File size: 29,923 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
r""" Functional interface (quantized)."""
from typing import List, Optional
import warnings

import torch
from torch import Tensor
from torch.nn.modules.utils import _pair, _triple
from torch.jit.annotations import BroadcastingList2

from .modules.utils import _pair_from_first

# Although some of the functions and docstrings are mirrored from the torch.nn,
# we want to have them here for future changes.

__all__ = [
    "avg_pool2d",
    "avg_pool3d",
    "adaptive_avg_pool2d",
    "adaptive_avg_pool3d",
    "conv1d",
    "conv2d",
    "conv3d",
    "interpolate",
    "linear",
    "max_pool1d",
    "max_pool2d",
    "celu",
    "leaky_relu",
    "hardtanh",
    "hardswish",
    "threshold",
    "elu",
    "hardsigmoid",
    "clamp",
    "upsample",
    "upsample_bilinear",
    "upsample_nearest",
]

def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False,

               count_include_pad=True, divisor_override=None):
    r"""

    Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size

    :math:`sH \times sW` steps. The number of output features is equal to the number of

    input planes.



    .. note:: The input quantization parameters propagate to the output.



    See :class:`~torch.ao.nn.quantized.AvgPool2d` for details and output shape.



    Args:

        input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

        kernel_size: size of the pooling region. Can be a single number or a

          tuple `(kH, kW)`

        stride: stride of the pooling operation. Can be a single number or a

          tuple `(sH, sW)`. Default: :attr:`kernel_size`

        padding: implicit zero paddings on both sides of the input. Can be a

          single number or a tuple `(padH, padW)`. Default: 0

        ceil_mode: when True, will use `ceil` instead of `floor` in the formula

            to compute the output shape. Default: ``False``

        count_include_pad: when True, will include the zero-padding in the

            averaging calculation. Default: ``True``

        divisor_override: if specified, it will be used as divisor, otherwise

             size of the pooling region will be used. Default: None

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!")
    return torch.nn.functional.avg_pool2d(input, kernel_size, stride, padding,
                                          ceil_mode, count_include_pad,
                                          divisor_override)

def avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False,

               count_include_pad=True, divisor_override=None):
    r"""

    Applies 3D average-pooling operation in :math:`kD \ times kH \times kW` regions by step size

    :math:`sD \times sH \times sW` steps. The number of output features is equal to the number of

    input planes.



    .. note:: The input quantization parameters propagate to the output.



    Args:

        input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

        kernel_size: size of the pooling region. Can be a single number or a

          tuple `(kD, kH, kW)`

        stride: stride of the pooling operation. Can be a single number or a

          tuple `(sD, sH, sW)`. Default: :attr:`kernel_size`

        padding: implicit zero paddings on both sides of the input. Can be a

          single number or a tuple `(padD, padH, padW)`. Default: 0

        ceil_mode: when True, will use `ceil` instead of `floor` in the formula

            to compute the output shape. Default: ``False``

        count_include_pad: when True, will include the zero-padding in the

            averaging calculation. Default: ``True``

        divisor_override: if specified, it will be used as divisor, otherwise

             size of the pooling region will be used. Default: None

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.avg_pool3d' must be quantized!")
    return torch.nn.functional.avg_pool3d(input, kernel_size, stride, padding,
                                          ceil_mode, count_include_pad,
                                          divisor_override)

def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
    r"""

    Applies a 2D adaptive average pooling over a quantized input signal composed

    of several quantized input planes.



    .. note:: The input quantization parameters propagate to the output.



    See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool2d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

                     double-integer tuple)

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!")
    return torch.nn.functional.adaptive_avg_pool2d(input, output_size)

def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
    r"""

    Applies a 3D adaptive average pooling over a quantized input signal composed

    of several quantized input planes.



    .. note:: The input quantization parameters propagate to the output.



    See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool3d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

                     double-integer tuple)

    """
    if not input.is_quantized:
        raise ValueError(
            "Input to 'quantized.functional.adaptive_avg_pool3d' must be quantized!")
    return torch.nn.functional.adaptive_avg_pool3d(input, output_size)

def conv1d(input, weight, bias,

           stride=1, padding=0, dilation=1, groups=1,

           padding_mode='zeros',

           scale=1.0, zero_point=0,

           dtype=torch.quint8):
    r"""

    Applies a 1D convolution over a quantized 1D input composed of several input

    planes.



    See :class:`~torch.ao.nn.quantized.Conv1d` for details and output shape.



    Args:

        input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`

        weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW)`

        bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.

        stride: the stride of the convolving kernel. Can be a single number or a

          tuple `(sW,)`. Default: 1

        padding: implicit paddings on both sides of the input. Can be a

          single number or a tuple `(padW,)`. Default: 0

        dilation: the spacing between kernel elements. Can be a single number or

          a tuple `(dW,)`. Default: 1

        groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the

          number of groups. Default: 1

        padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros"

        scale: quantization scale for the output. Default: 1.0

        zero_point: quantization zero_point for the output. Default: 0

        dtype: quantization data type to use. Default: ``torch.quint8``



    Examples::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)

        >>> from torch.ao.nn.quantized import functional as qF

        >>> filters = torch.randn(33, 16, 3, dtype=torch.float)

        >>> inputs = torch.randn(20, 16, 50, dtype=torch.float)

        >>> bias = torch.randn(33, dtype=torch.float)

        >>>

        >>> scale, zero_point = 1.0, 0

        >>> dtype_inputs = torch.quint8

        >>> dtype_filters = torch.qint8

        >>>

        >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)

        >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)

        >>> qF.conv1d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)

    """  # noqa: E501
    if padding_mode != 'zeros':
        raise NotImplementedError("Only zero-padding is supported!")
    if input.dtype != torch.quint8:
        raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
    if weight.dtype != torch.qint8:
        raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
    if input.ndim != 3:
        raise ValueError("Input shape must be `(N, C, L)`!")
    stride = _pair_from_first(stride)
    padding = _pair_from_first(padding)
    dilation = _pair_from_first(dilation)

    packed_params = torch.ops.quantized.conv1d_prepack(
        weight, bias, stride, padding, dilation, groups)
    return torch.ops.quantized.conv1d(input, packed_params, scale, zero_point)

def conv2d(input, weight, bias,

           stride=1, padding=0, dilation=1, groups=1,

           padding_mode='zeros',

           scale=1.0, zero_point=0,

           dtype=torch.quint8):
    r"""

    Applies a 2D convolution over a quantized 2D input composed of several input

    planes.



    See :class:`~torch.ao.nn.quantized.Conv2d` for details and output shape.



    Args:

        input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

        weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`

        bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.

        stride: the stride of the convolving kernel. Can be a single number or a

          tuple `(sH, sW)`. Default: 1

        padding: implicit paddings on both sides of the input. Can be a

          single number or a tuple `(padH, padW)`. Default: 0

        dilation: the spacing between kernel elements. Can be a single number or

          a tuple `(dH, dW)`. Default: 1

        groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the

          number of groups. Default: 1

        padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros"

        scale: quantization scale for the output. Default: 1.0

        zero_point: quantization zero_point for the output. Default: 0

        dtype: quantization data type to use. Default: ``torch.quint8``



    Examples::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)

        >>> from torch.ao.nn.quantized import functional as qF

        >>> filters = torch.randn(8, 4, 3, 3, dtype=torch.float)

        >>> inputs = torch.randn(1, 4, 5, 5, dtype=torch.float)

        >>> bias = torch.randn(8, dtype=torch.float)

        >>>

        >>> scale, zero_point = 1.0, 0

        >>> dtype_inputs = torch.quint8

        >>> dtype_filters = torch.qint8

        >>>

        >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)

        >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)

        >>> qF.conv2d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)

    """  # noqa: E501
    if padding_mode != 'zeros':
        raise NotImplementedError("Only zero-padding is supported!")
    if input.dtype != torch.quint8:
        raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
    if weight.dtype != torch.qint8:
        raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
    if input.ndim != 4:
        raise ValueError("Input shape must be `(N, C, H, W)`!")
    stride = _pair(stride)
    padding = _pair(padding)
    dilation = _pair(dilation)

    packed_params = torch.ops.quantized.conv2d_prepack(
        weight, bias, stride, padding, dilation, groups)
    return torch.ops.quantized.conv2d(input, packed_params, scale, zero_point)

def conv3d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1,

           padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8):
    r"""

    Applies a 3D convolution over a quantized 3D input composed of several input

    planes.



    See :class:`~torch.ao.nn.quantized.Conv3d` for details and output shape.



    Args:

        input: quantized input tensor of shape

          :math:`(\text{minibatch} , \text{in\_channels} , iD , iH , iW)`

        weight: quantized filters of shape

          :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW)`

        bias: **non-quantized** bias tensor of shape

          :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.

        stride: the stride of the convolving kernel. Can be a single number or a

          tuple `(sD, sH, sW)`. Default: 1

        padding: implicit paddings on both sides of the input. Can be a

          single number or a tuple `(padD, padH, padW)`. Default: 0

        dilation: the spacing between kernel elements. Can be a single number or

          a tuple `(dD, dH, dW)`. Default: 1

        groups: split input into groups, :math:`\text{in\_channels}` should be

          divisible by the number of groups. Default: 1

        padding_mode: the padding mode to use. Only "zeros" is supported for

          quantized convolution at the moment. Default: "zeros"

        scale: quantization scale for the output. Default: 1.0

        zero_point: quantization zero_point for the output. Default: 0

        dtype: quantization data type to use. Default: ``torch.quint8``



    Examples::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)

        >>> from torch.ao.nn.quantized import functional as qF

        >>> filters = torch.randn(8, 4, 3, 3, 3, dtype=torch.float)

        >>> inputs = torch.randn(1, 4, 5, 5, 5, dtype=torch.float)

        >>> bias = torch.randn(8, dtype=torch.float)

        >>>

        >>> scale, zero_point = 1.0, 0

        >>> dtype_inputs = torch.quint8

        >>> dtype_filters = torch.qint8

        >>>

        >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)

        >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)

        >>> qF.conv3d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)

    """  # noqa: E501
    if padding_mode != 'zeros':
        raise NotImplementedError("Only zero-padding is supported!")
    if input.dtype != torch.quint8:
        raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
    if weight.dtype != torch.qint8:
        raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
    if input.ndim != 5:
        raise ValueError("Input shape must be `(N, C, D, H, W)`!")
    stride = _triple(stride)
    padding = _triple(padding)
    dilation = _triple(dilation)

    packed_params = torch.ops.quantized.conv3d_prepack(
        weight, bias, stride, padding, dilation, groups)
    return torch.ops.quantized.conv3d(input, packed_params, scale, zero_point)

def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
    r"""Down/up samples the input to either the given :attr:`size` or the given

    :attr:`scale_factor`



    See :func:`torch.nn.functional.interpolate` for implementation details.



    The input dimensions are interpreted in the form:

    `mini-batch x channels x [optional depth] x [optional height] x width`.



    .. note:: The input quantization parameters propagate to the output.



    .. note:: Only 2D/3D input is supported for quantized inputs



    .. note:: Only the following modes are supported for the quantized inputs:



        - `bilinear`

        - `nearest`



    Args:

        input (Tensor): the input tensor

        size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):

            output spatial size.

        scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.

        mode (str): algorithm used for upsampling:

            ``'nearest'`` | ``'bilinear'``

        align_corners (bool, optional): Geometrically, we consider the pixels of the

            input and output as squares rather than points.

            If set to ``True``, the input and output tensors are aligned by the

            center points of their corner pixels, preserving the values at the corner pixels.

            If set to ``False``, the input and output tensors are aligned by the corner

            points of their corner pixels, and the interpolation uses edge value padding

            for out-of-boundary values, making this operation *independent* of input size

            when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`

            is ``'bilinear'``.

            Default: ``False``

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.interpolate' must be quantized!")
    return torch.nn.functional.interpolate(input, size, scale_factor, mode,
                                           align_corners)

def linear(

    input: Tensor, weight: Tensor, bias: Optional[Tensor] = None,

    scale: Optional[float] = None, zero_point: Optional[int] = None

) -> Tensor:
    r"""

    Applies a linear transformation to the incoming quantized data:

    :math:`y = xA^T + b`.

    See :class:`~torch.ao.nn.quantized.Linear`



    .. note::



      Current implementation packs weights on every call, which has penalty on performance.

      If you want to avoid the overhead, use :class:`~torch.ao.nn.quantized.Linear`.



    Args:

      input (Tensor): Quantized input of type `torch.quint8`

      weight (Tensor): Quantized weight of type `torch.qint8`

      bias (Tensor): None or fp32 bias of type `torch.float`

      scale (double): output scale. If None, derived from the input scale

      zero_point (long): output zero point. If None, derived from the input zero_point



    Shape:

        - Input: :math:`(N, *, in\_features)` where `*` means any number of

          additional dimensions

        - Weight: :math:`(out\_features, in\_features)`

        - Bias: :math:`(out\_features)`

        - Output: :math:`(N, *, out\_features)`

    """
    if scale is None:
        scale = input.q_scale()
    if zero_point is None:
        zero_point = input.q_zero_point()
    _packed_params = torch.ops.quantized.linear_prepack(weight, bias)
    return torch.ops.quantized.linear(input, _packed_params, scale, zero_point)

def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,

               ceil_mode=False, return_indices=False):
    r"""Applies a 1D max pooling over a quantized input signal composed of

    several quantized input planes.



    .. note:: The input quantization parameters are propagated to the output.



    See :class:`~torch.ao.nn.quantized.MaxPool1d` for details.

    """
    if return_indices:
        raise NotImplementedError("return_indices is not yet implemented!")
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.nn.functional.max_pool1d(input, kernel_size, stride, padding,
                                          dilation, ceil_mode=ceil_mode, return_indices=return_indices)

def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,

               ceil_mode=False, return_indices=False):
    r"""Applies a 2D max pooling over a quantized input signal composed of

    several quantized input planes.



    .. note:: The input quantization parameters are propagated to the output.



    See :class:`~torch.ao.nn.quantized.MaxPool2d` for details.

    """
    if return_indices:
        raise NotImplementedError("return_indices is not yet implemented!")
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.nn.functional.max_pool2d(input, kernel_size, stride, padding,
                                          dilation, ceil_mode=ceil_mode, return_indices=return_indices)

def celu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor:
    r"""celu(input, scale, zero_point, alpha=1.) -> Tensor



    Applies the quantized CELU function element-wise.



    .. math::

        \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x / \alpha) - 1))



    Args:

        input: quantized input

        alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.celu' must be quantized!")
    return torch.ops.quantized.celu(input, scale, zero_point, alpha)


def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False,

               scale: Optional[float] = None, zero_point: Optional[int] = None):
    r"""

    Quantized version of the.

    leaky_relu(input, negative_slope=0.01, inplace=False, scale, zero_point) -> Tensor



    Applies element-wise,

    :math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`



    Args:

        input: Quantized input

        negative_slope: The slope of the negative input

        inplace: Inplace modification of the input tensor

        scale, zero_point: Scale and zero point of the output tensor.



    See :class:`~torch.nn.LeakyReLU` for more details.

    """
    if scale is not None and zero_point is not None:
        assert not inplace, "Cannot rescale with `inplace`"
        output = torch._empty_affine_quantized(
            input.shape, scale=scale, zero_point=int(zero_point), dtype=input.dtype)
        torch._C._nn.leaky_relu(input, negative_slope, out=output)
        return output
    if inplace:
        result = torch._C._nn.leaky_relu_(input, negative_slope)
    else:
        result = torch._C._nn.leaky_relu(input, negative_slope)
    return result

def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor:
    r"""This is the quantized version of :func:`~torch.nn.functional.hardtanh`.

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.hardtanh' must be quantized!")
    if inplace:
        return torch._C._nn.hardtanh_(input, min_val, max_val)
    return torch._C._nn.hardtanh(input, min_val, max_val)

def hardswish(input: Tensor, scale: float, zero_point: int) -> Tensor:
    r"""This is the quantized version of :func:`~torch.nn.functional.hardswish`.



    Args:

        input: quantized input

        scale: quantization scale of the output tensor

        zero_point: quantization zero point of the output tensor

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.hardswish' must be quantized!")
    return torch._ops.ops.quantized.hardswish(input, scale, zero_point)

def threshold(input: Tensor, threshold: float, value: float) -> Tensor:
    r"""Applies the quantized version of the threshold function element-wise:



    .. math::

        x = \begin{cases}

                x & \text{if~} x > \text{threshold} \\

                \text{value} & \text{otherwise}

            \end{cases}



    See :class:`~torch.nn.Threshold` for more details.

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.threshold' must be quantized!")
    if threshold is None:
        raise ValueError("Input to 'threshold' must be specified!")
    if value is None:
        raise ValueError("Input to 'value' must be specified!")
    return torch._ops.ops.quantized.threshold(input, threshold, value)

def elu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor:
    r"""This is the quantized version of :func:`~torch.nn.functional.elu`.



    Args:

        input: quantized input

        scale: quantization scale of the output tensor

        zero_point: quantization zero point of the output tensor

        alpha: the alpha constant

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.elu' must be quantized!")
    return torch.ops.quantized.elu(input, scale, zero_point, alpha)

def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor:
    r"""This is the quantized version of :func:`~torch.nn.functional.hardsigmoid`.

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.hardsigmoid' must be quantized!")
    if inplace:
        return torch._C._nn.hardsigmoid_(input)  # type: ignore[attr-defined]
    return torch._C._nn.hardsigmoid(input)

def clamp(input: Tensor, min_: float, max_: float) -> Tensor:
    r"""float(input, min\_, max\_) -> Tensor



    Applies the clamp function element-wise.

    See :class:`~torch.ao.nn.quantized.clamp` for more details.



    Args:

        input: quantized input

        min_: minimum value for clamping

        max_: maximum value for clamping

    """
    if not input.is_quantized:
        raise ValueError("Input to 'quantized.clamp' must be quantized!")
    return torch.clamp(input, min_, max_)

def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
    r"""Upsamples the input to either the given :attr:`size` or the given

    :attr:`scale_factor`



    .. warning::

        This function is deprecated in favor of

        :func:`torch.ao.nn.quantized.functional.interpolate`.

        This is equivalent with ``nn.quantized.functional.interpolate(...)``.



    See :func:`torch.nn.functional.interpolate` for implementation details.



    The input dimensions are interpreted in the form:

    `mini-batch x channels x [optional depth] x [optional height] x width`.



    .. note:: The input quantization parameters propagate to the output.



    .. note:: Only 2D input is supported for quantized inputs



    .. note:: Only the following modes are supported for the quantized inputs:



        - `bilinear`

        - `nearest`



    Args:

        input (Tensor): quantized input tensor

        size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):

            output spatial size.

        scale_factor (float or Tuple[float]): multiplier for spatial size. Has to be an integer.

        mode (str): algorithm used for upsampling:

            ``'nearest'`` | ``'bilinear'``

        align_corners (bool, optional): Geometrically, we consider the pixels of the

            input and output as squares rather than points.

            If set to ``True``, the input and output tensors are aligned by the

            center points of their corner pixels, preserving the values at the corner pixels.

            If set to ``False``, the input and output tensors are aligned by the corner

            points of their corner pixels, and the interpolation uses edge value padding

            for out-of-boundary values, making this operation *independent* of input size

            when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`

            is ``'bilinear'``.

            Default: ``False``



    .. warning::

        With ``align_corners = True``, the linearly interpolating modes

        (`bilinear`) don't proportionally align the

        output and input pixels, and thus the output values can depend on the

        input size. This was the default behavior for these modes up to version

        0.3.1. Since then, the default behavior is ``align_corners = False``.

        See :class:`~torch.nn.Upsample` for concrete examples on how this

        affects the outputs.

    """
    warnings.warn("nn.quantized.functional.upsample is deprecated. Use nn.quantized.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode, align_corners)

def upsample_bilinear(input, size=None, scale_factor=None):
    r"""Upsamples the input, using bilinear upsampling.



    .. warning::

        This function is deprecated in favor of

        :func:`torch.ao.nn.quantized.functional.interpolate`.

        This is equivalent with

        ``nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)``.



    .. note:: The input quantization parameters propagate to the output.



    .. note:: Only 2D inputs are supported



    Args:

        input (Tensor): quantized input

        size (int or Tuple[int, int]): output spatial size.

        scale_factor (int or Tuple[int, int]): multiplier for spatial size

    """
    # DeprecationWarning is ignored by default
    warnings.warn("nn.quantized.functional.upsample_bilinear is deprecated. Use nn.quantized.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True)

def upsample_nearest(input, size=None, scale_factor=None):
    r"""Upsamples the input, using nearest neighbours' pixel values.



    .. warning::

        This function is deprecated in favor of

        :func:`torch.ao.nn.quantized.functional.interpolate`.

        This is equivalent with ``nn.quantized.functional.interpolate(..., mode='nearest')``.



    .. note:: The input quantization parameters propagate to the output.



    .. note:: Only 2D inputs are supported



    Args:

        input (Tensor): quantized input

        size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial

            size.

        scale_factor (int): multiplier for spatial size. Has to be an integer.

    """
    # DeprecationWarning is ignored by default
    warnings.warn("nn.quantized.functional.upsample_nearest is deprecated. Use nn.quantized.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode='nearest')