use the first input's
# observer/fq
if (input_output_share_observers and _is_observer_in_same_graph_) or \
reuse_input_obs_or_fq:
if not _maybe_make_input_output_share_observers(node, model, named_modules):
_remove_output_observer(node, model, named_modules)
if qhandler is not None and qhandler.is_custom_module():
if node.target not in custom_module_names_already_swapped:
custom_module_names_already_swapped.add(node.target)
_swap_custom_module_to_observed(node, qconfig, named_modules, prepare_custom_config)
else: # output
_maybe_insert_observers_before_graph_output(node, model, named_modules, model.graph, obs_or_fq_map, is_qat)
#
# After this point, the current node has input and output observers
# that it needs for itself inserted.
#
# increment the counters, so future inputs and outputs are assigned
# correct dtypes
if node.op == 'placeholder':
inputs_seen_counter += 1
elif node.op == 'output':
outputs_seen_counter += 1
results_node = node
return results_node
def _run_prepare_fx_on_standalone_modules(
model: torch.nn.Module,
is_qat: bool,
named_modules: Dict[str, torch.nn.Module],
node_name_to_match_result_with_qconfig: Any,
prepare_custom_config: PrepareCustomConfig,
backend_config: BackendConfig,
) -> None:
"""
Runs prepare_fx on each standalone module. Note: this does
not modify the graph, it just replaces the unobserved modules with
their observed versions.
"""
for (root_node, _, pattern, qhandler, qconfig) in node_name_to_match_result_with_qconfig.values():
if qhandler is None:
continue
elif not qhandler.is_standalone_module():
continue
sm_qconfig_mapping, sm_example_inputs, sm_prepare_custom_config, \
sm_backend_config = _get_standalone_module_configs(
root_node, named_modules, prepare_custom_config, qconfig, backend_config)
standalone_module = named_modules[root_node.target]
prepare = \
torch.ao.quantization.quantize_fx._prepare_standalone_module_fx # type: ignore[attr-defined]
observed_standalone_module = \
prepare(
standalone_module,
sm_qconfig_mapping,
is_qat,
example_inputs=sm_example_inputs,
prepare_custom_config=sm_prepare_custom_config,
backend_config=sm_backend_config)
parent_name, name = _parent_name(root_node.target)
setattr(named_modules[parent_name], name, observed_standalone_module)
named_modules[root_node.target] = observed_standalone_module
def _save_state(
observed: GraphModule,
node_name_to_qconfig: Dict[str, QConfigAny],
node_name_to_scope: Dict[str, Tuple[str, type]],
prepare_custom_config: PrepareCustomConfig,
equalization_node_name_to_qconfig: Dict[str, Any],
qconfig_mapping: QConfigMapping,
is_qat: bool,
observed_node_names: Set[str],
) -> None:
observed.meta["_observed_graph_module_attrs"] = (
ObservedGraphModuleAttrs(
node_name_to_qconfig=node_name_to_qconfig,
node_name_to_scope=node_name_to_scope,
prepare_custom_config=prepare_custom_config,
equalization_node_name_to_qconfig=equalization_node_name_to_qconfig,
qconfig_mapping=qconfig_mapping,
is_qat=is_qat,
observed_node_names=observed_node_names,
)
)
def prepare(
model: GraphModule,
qconfig_mapping: Union[QConfigMapping, Dict[str, Any]],
is_qat: bool,
node_name_to_scope: Dict[str, Tuple[str, type]],
example_inputs: Tuple[Any, ...],
prepare_custom_config: Union[PrepareCustomConfig, Dict[str, Any], None] = None,
_equalization_config: Union[QConfigMapping, Dict[str, Any], None] = None,
backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
is_standalone_module: bool = False) -> GraphModule:
""" standalone_module means it a submodule that is not inlined in
parent module, and will be quantized separately as one unit.
How the standalone module is observed is specified by `input_quantized_idxs` and
`output_quantized_idxs` in the prepare_custom_config for the standalone module
Args:
node_name_to_scope: mapping from node name to the scope of the module which contains the node.
The scope is a tuple of fully qualified path of the module and the type of the module
Returns:
model(GraphModule): prepared standalone module
attributes related to standalone module
in model.meta["_observed_graph_module_attrs"]:
is_observed_standalone_module (bool): boolean value that shows whether the
current model is a observed standalone module or not
standalone_module_input_quantized_idxs(List[Int]): a list of
indexes for the graph input that is expected to be quantized,
same as input_quantized_idxs configuration provided
for the standalone module
standalone_module_output_quantized_idxs(List[Int]): a list of
indexs for the graph output that is quantized
same as input_quantized_idxs configuration provided
for the standalone module
"""
if prepare_custom_config is None:
prepare_custom_config = PrepareCustomConfig()
if _equalization_config is None:
_equalization_config = QConfigMapping()
if isinstance(qconfig_mapping, Dict):
warnings.warn(
"Passing a QConfig dictionary to prepare is deprecated and will not be supported "
"in a future version. Please pass in a QConfigMapping instead.")
qconfig_mapping = QConfigMapping.from_dict(qconfig_mapping)
if isinstance(_equalization_config, Dict):
warnings.warn(
"Passing a QConfig dictionary to prepare for equalization is deprecated and will not "
"be supported in a future version. Please pass in a QConfigMapping instead.")
_equalization_config = QConfigMapping.from_dict(_equalization_config)
if isinstance(prepare_custom_config, Dict):
warnings.warn(
"Passing a prepare_custom_config_dict to prepare is deprecated and will not be supported "
"in a future version. Please pass in a PrepareCustomConfig instead.")
prepare_custom_config = PrepareCustomConfig.from_dict(prepare_custom_config)
if isinstance(backend_config, Dict):
warnings.warn(
"Passing a backend_config_dict to prepare is deprecated and will not be supported "
"in a future version. Please pass in a BackendConfig instead.")
backend_config = BackendConfig.from_dict(backend_config)
assert isinstance(qconfig_mapping, QConfigMapping)
assert isinstance(_equalization_config, QConfigMapping)
qconfig_mapping = copy.deepcopy(qconfig_mapping)
_equalization_config = copy.deepcopy(_equalization_config)
# mapping from a tuple of nodes in reverse order to uninitialized
# QuantizeHandler subclass. For example,
# {
# # match a single node
# (<class 'torch.nn.modules.conv.Conv3d'>:
# <class 'torch.ao.quantization.fx.quantize.ConvRelu'>),
# # match multiple nodes in reverse order
# ((<function relu at 0x7f766a7360d0>, <built-in function add>):
# <class 'torch.ao.quantization.fx.quantize.Add'>),
# }
pattern_to_quantize_handler: Dict[Pattern, QuantizeHandler] = {}
if backend_config is None:
backend_config = get_native_backend_config()
pattern_to_quantize_handler = _get_pattern_to_quantize_handlers(backend_config)
pattern_to_quantize_handler = _sorted_patterns_dict(pattern_to_quantize_handler)
root_node_getter_mapping = \
get_fusion_pattern_to_root_node_getter(backend_config)
_update_qconfig_for_fusion(model, qconfig_mapping)
_update_qconfig_for_fusion(model, _equalization_config)
flattened_qconfig_dict = _get_flattened_qconfig_dict(qconfig_mapping)
# TODO: support regex as well
propagate_qconfig_(model, flattened_qconfig_dict, prepare_custom_config.to_dict())
if is_qat:
module_to_qat_module = get_module_to_qat_module(backend_config)
_qat_swap_modules(model, module_to_qat_module)
_update_qconfig_for_qat(qconfig_mapping, backend_config)
# mapping from fully qualified module name to module instance
# for example,
# {
# '': Model(...),
# 'linear': Linear(...),
# 'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
# }
named_modules = dict(model.named_modules(remove_duplicate=False))
# fill node_name_to_qconfig, a map from node name to qconfig, used in _find_matches
equalization_node_name_to_qconfig = _generate_node_name_to_qconfig(
model, named_modules, model.graph, _equalization_config, node_name_to_scope)
node_name_to_qconfig = _generate_node_name_to_qconfig(model, named_modules, model.graph, qconfig_mapping, node_name_to_scope)
# match the patterns that will get quantized
standalone_module_names = list(prepare_custom_config.standalone_module_names.keys())
standalone_module_classes = list(prepare_custom_config.standalone_module_classes.keys())
custom_module_classes = get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping)
matches_without_qconfig = _find_matches(
model.graph, named_modules, pattern_to_quantize_handler, root_node_getter_mapping,
standalone_module_names, standalone_module_classes, custom_module_classes)
# map qconfig instances to matches
node_name_to_match_result_with_qconfig = {}
for node_name, match_without_qconfig in matches_without_qconfig.items():
match_with_qconfig = (*match_without_qconfig, node_name_to_qconfig[node_name])
node_name_to_match_result_with_qconfig[node_name] = match_with_qconfig
_run_prepare_fx_on_standalone_modules(
model, is_qat, named_modules, node_name_to_match_result_with_qconfig, prepare_custom_config, backend_config)
# record names for the set of observed node, so that in convert step
# we know whether we need to convert a floating point module to reference
# quantized module or not
observed_node_names: Set[str] = set()
result_node = insert_observers_for_model(
model,
node_name_to_match_result_with_qconfig,
node_name_to_qconfig,
prepare_custom_config,
equalization_node_name_to_qconfig,
backend_config,
observed_node_names,
is_qat,
)
model = GraphModule(model, model.graph)
_save_state(model, node_name_to_qconfig, node_name_to_scope,
prepare_custom_config, equalization_node_name_to_qconfig,
qconfig_mapping, is_qat, observed_node_names)
if is_standalone_module:
assert result_node is not None
assert isinstance(result_node.args[0], Node), \
"standalone module only supports returning simple value currently"\
"(not tuple, dict etc.)"
# these inputs are observed in parent
# converting List[int] to Tensor since module attribute is
# Union[Tensor, Module]
input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
observed_graph_module_attrs = model.meta["_observed_graph_module_attrs"]
# inplace modification
observed_graph_module_attrs.is_observed_standalone_module = True
observed_graph_module_attrs.standalone_module_input_quantized_idxs = \
input_quantized_idxs
observed_graph_module_attrs.standalone_module_output_quantized_idxs = \
output_quantized_idxs
return model
|