Spaces:
Running
Running
File size: 12,128 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
"""
This file provides a number of "global" variables/handlers that are actually
thread local and dynamically scoped, with Inductor patching them to various
implementations depending on the situation.
These handlers are interacted with in a fairly stylized way. Typically,
we will import V from this module::
from .virtualized import V
Various handlers are accessible as attributes on this module; for example,
you might access ``V.graph.sizevars.size_hint`` to resolve a size hint associated with
a number.
There are a few distinct usage patterns for virtualized global variables:
1. Implicit argument passing. Examples: ``V.current_node``, ``V.aot_compilation``.
Use ``V.set_current_node`` to change what the current node is while we're
executing some region of code, so code inside that region can query ``V.current_node``
to find out what it is. This is often more convenient than manually threading
the current node as an argument through all call stacks.
2. Per-compilation global state. Examples: ``V.fake_mode``, ``V.graph``. For a
given ``compile_fx`` invocation, these typically don't change, but they are
associated with some internal state so they cannot just be global functions.
We install these objects at the beginning of compilation and then you can
conveniently access them without having to pass them around.
3. Alternate define-by-run interpretations. Examples: ``V.ops``, ``V.kernel``.
A commonly used IR in Inductor is define-by-run: instead of maintaining
explicit syntax data structures, we instead represent loop bodies as
callable functions, which internally invoke operations defined on
``V.ops``. To perform semantic analysis, print or code generate these
operations, we dynamically patch ``V.ops`` with an alternate handler with
the intended semantics and then run the callable function. For example, to
extract out a traditional (FX) graph representation of the define-by-run
IR, simply install a handler that records each ``ops`` call to a graph.
TODO: Define a parent class / protocol that defines all of the operations
V.ops is expected to support.
It is typically an error to access a virtualized global without having installed
an appropriate handler (you will get a NullHandler), although in some cases we
provide a default implementation.
One last thing: although most virtualized globals are accessed via ``V``, ``ops`` is
ubiquitous enough to have its own top level variable, so you will typically see
``ops.constant(...)`` rather than ``V.ops.constant(...)``. In fact, these are not
equivalent; the former interface supports arithmetic overloads like ``x + y``
instead of forcing ``ops.add(x, y)``, so it should be preferred.
Some operators are seemingly unused, but they are implicitly used by ops_wrapper.
In particular, we typically have an operator for every basic pointwise PyTorch operation
supported.
"""
from __future__ import annotations
from contextlib import AbstractContextManager, contextmanager
from threading import local
from typing import Any, Callable, Generic, List, Type, TYPE_CHECKING, TypeVar, Union
from .ops_handler import ( # noqa: F401
KernelFormatterHandler,
MockHandler,
OpsHandler,
ReductionType,
StoreMode,
WrapperHandler,
)
if TYPE_CHECKING:
import torch
from torch._inductor.debug import DebugContext
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import InterpreterShim
from torch._subclasses import FakeTensorMode
threadlocal = local()
T = TypeVar("T")
class NullHandler:
"""
Sentinel indicating that a global variable is unset ala None. Typically,
attempting to access the global variable before it's set is an error, but with
NullHandler it won't fail until you try to access an attribute on it.
"""
pass
class Virtualized(Generic[T]):
"""
Implements a global variable that redirects via thread local variable
(NB: construct this class to create the global variable; this is not
a singleton class!)
This allows us to swap in different op implementations in codegen.
NB: Despite the fact that we typically call these "handlers" (e.g., NullHandler is
the default value of the variable), we sometimes use these variables to
store other things, like booleans.
"""
def __init__(self, vname: str, default: Union[Callable[[], T], Type[NullHandler]]):
self._key: str = f"__torchinductor_{vname}"
self._default = default
def _set_handler(self, value: T) -> AbstractContextManager[None]:
prior = self._get_handler()
setattr(threadlocal, self._key, value)
@contextmanager
def ctx():
try:
yield
finally:
self._set_handler(prior)
return ctx()
def _get_handler(self) -> T:
try:
return getattr(threadlocal, self._key)
except AttributeError:
# TODO: To be honest, I feel we probably should just error in this
# case, instead of making a null handler that will probably error
# when you getattr on it
return self._default() # type: ignore[return-value]
def __getattr__(self, name: str) -> Any:
return getattr(self._get_handler(), name)
class NullKernelHandler(NullHandler):
"""
We need access `V.kernel.removed_buffers` in DeferredLine class when there
is no kernel in the context. This happens when codegening the wrapper.
Initialize `removed_buffers` and `inplaced_to_remove` explicitly so we don't
need call 'getattr' with default value which is error prone to typo in
attribute name.
"""
def __init__(self):
super().__init__()
self.removed_buffers = set()
self.inplaced_to_remove = set()
self.index_dtype = "tl.int64"
_ops: Virtualized[OpsHandler[Any]] = Virtualized("ops", MockHandler)
_graph: Virtualized[GraphLowering] = Virtualized("graph", NullHandler)
_real_inputs: Virtualized[List[torch.Tensor]] = Virtualized("real_inputs", NullHandler)
_fake_mode: Virtualized[FakeTensorMode] = Virtualized("fake_mode", NullHandler)
_kernel: Virtualized[NullKernelHandler] = Virtualized(
"kernel", NullKernelHandler
) # TODO: improve type
_debug: Virtualized[DebugContext] = Virtualized("debug", NullHandler)
_interpreter: Virtualized[InterpreterShim] = Virtualized("interpreter", NullHandler)
_aot_compilation: Virtualized[bool] = Virtualized("aot_compilation", NullHandler)
_current_node: Virtualized[torch.fx.Node] = Virtualized("current_node", NullHandler)
class OpsValue:
"""The return type of most ops calls.
This exists so we can overload magic methods, and write mathematical
expressions much more fluently. So instead of
ops.add(ops.mul(ops.mul(ops.sub(ops.mul(_Ap2, x), _Ap3), x), x), _1)
we can write
(_Ap2 * x - _Ap3) * x * x + _1
"""
value: Any
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self):
return f"OpsValue({self.value!r})"
def __add__(self, other):
return ops.add(self, other)
def __mul__(self, other):
return ops.mul(self, other)
def __sub__(self, other):
return ops.sub(self, other)
def __neg__(self):
return ops.neg(self)
def __truediv__(self, other):
return ops.truediv(self, other)
def __floordiv__(self, other):
return ops.floordiv(self, other)
def __mod__(self, other):
return ops.mod(self, other)
def __pow__(self, other):
return ops.pow(self, other)
def __lt__(self, other):
return ops.lt(self, other)
def __le__(self, other):
return ops.le(self, other)
def __eq__(self, other):
return ops.eq(self, other)
def __ne__(self, other):
return ops.ne(self, other)
def __gt__(self, other):
return ops.gt(self, other)
def __ge__(self, other):
return ops.ge(self, other)
def __and__(self, other):
return ops.bitwise_and(self, other)
def __or__(self, other):
return ops.bitwise_or(self, other)
def __xor__(self, other):
return ops.bitwise_xor(self, other)
def __invert__(self):
return ops.bitwise_not(self)
def __rshfit__(self, n):
return ops.bitwise_right_shift(self, n)
def __lshift__(self, n):
return ops.bitwise_left_shift(self, n)
class OpsWrapper:
"""This wraps any returned IR values into an `OpsValue` instance, so that we
can overload the magic methods for writing mathematical expressions fluently.
"""
def __getattr__(self, name):
def inner(*args, **kwargs):
new_args = [OpsWrapper._unwrap(a) for a in args]
new_kwargs = {k: OpsWrapper._unwrap(v) for k, v in kwargs.items()}
return OpsWrapper._wrap(getattr(_ops, name)(*new_args, **new_kwargs))
return inner
@staticmethod
def _unwrap(x):
if isinstance(x, (list, tuple)):
return tuple(OpsWrapper._unwrap(v) for v in x)
if isinstance(x, OpsValue):
return x.value
return x
@staticmethod
def _wrap(x):
if isinstance(x, (list, tuple)):
return tuple(OpsValue(v) for v in x)
return OpsValue(x)
@staticmethod
def indirect_indexing(index, size, check=True):
# Returns a sympy value, not IR value
index = OpsWrapper._unwrap(index)
return _ops.indirect_indexing(index, size, check)
ops = OpsWrapper()
class _V:
MockHandler = MockHandler
KernelFormatterHandler = KernelFormatterHandler
WrapperHandler = WrapperHandler
set_ops_handler: Callable[[Any], Any] = _ops._set_handler
get_ops_handler: Callable[[], Any] = _ops._get_handler
set_graph_handler: Callable[[GraphLowering], Any] = _graph._set_handler
set_real_inputs: Callable[[Any], Any] = _real_inputs._set_handler
get_real_inputs: Callable[[], Any] = _real_inputs._get_handler
set_fake_mode: Callable[[Any], Any] = _fake_mode._set_handler
get_fake_mode: Callable[[], Any] = _fake_mode._get_handler
set_kernel_handler: Callable[[Any], Any] = _kernel._set_handler
set_debug_handler: Callable[[Any], Any] = _debug._set_handler
set_interpreter_handler: Callable[[Any], Any] = _interpreter._set_handler
set_aot_compilation: Callable[[bool], Any] = _aot_compilation._set_handler
get_aot_compilation: Callable[[], Any] = _aot_compilation._get_handler
set_current_node: Callable[[Any], Any] = _current_node._set_handler
get_current_node: Callable[[], Any] = _current_node._get_handler
@property
def ops(self) -> OpsHandler[Any]:
"""The operator handler specific to the current codegen task"""
return _ops._get_handler()
@property
def graph(self) -> GraphLowering:
"""The graph currently being generated"""
return _graph._get_handler()
@property
def real_inputs(self):
"""non-fake example inputs"""
return _real_inputs._get_handler()
@property
def fake_mode(self):
"""The graph currently being generated"""
return _fake_mode._get_handler()
@property
def kernel(self):
"""The kernel currently being generated"""
return _kernel._get_handler()
@property
def debug(self):
return _debug._get_handler()
@property
def interpreter(self):
return _interpreter._get_handler()
@property
def aot_compilation(self):
return _aot_compilation._get_handler()
@property
def current_node(self):
return _current_node._get_handler()
V = _V()
|