File size: 18,543 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import math

from typing import Iterable, List, Literal, NamedTuple, Optional, Sequence, Tuple, Union

import torch
import torch._prims as prims
import torch._prims_common as utils
from torch._decomp import register_decomposition
from torch._prims_common import DimsType, ShapeType, TensorLikeType
from torch._prims_common.wrappers import _maybe_convert_to_dtype, out_wrapper

__all__ = [
    # Transforms
    "fft",
    "fft2",
    "fftn",
    "hfft",
    "hfft2",
    "hfftn",
    "rfft",
    "rfft2",
    "rfftn",
    "ifft",
    "ifft2",
    "ifftn",
    "ihfft",
    "ihfft2",
    "ihfftn",
    "irfft",
    "irfft2",
    "irfftn",
    # Helpers
    "fftshift",
    "ifftshift",
]

NormType = Union[None, Literal["forward", "backward", "ortho"]]
_NORM_VALUES = {None, "forward", "backward", "ortho"}
aten = torch._ops.ops.aten


def _apply_norm(

    x: TensorLikeType, norm: NormType, signal_numel: int, forward: bool

) -> TensorLikeType:
    """Apply normalization to the un-normalized FFT result"""
    torch._check(norm in _NORM_VALUES, lambda: f"Invalid normalization mode: {norm}")

    if norm == "ortho":
        return x * (1 / math.sqrt(signal_numel))

    normalize = (not forward and (norm is None or norm == "backward")) or (
        forward and norm == "forward"
    )
    return x * (1 / signal_numel) if normalize else x


def _promote_type_fft(

    dtype: torch.dtype, require_complex: bool, device: torch.device

) -> torch.dtype:
    """Helper to promote a dtype to one supported by the FFT primitives"""
    if dtype.is_complex:
        return dtype

    # Promote integral to default float type
    if not dtype.is_floating_point:
        dtype = torch.get_default_dtype()

    allowed_types = [torch.float32, torch.float64]
    maybe_support_half = device.type in ["cuda", "meta"]

    if maybe_support_half:
        allowed_types.append(torch.float16)
    torch._check(dtype in allowed_types, lambda: f"Unsupported dtype {dtype}")

    if require_complex:
        dtype = utils.corresponding_complex_dtype(dtype)

    return dtype


def _maybe_promote_tensor_fft(

    t: TensorLikeType, require_complex: bool = False

) -> TensorLikeType:
    """Helper to promote a tensor to a dtype supported by the FFT primitives"""
    cur_type = t.dtype
    new_type = _promote_type_fft(cur_type, require_complex, t.device)
    return _maybe_convert_to_dtype(t, new_type)  # type: ignore[return-value]


def _resize_fft_input(

    x: TensorLikeType, dims: Tuple[int, ...], sizes: Tuple[int, ...]

) -> TensorLikeType:
    """

    Fixes the shape of x such that x.size(dims[i]) == sizes[i],

    either by zero-padding, or by slicing x starting from 0.

    """
    assert len(dims) == len(sizes)
    must_copy = False
    x_sizes = x.shape
    pad_amount = [0] * len(x_sizes) * 2
    for i in range(len(dims)):
        if sizes[i] == -1:
            continue

        if x_sizes[dims[i]] < sizes[i]:
            must_copy = True
            pad_idx = len(pad_amount) - 2 * dims[i] - 1
            pad_amount[pad_idx] = sizes[i] - x_sizes[dims[i]]

        if x_sizes[dims[i]] > sizes[i]:
            x = x.narrow(dims[i], 0, sizes[i])

    return torch.constant_pad_nd(x, pad_amount) if must_copy else x


def _fft_c2r(

    func_name: str,

    input: TensorLikeType,

    n: Optional[int],

    dim: int,

    norm: NormType,

    forward: bool,

) -> TensorLikeType:
    """Common code for performing any complex to real FFT (irfft or hfft)"""
    input = _maybe_promote_tensor_fft(input, require_complex=True)
    dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
    last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1)
    torch._check(
        last_dim_size >= 1,
        lambda: f"Invalid number of data points ({last_dim_size}) specified",
    )

    if n is not None:
        input = _resize_fft_input(input, dims=dims, sizes=(last_dim_size // 2 + 1,))

    if forward:
        input = torch.conj(input)

    output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size)
    return _apply_norm(output, norm=norm, signal_numel=last_dim_size, forward=forward)


def _fft_r2c(

    func_name: str,

    input: TensorLikeType,

    n: Optional[int],

    dim: int,

    norm: NormType,

    forward: bool,

    onesided: bool,

) -> TensorLikeType:
    """Common code for performing any real to complex FFT (rfft or ihfft)"""
    torch._check(
        not input.dtype.is_complex,
        lambda: f"{func_name} expects a floating point input tensor, but got {input.dtype}",
    )
    input = _maybe_promote_tensor_fft(input)
    dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
    dim_size = n if n is not None else input.shape[dim]
    torch._check(
        dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
    )

    if n is not None:
        input = _resize_fft_input(input, dims, (n,))

    ret = prims.fft_r2c(input, dim=dims, onesided=onesided)
    ret = _apply_norm(ret, norm, dim_size, forward)
    return ret if forward else torch.conj(ret)


def _fft_c2c(

    func_name: str,

    input: TensorLikeType,

    n: Optional[int],

    dim: int,

    norm: NormType,

    forward: bool,

) -> TensorLikeType:
    """Common code for performing any complex to complex FFT (fft or ifft)"""
    torch._check(
        input.dtype.is_complex,
        lambda: f"{func_name} expects a complex input tensor, but got {input.dtype}",
    )
    dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
    dim_size = n if n is not None else input.shape[dim]
    torch._check(
        dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
    )

    if n is not None:
        input = _resize_fft_input(input, dims, (n,))

    ret = prims.fft_c2c(input, dim=dims, forward=forward)
    return _apply_norm(ret, norm, dim_size, forward)


@register_decomposition(aten.fft_fft)
@out_wrapper()
def fft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    if input.dtype.is_complex:
        return _fft_c2c("fft", input, n, dim, norm, forward=True)
    else:
        return _fft_r2c("fft", input, n, dim, norm, forward=True, onesided=False)


@register_decomposition(aten.fft_ifft)
@out_wrapper()
def ifft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    if input.dtype.is_complex:
        return _fft_c2c("ifft", input, n, dim, norm, forward=False)
    else:
        return _fft_r2c("ifft", input, n, dim, norm, forward=False, onesided=False)


@register_decomposition(aten.fft_rfft)
@out_wrapper()
def rfft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    return _fft_r2c("rfft", input, n, dim, norm, forward=True, onesided=True)


@register_decomposition(aten.fft_irfft)
@out_wrapper()
def irfft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    return _fft_c2r("irfft", input, n, dim, norm, forward=False)


@register_decomposition(aten.fft_hfft)
@out_wrapper()
def hfft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    return _fft_c2r("hfft", input, n, dim, norm, forward=True)


@register_decomposition(aten.fft_ihfft)
@out_wrapper()
def ihfft(

    input: TensorLikeType,

    n: Optional[int] = None,

    dim: int = -1,

    norm: NormType = None,

) -> TensorLikeType:
    return _fft_r2c("ihfft", input, n, dim, norm, forward=False, onesided=True)


class _ShapeAndDims(NamedTuple):
    shape: Tuple[int, ...]
    dims: Tuple[int, ...]


def _canonicalize_fft_shape_and_dim_args(

    input: TensorLikeType, shape: Optional[ShapeType], dim: Optional[DimsType]

) -> _ShapeAndDims:
    """Convert the shape and dim arguments into a canonical form where neither are optional"""
    input_dim = input.ndim
    input_sizes = input.shape

    if dim is not None:
        if not isinstance(dim, Sequence):
            dim = (dim,)
        ret_dims = utils.canonicalize_dims(input_dim, dim, wrap_scalar=False)

        # Check dims are unique
        torch._check(
            len(set(ret_dims)) == len(ret_dims), lambda: "FFT dims must be unique"
        )

    if shape is not None:
        if not isinstance(shape, Sequence):
            shape = (shape,)

        # Has shape, might have dim
        torch._check(
            dim is None or len(dim) == len(shape),
            lambda: "When given, dim and shape arguments must have the same length",
        )
        transform_ndim = len(shape)

        torch._check(
            transform_ndim <= input_dim,
            lambda: f"Got shape with {transform_ndim} values but input tensor "
            f"only has {input_dim} dimensions.",
        )

        # If shape is given, dims defaults to the last len(shape) dimensions
        if dim is None:
            ret_dims = tuple(range(input_dim - transform_ndim, input_dim))

        # Translate any -1 values in shape to the default length
        ret_shape = tuple(
            s if s != -1 else input_sizes[d] for (s, d) in zip(shape, ret_dims)  # type: ignore[possibly-undefined]
        )
    elif dim is None:
        # No shape, no dim
        ret_dims = tuple(range(input_dim))
        ret_shape = tuple(input_sizes)
    else:
        # No shape, has dim
        ret_shape = tuple(input_sizes[d] for d in ret_dims)  # type: ignore[possibly-undefined]

    for n in ret_shape:
        torch._check(n > 0, lambda: f"Invalid number of data points ({n}) specified")

    return _ShapeAndDims(shape=ret_shape, dims=ret_dims)  # type: ignore[possibly-undefined]


def _prod(xs: Iterable[int]) -> int:
    """Compute product of a list"""
    prod = 1
    for x in xs:
        prod *= x
    return prod


def _fftn_c2c(

    function_name: str,

    input: TensorLikeType,

    shape: Tuple[int, ...],

    dim: Tuple[int, ...],

    norm: NormType,

    forward: bool,

) -> TensorLikeType:
    """Common code for n-dimensional complex to complex FFTs (fftn or ifftn)"""
    torch._check(
        input.dtype.is_complex,
        lambda: f"{function_name} expects a complex input tensor, "
        f"but got {input.dtype}",
    )
    x = _resize_fft_input(input, dim, shape)
    output = prims.fft_c2c(x, dim=dim, forward=forward)
    return _apply_norm(output, norm=norm, signal_numel=_prod(shape), forward=forward)


@register_decomposition(aten.fft_fftn)
@out_wrapper()
def fftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
    x = _maybe_promote_tensor_fft(input, require_complex=True)
    return _fftn_c2c("fftn", x, shape, dim, norm, forward=True)


@register_decomposition(aten.fft_ifftn)
@out_wrapper()
def ifftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
    x = _maybe_promote_tensor_fft(input, require_complex=True)
    return _fftn_c2c("ifftn", x, shape, dim, norm, forward=False)


@register_decomposition(aten.fft_rfftn)
@out_wrapper()
def rfftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    torch._check(
        not input.dtype.is_complex,
        lambda: f"rfftn expects a real-valued input tensor, but got {input.dtype}",
    )
    shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
    input = _maybe_promote_tensor_fft(input, require_complex=False)
    input = _resize_fft_input(input, dim, shape)
    out = prims.fft_r2c(input, dim=dim, onesided=True)
    return _apply_norm(out, norm=norm, signal_numel=_prod(shape), forward=True)


@register_decomposition(aten.fft_ihfftn)
@out_wrapper()
def ihfftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    torch._check(
        not input.dtype.is_complex,
        lambda: f"ihfftn expects a real-valued input tensor, but got {input.dtype}",
    )
    shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
    torch._check(len(shape) > 0, lambda: "ihfftn must transform at least one axis")
    input = _maybe_promote_tensor_fft(input, require_complex=False)
    input = _resize_fft_input(input, dim, shape)

    tmp = prims.fft_r2c(input, dim=dim[-1:], onesided=True)

    if len(dim) == 1:
        tmp = _apply_norm(tmp, norm=norm, signal_numel=shape[0], forward=False)
        return prims.conj(tmp)

    tmp = prims.conj_physical(tmp)
    tmp = prims.fft_c2c(tmp, dim=dim[:-1], forward=False)
    return _apply_norm(tmp, norm=norm, signal_numel=_prod(shape), forward=False)


class _CanonicalizeC2rReturn(NamedTuple):
    shape: Tuple[int, ...]
    dim: Tuple[int, ...]
    last_dim_size: int


def _canonicalize_fft_c2r_shape_and_dim_args(

    fname: str,

    input: TensorLikeType,

    s: Optional[ShapeType],

    dim: Optional[DimsType],

) -> _CanonicalizeC2rReturn:
    """Canonicalize shape and dim arguments for n-dimensional c2r transforms,

    as well as calculating the last_dim_size which is shape[dim[-1]] for the output"""
    (shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
    torch._check(len(shape) > 0, lambda: f"{fname} must transform at least one axis")

    if s is None or s[-1] == -1:
        last_dim_size = 2 * (input.shape[dim[-1]] - 1)
    else:
        last_dim_size = shape[-1]

    torch._check(
        last_dim_size >= 1,
        lambda: f"Invalid number of data points ({last_dim_size}) specified",
    )

    shape_list = list(shape)
    shape_list[-1] = last_dim_size // 2 + 1
    return _CanonicalizeC2rReturn(
        shape=tuple(shape_list), dim=dim, last_dim_size=last_dim_size
    )


@register_decomposition(aten.fft_irfftn)
@out_wrapper()
def irfftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
        "irfftn", input, s, dim
    )
    input = _maybe_promote_tensor_fft(input, require_complex=True)
    input = _resize_fft_input(input, dim, shape)
    out = prims.fft_c2r(input, dim=dim, last_dim_size=last_dim_size)
    return _apply_norm(out, norm, _prod(out.shape[d] for d in dim), forward=False)


@register_decomposition(aten.fft_hfftn)
@out_wrapper()
def hfftn(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = None,

    norm: NormType = None,

) -> TensorLikeType:
    shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
        "hfftn", input, s, dim
    )
    input = _maybe_promote_tensor_fft(input, require_complex=True)
    input = _resize_fft_input(input, dim, shape)

    tmp = prims.fft_c2c(input, dim=dim[:-1], forward=True) if len(dim) > 1 else input
    tmp = _apply_norm(tmp, norm, _prod(shape[:-1]), forward=True)
    tmp = prims.conj_physical(tmp)
    out = prims.fft_c2r(tmp, dim=dim[-1:], last_dim_size=last_dim_size)
    return _apply_norm(out, norm, last_dim_size, forward=True)


@register_decomposition(aten.fft_fft2)
@out_wrapper()
def fft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.fftn(input, s=s, dim=dim, norm=norm)


@register_decomposition(aten.fft_ifft2)
@out_wrapper()
def ifft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.ifftn(input, s=s, dim=dim, norm=norm)


@register_decomposition(aten.fft_rfft2)
@out_wrapper()
def rfft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.rfftn(input, s=s, dim=dim, norm=norm)


@register_decomposition(aten.fft_irfft2)
@out_wrapper()
def irfft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.irfftn(input, s=s, dim=dim, norm=norm)


@register_decomposition(aten.fft_hfft2)
@out_wrapper()
def hfft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.hfftn(input, s=s, dim=dim, norm=norm)


@register_decomposition(aten.fft_ihfft2)
@out_wrapper()
def ihfft2(

    input: TensorLikeType,

    s: Optional[ShapeType] = None,

    dim: Optional[DimsType] = (-2, -1),

    norm: NormType = None,

) -> TensorLikeType:
    return torch.fft.ihfftn(input, s=s, dim=dim, norm=norm)


def _default_alldims(dim: Optional[DimsType], x: TensorLikeType) -> List[int]:
    """Convert Optional[DimsType] to a simple list, defaulting to all dimensions"""
    if dim is None:
        return list(range(x.ndim))
    elif not isinstance(dim, Sequence):
        return [dim]
    else:
        return list(dim)


@register_decomposition(aten.fft_fftshift)
def fftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
    dims = _default_alldims(dim, input)
    shift = [input.shape[d] // 2 for d in dims]
    return torch.roll(input, shift, dims)


@register_decomposition(aten.fft_ifftshift)
def ifftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
    dims = _default_alldims(dim, input)
    shift = [(input.shape[d] + 1) // 2 for d in dims]
    return torch.roll(input, shift, dims)