File size: 17,226 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# mypy: ignore-errors

from __future__ import annotations

import builtins
import math
import operator
from typing import Sequence

import torch

from . import _dtypes, _dtypes_impl, _funcs, _ufuncs, _util
from ._normalizations import (
    ArrayLike,
    normalize_array_like,
    normalizer,
    NotImplementedType,
)

newaxis = None

FLAGS = [
    "C_CONTIGUOUS",
    "F_CONTIGUOUS",
    "OWNDATA",
    "WRITEABLE",
    "ALIGNED",
    "WRITEBACKIFCOPY",
    "FNC",
    "FORC",
    "BEHAVED",
    "CARRAY",
    "FARRAY",
]

SHORTHAND_TO_FLAGS = {
    "C": "C_CONTIGUOUS",
    "F": "F_CONTIGUOUS",
    "O": "OWNDATA",
    "W": "WRITEABLE",
    "A": "ALIGNED",
    "X": "WRITEBACKIFCOPY",
    "B": "BEHAVED",
    "CA": "CARRAY",
    "FA": "FARRAY",
}


class Flags:
    def __init__(self, flag_to_value: dict):
        assert all(k in FLAGS for k in flag_to_value.keys())  # sanity check
        self._flag_to_value = flag_to_value

    def __getattr__(self, attr: str):
        if attr.islower() and attr.upper() in FLAGS:
            return self[attr.upper()]
        else:
            raise AttributeError(f"No flag attribute '{attr}'")

    def __getitem__(self, key):
        if key in SHORTHAND_TO_FLAGS.keys():
            key = SHORTHAND_TO_FLAGS[key]
        if key in FLAGS:
            try:
                return self._flag_to_value[key]
            except KeyError as e:
                raise NotImplementedError(f"{key=}") from e
        else:
            raise KeyError(f"No flag key '{key}'")

    def __setattr__(self, attr, value):
        if attr.islower() and attr.upper() in FLAGS:
            self[attr.upper()] = value
        else:
            super().__setattr__(attr, value)

    def __setitem__(self, key, value):
        if key in FLAGS or key in SHORTHAND_TO_FLAGS.keys():
            raise NotImplementedError("Modifying flags is not implemented")
        else:
            raise KeyError(f"No flag key '{key}'")


def create_method(fn, name=None):
    name = name or fn.__name__

    def f(*args, **kwargs):
        return fn(*args, **kwargs)

    f.__name__ = name
    f.__qualname__ = f"ndarray.{name}"
    return f


# Map ndarray.name_method -> np.name_func
# If name_func == None, it means that name_method == name_func
methods = {
    "clip": None,
    "nonzero": None,
    "repeat": None,
    "round": None,
    "squeeze": None,
    "swapaxes": None,
    "ravel": None,
    # linalg
    "diagonal": None,
    "dot": None,
    "trace": None,
    # sorting
    "argsort": None,
    "searchsorted": None,
    # reductions
    "argmax": None,
    "argmin": None,
    "any": None,
    "all": None,
    "max": None,
    "min": None,
    "ptp": None,
    "sum": None,
    "prod": None,
    "mean": None,
    "var": None,
    "std": None,
    # scans
    "cumsum": None,
    "cumprod": None,
    # advanced indexing
    "take": None,
    "choose": None,
}

dunder = {
    "abs": "absolute",
    "invert": None,
    "pos": "positive",
    "neg": "negative",
    "gt": "greater",
    "lt": "less",
    "ge": "greater_equal",
    "le": "less_equal",
}

# dunder methods with right-looking and in-place variants
ri_dunder = {
    "add": None,
    "sub": "subtract",
    "mul": "multiply",
    "truediv": "divide",
    "floordiv": "floor_divide",
    "pow": "power",
    "mod": "remainder",
    "and": "bitwise_and",
    "or": "bitwise_or",
    "xor": "bitwise_xor",
    "lshift": "left_shift",
    "rshift": "right_shift",
    "matmul": None,
}


def _upcast_int_indices(index):
    if isinstance(index, torch.Tensor):
        if index.dtype in (torch.int8, torch.int16, torch.int32, torch.uint8):
            return index.to(torch.int64)
    elif isinstance(index, tuple):
        return tuple(_upcast_int_indices(i) for i in index)
    return index


# Used to indicate that a parameter is unspecified (as opposed to explicitly
# `None`)
class _Unspecified:
    pass


_Unspecified.unspecified = _Unspecified()

###############################################################
#                      ndarray class                          #
###############################################################


class ndarray:
    def __init__(self, t=None):
        if t is None:
            self.tensor = torch.Tensor()
        elif isinstance(t, torch.Tensor):
            self.tensor = t
        else:
            raise ValueError(
                "ndarray constructor is not recommended; prefer"
                "either array(...) or zeros/empty(...)"
            )

    # Register NumPy functions as methods
    for method, name in methods.items():
        fn = getattr(_funcs, name or method)
        vars()[method] = create_method(fn, method)

    # Regular methods but coming from ufuncs
    conj = create_method(_ufuncs.conjugate, "conj")
    conjugate = create_method(_ufuncs.conjugate)

    for method, name in dunder.items():
        fn = getattr(_ufuncs, name or method)
        method = f"__{method}__"
        vars()[method] = create_method(fn, method)

    for method, name in ri_dunder.items():
        fn = getattr(_ufuncs, name or method)
        plain = f"__{method}__"
        vars()[plain] = create_method(fn, plain)
        rvar = f"__r{method}__"
        vars()[rvar] = create_method(lambda self, other, fn=fn: fn(other, self), rvar)
        ivar = f"__i{method}__"
        vars()[ivar] = create_method(
            lambda self, other, fn=fn: fn(self, other, out=self), ivar
        )

    # There's no __idivmod__
    __divmod__ = create_method(_ufuncs.divmod, "__divmod__")
    __rdivmod__ = create_method(
        lambda self, other: _ufuncs.divmod(other, self), "__rdivmod__"
    )

    # prevent loop variables leaking into the ndarray class namespace
    del ivar, rvar, name, plain, fn, method

    @property
    def shape(self):
        return tuple(self.tensor.shape)

    @property
    def size(self):
        return self.tensor.numel()

    @property
    def ndim(self):
        return self.tensor.ndim

    @property
    def dtype(self):
        return _dtypes.dtype(self.tensor.dtype)

    @property
    def strides(self):
        elsize = self.tensor.element_size()
        return tuple(stride * elsize for stride in self.tensor.stride())

    @property
    def itemsize(self):
        return self.tensor.element_size()

    @property
    def flags(self):
        # Note contiguous in torch is assumed C-style
        return Flags(
            {
                "C_CONTIGUOUS": self.tensor.is_contiguous(),
                "F_CONTIGUOUS": self.T.tensor.is_contiguous(),
                "OWNDATA": self.tensor._base is None,
                "WRITEABLE": True,  # pytorch does not have readonly tensors
            }
        )

    @property
    def data(self):
        return self.tensor.data_ptr()

    @property
    def nbytes(self):
        return self.tensor.storage().nbytes()

    @property
    def T(self):
        return self.transpose()

    @property
    def real(self):
        return _funcs.real(self)

    @real.setter
    def real(self, value):
        self.tensor.real = asarray(value).tensor

    @property
    def imag(self):
        return _funcs.imag(self)

    @imag.setter
    def imag(self, value):
        self.tensor.imag = asarray(value).tensor

    # ctors
    def astype(self, dtype, order="K", casting="unsafe", subok=True, copy=True):
        if order != "K":
            raise NotImplementedError(f"astype(..., order={order} is not implemented.")
        if casting != "unsafe":
            raise NotImplementedError(
                f"astype(..., casting={casting} is not implemented."
            )
        if not subok:
            raise NotImplementedError(f"astype(..., subok={subok} is not implemented.")
        if not copy:
            raise NotImplementedError(f"astype(..., copy={copy} is not implemented.")
        torch_dtype = _dtypes.dtype(dtype).torch_dtype
        t = self.tensor.to(torch_dtype)
        return ndarray(t)

    @normalizer
    def copy(self: ArrayLike, order: NotImplementedType = "C"):
        return self.clone()

    @normalizer
    def flatten(self: ArrayLike, order: NotImplementedType = "C"):
        return torch.flatten(self)

    def resize(self, *new_shape, refcheck=False):
        # NB: differs from np.resize: fills with zeros instead of making repeated copies of input.
        if refcheck:
            raise NotImplementedError(
                f"resize(..., refcheck={refcheck} is not implemented."
            )
        if new_shape in [(), (None,)]:
            return

        # support both x.resize((2, 2)) and x.resize(2, 2)
        if len(new_shape) == 1:
            new_shape = new_shape[0]
        if isinstance(new_shape, int):
            new_shape = (new_shape,)

        if builtins.any(x < 0 for x in new_shape):
            raise ValueError("all elements of `new_shape` must be non-negative")

        new_numel, old_numel = math.prod(new_shape), self.tensor.numel()

        self.tensor.resize_(new_shape)

        if new_numel >= old_numel:
            # zero-fill new elements
            assert self.tensor.is_contiguous()
            b = self.tensor.flatten()  # does not copy
            b[old_numel:].zero_()

    def view(self, dtype=_Unspecified.unspecified, type=_Unspecified.unspecified):
        if dtype is _Unspecified.unspecified:
            dtype = self.dtype
        if type is not _Unspecified.unspecified:
            raise NotImplementedError(f"view(..., type={type} is not implemented.")
        torch_dtype = _dtypes.dtype(dtype).torch_dtype
        tview = self.tensor.view(torch_dtype)
        return ndarray(tview)

    @normalizer
    def fill(self, value: ArrayLike):
        # Both Pytorch and NumPy accept 0D arrays/tensors and scalars, and
        # error out on D > 0 arrays
        self.tensor.fill_(value)

    def tolist(self):
        return self.tensor.tolist()

    def __iter__(self):
        return (ndarray(x) for x in self.tensor.__iter__())

    def __str__(self):
        return (
            str(self.tensor)
            .replace("tensor", "torch.ndarray")
            .replace("dtype=torch.", "dtype=")
        )

    __repr__ = create_method(__str__)

    def __eq__(self, other):
        try:
            return _ufuncs.equal(self, other)
        except (RuntimeError, TypeError):
            # Failed to convert other to array: definitely not equal.
            falsy = torch.full(self.shape, fill_value=False, dtype=bool)
            return asarray(falsy)

    def __ne__(self, other):
        return ~(self == other)

    def __index__(self):
        try:
            return operator.index(self.tensor.item())
        except Exception as exc:
            raise TypeError(
                "only integer scalar arrays can be converted to a scalar index"
            ) from exc

    def __bool__(self):
        return bool(self.tensor)

    def __int__(self):
        return int(self.tensor)

    def __float__(self):
        return float(self.tensor)

    def __complex__(self):
        return complex(self.tensor)

    def is_integer(self):
        try:
            v = self.tensor.item()
            result = int(v) == v
        except Exception:
            result = False
        return result

    def __len__(self):
        return self.tensor.shape[0]

    def __contains__(self, x):
        return self.tensor.__contains__(x)

    def transpose(self, *axes):
        # np.transpose(arr, axis=None) but arr.transpose(*axes)
        return _funcs.transpose(self, axes)

    def reshape(self, *shape, order="C"):
        # arr.reshape(shape) and arr.reshape(*shape)
        return _funcs.reshape(self, shape, order=order)

    def sort(self, axis=-1, kind=None, order=None):
        # ndarray.sort works in-place
        _funcs.copyto(self, _funcs.sort(self, axis, kind, order))

    def item(self, *args):
        # Mimic NumPy's implementation with three special cases (no arguments,
        # a flat index and a multi-index):
        # https://github.com/numpy/numpy/blob/main/numpy/core/src/multiarray/methods.c#L702
        if args == ():
            return self.tensor.item()
        elif len(args) == 1:
            # int argument
            return self.ravel()[args[0]]
        else:
            return self.__getitem__(args)

    def __getitem__(self, index):
        tensor = self.tensor

        def neg_step(i, s):
            if not (isinstance(s, slice) and s.step is not None and s.step < 0):
                return s

            nonlocal tensor
            tensor = torch.flip(tensor, (i,))

            # Account for the fact that a slice includes the start but not the end
            assert isinstance(s.start, int) or s.start is None
            assert isinstance(s.stop, int) or s.stop is None
            start = s.stop + 1 if s.stop else None
            stop = s.start + 1 if s.start else None

            return slice(start, stop, -s.step)

        if isinstance(index, Sequence):
            index = type(index)(neg_step(i, s) for i, s in enumerate(index))
        else:
            index = neg_step(0, index)
        index = _util.ndarrays_to_tensors(index)
        index = _upcast_int_indices(index)
        return ndarray(tensor.__getitem__(index))

    def __setitem__(self, index, value):
        index = _util.ndarrays_to_tensors(index)
        index = _upcast_int_indices(index)

        if not _dtypes_impl.is_scalar(value):
            value = normalize_array_like(value)
            value = _util.cast_if_needed(value, self.tensor.dtype)

        return self.tensor.__setitem__(index, value)

    take = _funcs.take
    put = _funcs.put

    def __dlpack__(self, *, stream=None):
        return self.tensor.__dlpack__(stream=stream)

    def __dlpack_device__(self):
        return self.tensor.__dlpack_device__()


def _tolist(obj):
    """Recursively convert tensors into lists."""
    a1 = []
    for elem in obj:
        if isinstance(elem, (list, tuple)):
            elem = _tolist(elem)
        if isinstance(elem, ndarray):
            a1.append(elem.tensor.tolist())
        else:
            a1.append(elem)
    return a1


# This is the ideally the only place which talks to ndarray directly.
# The rest goes through asarray (preferred) or array.


def array(obj, dtype=None, *, copy=True, order="K", subok=False, ndmin=0, like=None):
    if subok is not False:
        raise NotImplementedError("'subok' parameter is not supported.")
    if like is not None:
        raise NotImplementedError("'like' parameter is not supported.")
    if order != "K":
        raise NotImplementedError()

    # a happy path
    if (
        isinstance(obj, ndarray)
        and copy is False
        and dtype is None
        and ndmin <= obj.ndim
    ):
        return obj

    if isinstance(obj, (list, tuple)):
        # FIXME and they have the same dtype, device, etc
        if obj and all(isinstance(x, torch.Tensor) for x in obj):
            # list of arrays: *under torch.Dynamo* these are FakeTensors
            obj = torch.stack(obj)
        else:
            # XXX: remove tolist
            # lists of ndarrays: [1, [2, 3], ndarray(4)] convert to lists of lists
            obj = _tolist(obj)

    # is obj an ndarray already?
    if isinstance(obj, ndarray):
        obj = obj.tensor

    # is a specific dtype requested?
    torch_dtype = None
    if dtype is not None:
        torch_dtype = _dtypes.dtype(dtype).torch_dtype

    tensor = _util._coerce_to_tensor(obj, torch_dtype, copy, ndmin)
    return ndarray(tensor)


def asarray(a, dtype=None, order="K", *, like=None):
    return array(a, dtype=dtype, order=order, like=like, copy=False, ndmin=0)


def ascontiguousarray(a, dtype=None, *, like=None):
    arr = asarray(a, dtype=dtype, like=like)
    if not arr.tensor.is_contiguous():
        arr.tensor = arr.tensor.contiguous()
    return arr


def from_dlpack(x, /):
    t = torch.from_dlpack(x)
    return ndarray(t)


def _extract_dtype(entry):
    try:
        dty = _dtypes.dtype(entry)
    except Exception:
        dty = asarray(entry).dtype
    return dty


def can_cast(from_, to, casting="safe"):
    from_ = _extract_dtype(from_)
    to_ = _extract_dtype(to)

    return _dtypes_impl.can_cast_impl(from_.torch_dtype, to_.torch_dtype, casting)


def result_type(*arrays_and_dtypes):
    tensors = []
    for entry in arrays_and_dtypes:
        try:
            t = asarray(entry).tensor
        except (RuntimeError, ValueError, TypeError):
            dty = _dtypes.dtype(entry)
            t = torch.empty(1, dtype=dty.torch_dtype)
        tensors.append(t)

    torch_dtype = _dtypes_impl.result_type_impl(*tensors)
    return _dtypes.dtype(torch_dtype)