Spaces:
Running
Running
File size: 44,867 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 |
from __future__ import annotations
import collections
import contextlib
import dataclasses
import enum
import functools
import getpass
import inspect
import io
import itertools
import logging
import math
import operator
import os
import platform
import re
import shutil
import sys
import tempfile
import textwrap
import time
import unittest
from dataclasses import fields
from datetime import datetime
from io import StringIO
from typing import (
Any,
Callable,
Dict,
Generic,
Iterable,
List,
NamedTuple,
Optional,
Protocol,
Set,
TypeVar,
Union,
ValuesView,
)
from unittest import mock
import sympy
from typing_extensions import Concatenate, ParamSpec
import torch
from torch._dynamo.device_interface import get_interface_for_device
from torch.autograd import DeviceType
from torch.autograd.profiler_util import EventList
from torch.utils._sympy.functions import CeilDiv, CleanDiv, FloorDiv, ModularIndexing
from . import config
log = logging.getLogger(__name__)
_T = TypeVar("_T")
VarRanges = Dict[sympy.Expr, sympy.Expr]
def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float:
"""
Returns benchmark results by examining torch profiler events.
This could be more accurate as it doesn't count CPU side overhead.
However, this also requires manually excluding irrelevant event, e.g.
vectorized_elementwise_kernel which is used to fill L2 cache,
various CUDA events, etc, so could also be fragile.
"""
fn()
torch.cuda.synchronize()
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda")
# Estimate the runtime of the function
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(5):
cache.zero_()
fn()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup / estimate_ms))
n_repeat = max(1, int(rep / estimate_ms))
# Warm-up
for _ in range(n_warmup):
fn()
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CUDA,
]
) as p:
# Benchmark
for i in range(n_repeat):
# we clear the L2 cache before each run
cache.zero_()
# record time of `fn`
fn()
# Record clocks
torch.cuda.synchronize()
log.debug("raw events")
log.debug(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))
filtered_events = EventList(
[
event
for event in p.events()
if event.device_type == DeviceType.CUDA and event.name != "Context Sync"
]
)
if len(filtered_events) % n_repeat != 0:
raise RuntimeError(
"Failed to divide all profiling events into #repeat groups. "
"#CUDA events: %d, #repeats: %s",
len(filtered_events),
n_repeat,
)
num_event_per_group = len(filtered_events) / n_repeat
actual_events = EventList(
[
event
for i, event in enumerate(filtered_events)
if i % num_event_per_group != 0
]
)
actual_events._build_tree()
actual_events = actual_events.key_averages()
log.debug("profiling time breakdown")
log.debug(actual_events.table(row_limit=-1))
res = sum(event.cuda_time_total for event in actual_events) / 1000.0 / n_repeat
log.debug("profiling results: %s ms", res)
return res
def do_bench(*args, **kwargs):
@functools.lru_cache(None)
def load_triton():
try:
# NB: Lazily load triton, as importing triton is slow
# see https://github.com/openai/triton/issues/1599
from triton.testing import do_bench as triton_do_bench
except ImportError as exc:
raise NotImplementedError("requires Triton") from exc
# triton PR https://github.com/openai/triton/pull/1513 change the
# quantile fields name from 'percentiles' to 'quantiles'
# and change the default value from (0.5, 0.2, 0.8) to None.
# This may break inductor since a caller expects a tuple may get a item.
#
# Add a wrapper to maintain the same behavior for inductor.
# Maybe we should have own implementation of this function?
return triton_do_bench, (
"quantiles"
if inspect.signature(triton_do_bench).parameters.get("quantiles")
is not None
else "percentiles"
)
triton_do_bench, quantile_field_name = load_triton()
if quantile_field_name not in kwargs:
kwargs[quantile_field_name] = (0.5, 0.2, 0.8)
return triton_do_bench(*args, **kwargs)[0]
@functools.lru_cache(None)
def has_torchvision_roi_align() -> bool:
try:
from torchvision.ops import roi_align # noqa: F401
return roi_align is not None and hasattr(
getattr(torch.ops, "torchvision", None), "roi_align"
)
except ImportError:
return False
def conditional_product(*args):
return functools.reduce(operator.mul, [x for x in args if x])
def decode_device(device: Union[Optional[torch.device], str]) -> torch.device:
if device is None:
return torch.tensor(0.0).device # default device
if isinstance(device, str):
device = torch.device(device)
if device.type != "cpu" and device.index is None:
device_interface = get_interface_for_device(device.type)
return torch.device(device.type, index=device_interface.Worker.current_device())
return device
def sympy_product(it):
return functools.reduce(operator.mul, it, sympy.Integer(1))
def sympy_dot(seq1, seq2):
assert len(seq1) == len(seq2)
return sympy.expand(sum(a * b for a, b in zip(seq1, seq2)))
def unique(it: Iterable[_T]) -> ValuesView[_T]:
return {id(x): x for x in it}.values()
def ceildiv(
numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr]
) -> Union[int, sympy.Expr]:
if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr):
return CeilDiv(numer, denom)
# TODO: There is a bug in a call to this function, to repro:
# python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy
# --amp --only YituTechConvBert --dynamic-shapes
assert isinstance(numer, int) and isinstance(
denom, int
), f"{numer}: {type(numer)}, {denom}: {type(denom)}"
return -(numer // -denom)
def next_power_of_2(n: int) -> int:
"""Return the smallest power of 2 greater than or equal to n"""
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n |= n >> 32
n += 1
return n
def _type_of(key):
# Use the function here to get rid of dependencies on the Triton during the codegen.
# Refer to Triton implementation here:
# https://github.com/openai/triton/blob/98b5945d2aef679e00ebca8e07c35c3658ec76de/python/triton/runtime/jit.py#L238
# `None` is nullptr. Implicitly convert to *i8.
if key is None:
return "*i8"
dtype_str = str(key).split(".")[-1]
tys = {
"bool": "i1",
"float8e4nv": "fp8e4nv",
"float8e5": "fp8e5",
"float8e4b15": "fp8e4b15",
"float8e4b15x4": "fp8e4b15x4",
"float8_e4m3fn": "fp8e4nv",
"float8_e5m2": "fp8e5",
"float16": "fp16",
"bfloat16": "bf16",
"float32": "fp32",
"float64": "fp64",
"int8": "i8",
"int16": "i16",
"int32": "i32",
"int64": "i64",
"uint8": "u8",
"uint16": "u16",
"uint32": "u32",
"uint64": "u64",
}
# reinterpret can create triton type
for v in list(tys.values()):
tys[v] = v
return key if isinstance(key, str) else f"*{tys[dtype_str]}"
def convert_shape_to_inductor(
lst: Iterable[Union[int, torch.SymInt]]
) -> List[sympy.Expr]:
"""
Gets the shape and stride of a tensor. For non-symbolic tensors, this is
trivial. But for symbolic tensors, we need to map from SymIntNode into
sympy.Expr.
"""
return [
i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst
]
def convert_shape_to_symint(
lst: Iterable[Union[int, sympy.Expr]]
) -> List[Union[int, torch.SymInt]]:
"""
Takes a list of shapes from Inductor and converts them into symints (or just
ints if all shapes are static).
"""
from .virtualized import V
return [
i
if isinstance(i, int)
else int(i)
if isinstance(i, sympy.Integer)
else V.graph.sizevars.shape_env.create_symintnode(i, hint=None)
for i in lst
]
def is_view(op: torch._ops.OpOverload):
"""
Does this op overload have aliasing
"""
assert isinstance(op, torch._ops.OpOverload)
return any(a.alias_info is not None for a in op._schema.arguments)
def is_pointwise_use(use):
if not use.op == "call_function":
return False
if not (
isinstance(use.target, torch._ops.OpOverload) or use.target is operator.getitem
):
return False
if use.target is operator.getitem or is_view(use.target):
return all(is_pointwise_use(u) for u in use.users)
return torch.Tag.pointwise in use.target.tags
def gen_gm_and_inputs(target, args, kwargs):
g = torch.fx.Graph()
g_args = []
a_args = []
for n, arg in enumerate(args):
if isinstance(arg, torch.Tensor):
g_args.append(g.placeholder(f"arg{n}"))
a_args.append(arg)
else:
g_args.append(arg)
assert all(not isinstance(x, torch.Tensor) for x in kwargs.values())
node = g.call_function(target, tuple(g_args), kwargs)
if (
len(target._schema.returns) == 1
and str(target._schema.returns[0].type) == "Tensor"
):
node = (node,)
g.output(node)
gm = torch.fx.GraphModule({}, g)
return gm, a_args
def synchronize(device: str = "cuda"):
if device == "cpu":
return
device_interface = get_interface_for_device(device)
if device_interface.is_available():
device_interface.synchronize()
def timed(
model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda"
) -> float:
synchronize(device)
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize(device)
t1 = time.perf_counter()
# GC the result after timing
assert result is not None # type: ignore[possibly-undefined]
return t1 - t0
def print_performance(
fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda"
):
timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)])
took = torch.median(timings) / times
print(f"{took/baseline:.6f}")
return took
def precompute_method(obj: Any, method: str):
"""Replace obj.method() with a new method that returns a precomputed constant."""
result = getattr(obj, method)()
setattr(obj, method, lambda: result)
def precompute_methods(obj: Any, methods: List[str]):
"""Replace methods with new methods that returns a precomputed constants."""
for method in methods:
precompute_method(obj, method)
def cmp(a, b) -> int:
return int(a > b) - int(a < b)
def pad_listlike(x, size):
if len(x) == 1:
return type(x)([x[0]]) * size
else:
return x
# Used to ensure that iterating over a set is deterministic
def tuple_sorted(x):
if len(x) == 0:
return []
def sort_func(elem):
if isinstance(elem, str):
return elem
else:
# We expect `elem` to be `scheduler.BaseSchedulerNode` type here,
# but we are not able to do isinstance assert because of circular dependency
return elem.get_name()
return sorted(x, key=sort_func)
P = ParamSpec("P")
RV = TypeVar("RV", covariant=True)
class CachedMethod(Generic[P, RV], Protocol):
@staticmethod
def clear_cache(self) -> None:
...
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> RV:
...
# See https://github.com/python/mypy/issues/13222#issuecomment-1193073470 to understand the type signature
def cache_on_self(fn: Callable[Concatenate[Any, P], RV]) -> CachedMethod[P, RV]:
key = f"__{fn.__name__}_cache"
@functools.wraps(fn)
def wrapper(self):
if not hasattr(self, key):
setattr(self, key, fn(self))
return getattr(self, key)
def clear_cache(self):
if hasattr(self, key):
delattr(self, key)
wrapper.clear_cache = clear_cache # type: ignore[attr-defined]
return wrapper # type: ignore[return-value]
def aggregate_origins(node_schedule):
from . import ir
if isinstance(node_schedule, list):
return functools.reduce(
operator.or_,
[
node.node.origins
for node in node_schedule
if hasattr(node, "node") and node.node
],
set(),
)
elif isinstance(node_schedule, ir.ExternKernel):
return node_schedule.origins
else:
return set()
def get_fused_kernel_name(node_schedule, descriptive_names):
all_origins = aggregate_origins(node_schedule)
if descriptive_names == "original_aten":
# Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions)
sources = [
origin.meta["original_aten"]._overloadpacket.__name__
for origin in all_origins
if origin.op == "call_function"
and "original_aten" in origin.meta
and origin.meta["original_aten"] is not None
]
sources = sorted(set(sources))
elif descriptive_names == "torch":
# Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph)
sources = []
for origin in all_origins:
if origin.op == "call_function" and "source_fn_stack" in origin.meta:
source_fn = origin.meta["source_fn_stack"][-1]
if isinstance(source_fn[1], str):
sources.append(source_fn[1])
else:
sources.append(source_fn[1].__name__)
sources = sorted(set(sources))
elif descriptive_names == "inductor_node":
sources = [
origin.name for origin in all_origins if origin.op == "call_function"
]
else:
raise NotImplementedError
sources = sources
return "_".join(["fused"] + sources)
def get_kernel_metadata(node_schedule, wrapper):
all_origins = aggregate_origins(node_schedule)
inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"]
from_node_dict = collections.defaultdict(list)
original_aten_dict = collections.defaultdict(list)
for node in inductor_nodes:
if "original_aten" in node.meta and node.meta["original_aten"] is not None:
key = str(node.meta["original_aten"]._overloadpacket)
original_aten_dict[key].append(node.name)
if "from_node" in node.meta:
key = node.meta["from_node"][0][0]
from_node_dict[key].append(node.name)
metadata = (
f"{wrapper.comment} Source Nodes: [{', '.join(sorted(from_node_dict.keys()))}], "
f"Original ATen: [{', '.join(sorted(original_aten_dict.keys()))}]"
)
# trace back to original node here
detailed_metadata = []
for original_node, nodes in sorted(from_node_dict.items()):
detailed_metadata.append(
f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}"
)
return metadata, "\n".join(detailed_metadata)
def dominated_nodes(
initial_queue: Iterable[torch.fx.Node], skip_filter=None
) -> Set[torch.fx.Node]:
"""Returns the set of nodes whose values depend on those within initial_queue"""
initial_queue = list(initial_queue)
dominated_set = set(initial_queue)
while initial_queue:
node = initial_queue.pop()
for user in node.users:
if skip_filter and skip_filter(user):
continue
if user not in dominated_set:
dominated_set.add(user)
initial_queue.append(user)
return dominated_set
def gather_origins(args, kwargs):
import itertools
from . import ir
def is_unrealized_node(n):
if isinstance(n, ir.TensorBox):
return is_unrealized_node(n.data)
if isinstance(n, ir.StorageBox):
return is_unrealized_node(n.data)
return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise)
kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)]
arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)]
return set(itertools.chain(*arg_origins, *kwarg_origins))
def sympy_str(expr: sympy.Expr) -> str:
"""
Normal sympy str is very slow, this is a lot faster. The result are
somewhat worse, as it doesn't do as much simplification. So don't
use this for final codegen.
"""
if isinstance(expr, sympy.Symbol):
return expr.name
if isinstance(expr, sympy.Add):
return " + ".join(map(sympy_str, expr.args))
if isinstance(expr, sympy.Mul):
return " * ".join(map(sympy_str, expr.args))
if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)):
return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})"
return str(expr)
def sympy_index_symbol(name: str) -> sympy.Symbol:
"""
Used to generate an integer-nonnegative symbol.
"""
# This should never be used for creating shape/stride symbols, as those
# should all be allocated before Inductor.
assert name[0] != "s"
# NOTE: shape symbols are positive (> 0), but index variables are only
# non-negative (>= 0).
return sympy.Symbol(name, integer=True, nonnegative=True)
def sympy_subs(expr: sympy.Expr, replacements: Dict[sympy.Expr, Any]) -> sympy.Expr:
"""
When the passed replacement symbol v is a string, it is converted to a symbol with name v that
have the same replaced expression integer and nonnegative properties.
"""
def to_symbol(replaced, replacement):
assert isinstance(replaced, sympy.Expr)
if isinstance(replacement, str):
return sympy.Symbol(
replacement,
integer=replaced.is_integer, # type: ignore[attr-defined]
nonnegative=replaced.is_nonnegative, # type: ignore[attr-defined]
)
else:
return replacement
# xreplace is faster than subs, but is way more picky
return sympy.sympify(expr).xreplace(
{k: to_symbol(k, v) for k, v in replacements.items()}
)
def free_symbol_startswith(index: sympy.Expr, prefix: str):
return any(v.name.startswith(prefix) for v in index.free_symbols) # type: ignore[attr-defined]
def free_symbol_has(index: sympy.Expr, pattern: str):
return any(pattern in v.name for v in index.free_symbols) # type: ignore[attr-defined]
def is_symbolic(a: Any) -> bool:
return isinstance(a, torch.SymInt) or (
isinstance(a, torch.Tensor)
and any(is_symbolic(x) for x in itertools.chain(a.size(), a.stride()))
)
def any_is_symbolic(*args: Any) -> bool:
return any(is_symbolic(a) for a in args)
def has_incompatible_cudagraph_ops(gm):
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
forbidden_set = {
"aten._fused_moving_avg_obs_fq_helper.default",
"aten._fused_moving_avg_obs_fq_helper_functional.default",
"aten.multinomial.default",
"fbgemm.dense_to_jagged.default",
"fbgemm.jagged_to_padded_dense.default",
"run_and_save_rng_state",
"run_with_rng_state",
"aten._local_scalar_dense",
# Technically, it's not necessary to ban this, because an
# assert_scalar with constant arguments can be validly run
# with CUDA graphs, but the operator is also pointless with
# constant arguments, so might as well ban
"aten._assert_scalar",
}
if torch.are_deterministic_algorithms_enabled():
forbidden_set.update(
{
"aten._unsafe_index_put.default",
"aten.index_put.default",
"aten.index_put_.default",
"aten.scatter.src",
"aten.scatter.reduce",
"aten.scatter.value_reduce",
"aten.scatter_add_",
"aten.scatter_add.default",
"aten.scatter_reduce.two",
"aten.scatter_reduce_.two",
"aten.scatter_reduce.two_out",
}
)
for node in gm.graph.nodes:
if str(node.target) in forbidden_set:
return True
if (val := node.meta.get("val")) is not None and free_unbacked_symbols(val):
return True
return False
def output_node(gm: torch.fx.GraphModule):
"""Get the output node from an FX graph"""
last_node = next(iter(reversed(gm.graph.nodes)))
assert last_node.op == "output"
return last_node
# Attempt to import AttrsDescriptor from Triton
try:
from triton.compiler.compiler import AttrsDescriptor
attrs_descriptor_available = True
# Determine if 'ids_of_folded_args' is a valid field for AttrsDescriptor
attr_desc_fields = {f.name for f in fields(AttrsDescriptor)}
ids_of_folded_args_available = "ids_of_folded_args" in attr_desc_fields
divisible_by_8_available = "divisible_by_8" in attr_desc_fields
except ImportError:
attrs_descriptor_available = False
# Define `instance_descriptor` function with clear conditional handling
if attrs_descriptor_available:
def instance_descriptor(
divisible_by_16=None,
equal_to_1=None,
ids_of_folded_args=None,
divisible_by_8=None,
):
# Prepare the arguments for AttrsDescriptor
kwargs = {
"divisible_by_16": divisible_by_16,
"equal_to_1": equal_to_1,
}
# Conditionally add 'ids_of_folded_args' if it's available in AttrsDescriptor
if ids_of_folded_args_available:
kwargs["ids_of_folded_args"] = ids_of_folded_args
if divisible_by_8_available:
kwargs["divisible_by_8"] = divisible_by_8
# Instantiate AttrsDescriptor with the prepared arguments
return AttrsDescriptor(**kwargs)
else:
# Define a namedtuple as a fallback when AttrsDescriptor is not available
instance_descriptor = collections.namedtuple( # type: ignore[no-redef]
"instance_descriptor",
["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"],
defaults=[tuple(), tuple(), tuple(), tuple()],
)
@functools.lru_cache(None)
def cache_dir() -> str:
cache_dir = os.environ.get("TORCHINDUCTOR_CACHE_DIR")
if cache_dir is None:
sanitized_username = re.sub(r'[\\/:*?"<>|]', "_", getpass.getuser())
cache_dir = os.path.join(
tempfile.gettempdir(),
"torchinductor_" + sanitized_username,
)
os.makedirs(cache_dir, exist_ok=True)
return cache_dir
@contextlib.contextmanager
def fresh_inductor_cache(cache_entries=None):
"""
Contextmanager that provides a clean tmp cachedir for inductor.
Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes
generated with this cache instance.
"""
with tempfile.TemporaryDirectory() as inductor_cache_dir:
with mock.patch.dict(
os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir}
):
triton_cache_dir = os.path.join(inductor_cache_dir, "triton")
with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}):
yield
if isinstance(cache_entries, dict):
assert len(cache_entries) == 0, "expected empty cache_entries dict"
if os.path.exists(triton_cache_dir):
files = os.listdir(triton_cache_dir)
cache_entries.update(
{
f: os.path.getsize(os.path.join(triton_cache_dir, f))
for f in files
if ".lock" not in f
}
)
def argsort(seq) -> List[int]:
# preserve original order for equal strides
getter = seq.__getitem__
a_r = range(len(seq))
return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413
@functools.lru_cache(8)
def get_dtype_size(dtype):
return torch.empty((), dtype=dtype).element_size()
class LineContext(NamedTuple):
context: Any
class IndentedBuffer:
tabwidth = 4
def __init__(self, initial_indent=0):
self._lines = []
self._indent = initial_indent
def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]:
buf = StringIO()
p = 1
linemap = []
for line in self._lines:
if isinstance(line, DeferredLineBase):
line = line()
if line is None:
continue
elif isinstance(line, LineContext):
linemap.append((p, line.context))
continue
assert isinstance(line, str)
buf.write(line)
buf.write("\n")
p += 1 + line.count("\n")
return buf.getvalue(), linemap
def getvalue(self) -> str:
v, _ = self.getvaluewithlinemap()
return v
def getrawvalue(self) -> str:
buf = StringIO()
for line in self._lines:
if isinstance(line, DeferredLineBase):
line = line()
if line is None:
continue
elif isinstance(line, LineContext):
continue
assert isinstance(line, str)
# backslash implies line continuation
if line.endswith("\\"):
buf.write(line[:-1])
else:
buf.write(line)
buf.write("\n")
return buf.getvalue()
def clear(self):
self._lines.clear()
def __bool__(self):
return bool(self._lines)
def prefix(self):
return " " * (self._indent * self.tabwidth)
def newline(self):
self.writeline("\n")
def writeline(self, line):
if isinstance(line, LineContext):
self._lines.append(line)
elif isinstance(line, DeferredLineBase):
self._lines.append(line.with_prefix(self.prefix()))
elif line.strip():
self._lines.append(f"{self.prefix()}{line}")
else:
self._lines.append("")
def writelines(self, lines):
for line in lines:
self.writeline(line)
def indent(self, offset=1):
@contextlib.contextmanager
def ctx():
self._indent += offset
try:
yield
finally:
self._indent -= offset
return ctx()
def do_indent(self, offset=1):
self._indent += offset
def do_unindent(self, offset=1):
self._indent -= offset
def splice(self, other_code, strip=False):
if isinstance(other_code, IndentedBuffer):
dedent = float("inf")
for line in other_code._lines:
if not isinstance(line, LineContext) and line:
dedent = min(dedent, len(line) - len(line.lstrip()))
if math.isinf(dedent):
dedent = 0
for line in other_code._lines:
if isinstance(line, LineContext):
self._lines.append(line)
else:
IndentedBuffer.writeline(self, line[int(dedent) :])
else:
other_code = textwrap.dedent(other_code)
if strip:
other_code = other_code.lstrip()
if not other_code:
return
other_code = other_code.rstrip()
for line in other_code.split("\n"):
self.writeline(line)
def __repr__(self):
return f"{type(self)}({self.getvalue()})"
class DeferredLineBase:
"""A line that can be 'unwritten' at a later time"""
def __init__(self, line):
if not line.strip():
line = ""
self.line = line
def __call__(self) -> Optional[str]:
"""Returns either self.line or None to indicate the line has been 'unwritten'"""
raise NotImplementedError()
def _new_line(self, line: str) -> DeferredLineBase:
"""Returns a new deferred line with the same condition"""
raise NotImplementedError()
def with_prefix(self, prefix):
return self._new_line(f"{prefix}{self.line}")
def lstrip(self):
return self._new_line(self.line.lstrip())
def __getitem__(self, index):
return self._new_line(self.line[index])
def __bool__(self):
return bool(self.line)
def __len__(self):
return len(self.line)
@functools.lru_cache(None)
def is_big_gpu(index):
sms = torch.cuda.get_device_properties(index).multi_processor_count
if sms < 80: # V100
log.warning("not enough SMs to use max_autotune_gemm mode")
return False
return True
def use_max_autotune() -> bool:
return (
config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache
)
def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool:
return (
use_max_autotune()
and layout.device.type == "cuda"
and layout.dtype in allowed_layout_dtypes
and is_big_gpu(layout.device.index or 0)
)
def _use_autotune_backend(backend: str) -> bool:
return backend.upper() in [
x.strip() for x in config.max_autotune_gemm_backends.upper().split(",")
]
def use_triton_template(layout, *, enable_int32=False):
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32]
if enable_int32:
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
return _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
"TRITON"
)
def use_cutlass_template(layout):
from .codegen.cuda.cutlass_utils import try_import_cutlass
# Do not use cutlass template on ROCm
if torch.version.hip:
return False
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32]
res = _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
"CUTLASS"
)
if res:
if not try_import_cutlass():
log.warning(
"Failed to import CUTLASS lib. Please check whether "
"_inductor.config.cuda.cutlass_dir is set correctly. "
"Skipping CUTLASS backend for now."
)
return False
return res
def use_aten_gemm_kernels():
return not use_max_autotune() or _use_autotune_backend("ATEN")
class DebugDirManager:
counter = itertools.count(0)
prev_debug_name: str
def __init__(self):
self.id = next(DebugDirManager.counter)
def __enter__(self):
self.prev_debug_name = torch._dynamo.config.debug_dir_root
self.new_name = f"{self.prev_debug_name}_tmp_{self.id}"
torch._dynamo.config.debug_dir_root = self.new_name
def __exit__(self, *args):
shutil.rmtree(self.new_name)
torch._dynamo.config.debug_dir_root = self.prev_debug_name
def run_and_get_code(fn, *args, **kwargs):
from .graph import GraphLowering
compile_to_module = GraphLowering.compile_to_module
source_codes = []
def patched_compile_to_module(self):
mod = compile_to_module(self)
with open(mod.__file__) as f:
source_codes.append(f.read())
return mod
# If FX code caching is enabled, a hit prevents getting the code.
with config.patch({"fx_graph_cache": False}):
with mock.patch.object(
GraphLowering, "compile_to_module", patched_compile_to_module
):
torch._dynamo.reset()
result = fn(*args, **kwargs)
return result, source_codes
def run_and_get_triton_code(fn, *args, **kwargs):
_, source_codes = run_and_get_code(fn, *args, **kwargs)
# Can have two outputs if backwards was eagerly compiled
assert (
1 <= len(source_codes) <= 2
), f"expected one or two code outputs got {len(source_codes)}"
return source_codes[0]
@contextlib.contextmanager
def override_lowering(aten_op, override_fn):
"""
Override the lowering of aten_op with override_fn.
The first argument of override_fn is the original lowering fn.
"""
from torch._inductor import lowering
orig_fn = lowering.lowerings[aten_op]
try:
lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn)
yield
finally:
lowering.lowerings[aten_op] = orig_fn
def add_scheduler_init_hook(pre_fn, post_fn=None):
"""
Add hook functions to be called at the beginning and end of Scheduler.__init__.
Used for unit tests.
"""
from torch._inductor.scheduler import Scheduler
orig_fn = Scheduler.__init__
def wrapper(scheduler, nodes):
pre_fn(scheduler, nodes)
out = orig_fn(scheduler, nodes)
if post_fn:
post_fn(scheduler, nodes)
return out
return unittest.mock.patch.object(Scheduler, "__init__", wrapper)
def developer_warning(msg):
"""
Warnings that will be actionable for PyTorch developers, but not
end users. Allows us to easily disable them in stable releases but
keep them on for nightly builds.
"""
if config.developer_warnings:
log.warning(msg)
else:
log.info(msg)
def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int:
"""
Return the total number of bytes the arguments of tensor type takes.
For in/out args, tensor sizes are counted twice: once for reading and
once for writing.
The first num_in_out_args arguments are in out tensors.
"""
return sum(
arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args))
for i, arg in enumerate(args)
if isinstance(arg, torch.Tensor)
)
def create_bandwidth_info_str(ms, num_gb, gb_per_s, prefix="", suffix="", color=True):
info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}"
slow = ms > 0.012 and gb_per_s < 650
return red_text(info_str) if color and slow else info_str
def get_benchmark_name():
"""
An experimental API used only when config.benchmark_kernel is true.
The benchmark name is only available at codegen time. So we can not
directly call it in benchmark_all_kernels which is run after codegen.
The function assumes the argument after --only is the benchmark name.
It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc
scripts, this function may return None.
There are 2 flavors of --only argument we need handle:
1. --only model_name
2. --only=model_name
"""
try:
idx = sys.argv.index("--only")
if (
idx + 1 < len(sys.argv)
and len(sys.argv[idx + 1]) > 0
and sys.argv[idx + 1][0] != "-"
):
return sys.argv[idx + 1]
except ValueError:
pass
for arg in sys.argv:
if arg.startswith("--only="):
return arg[len("--only=") :]
def is_ones(items):
return all(x == 1 for x in items)
def is_zeros(items):
return all(x == 0 for x in items)
def is_cpu_device(inputs):
return all(
item.device == torch.device("cpu")
for item in inputs
if isinstance(item, torch.Tensor)
)
def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype:
assert isinstance(
val, sympy.Expr
), "only support sympy.Expr as input to get_sympy_Expr_dtype"
if val.is_integer: # type: ignore[attr-defined]
return torch.int64
else:
return torch.float64
@contextlib.contextmanager
def maybe_profile(should_profile, *args, **kwargs):
if should_profile:
with torch.profiler.profile(*args, **kwargs) as p:
yield p
else:
yield
def triton_config_to_hashable(cfg):
"""
Convert triton config to a tuple that can uniquely identify it. We can use
the return value as a dictionary key.
"""
items = sorted(cfg.kwargs.items())
items.append(("num_warps", cfg.num_warps))
items.append(("num_stages", cfg.num_stages))
return tuple(items)
def parallel_num_threads():
threads = config.cpp.threads
if threads < 1:
threads = torch.get_num_threads()
return threads
HAS_COLORAMA = True
try:
import colorama
except ImportError:
HAS_COLORAMA = False
def _color_text(msg, color):
if not HAS_COLORAMA:
return msg
return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET
def green_text(msg):
return _color_text(msg, "green")
def yellow_text(msg):
return _color_text(msg, "yellow")
def red_text(msg):
return _color_text(msg, "red")
def blue_text(msg):
return _color_text(msg, "blue")
@functools.lru_cache(None)
def get_device_tflops(dtype):
from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops
assert dtype in (torch.float16, torch.bfloat16, torch.float32)
if inspect.signature(get_max_simd_tflops).parameters.get("clock_rate"):
# Triton API change in https://github.com/openai/triton/pull/2293
from torch._utils_internal import max_clock_rate
sm_clock = max_clock_rate()
if dtype in (torch.float16, torch.bfloat16):
return get_max_tensorcore_tflops(dtype, sm_clock)
if torch.backends.cuda.matmul.allow_tf32:
return get_max_tensorcore_tflops(torch.float32, sm_clock)
else:
return get_max_simd_tflops(torch.float32, sm_clock)
else:
if dtype in (torch.float16, torch.bfloat16):
return get_max_tensorcore_tflops(dtype)
if torch.backends.cuda.matmul.allow_tf32:
return get_max_tensorcore_tflops(torch.float32)
else:
return get_max_simd_tflops(torch.float32)
@functools.lru_cache(None)
def get_gpu_dram_gbps():
from triton.testing import get_dram_gbps
return get_dram_gbps()
def is_welford_reduction(reduction_type):
return reduction_type.startswith("welford")
def reduction_num_outputs(reduction_type):
return 3 if is_welford_reduction(reduction_type) else 1
def get_max_y_grid():
return 65535
def is_linux() -> bool:
return platform.system() == "Linux"
def has_free_symbols(itr: Iterable[Any]):
return any(isinstance(x, sympy.Expr) and not x.is_number for x in itr)
def is_dynamic(*args):
from . import ir
for t in args:
if isinstance(t, ir.TensorBox):
if has_free_symbols(t.data.get_size()) or (
hasattr(t.data, "get_stride") and has_free_symbols(t.data.get_stride())
):
return True
elif isinstance(t, (ir.StorageBox, ir.BaseView, ir.ComputedBuffer)):
assert hasattr(t, "get_size") and hasattr(t, "get_stride")
if has_free_symbols(t.get_size()) or has_free_symbols(t.get_stride()):
return True
elif not isinstance(t, ir.IRNode):
continue
else:
raise TypeError(f"unexpected type for is_dynamic {type(t)}")
return False
# Placeholder strings used in triton codegen.
class Placeholder(enum.Enum):
# The placeholder for the actual name of a triton kernel.
# e.g. for "def triton_" it would be "triton_"
KERNEL_NAME = "KERNEL_NAME"
# The descriptive name of the triton kernel; when unique_kernel_names = False, this
# placeholder will be replaced with a string with more information.
DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME"
def pass_execution_and_save(func, gm, msg):
from .pattern_matcher import stable_topological_sort
with tempfile.NamedTemporaryFile(
mode="w",
encoding="utf-8",
delete=False,
) as f:
before_io = io.StringIO()
after_io = io.StringIO()
print(f"Before:\n{gm.graph}", file=f)
print(gm.graph, file=before_io)
start_time = datetime.now()
func(gm.graph)
time_elapsed = datetime.now() - start_time
# recompile graph
stable_topological_sort(gm.graph)
gm.graph.lint()
gm.recompile()
print(f"After:\n{gm.graph}", file=f)
print(gm.graph, file=after_io)
t = before_io.getvalue() == after_io.getvalue()
log.info(
"%s, save before/after graph to %s, graph before/after are the same = %s, time elapsed = %s",
msg,
f.name,
t,
time_elapsed,
)
def is_collective(node):
from . import ir
return isinstance(node, ir.CollectiveKernel) or type(node) == ir._CollectiveKernel
def is_wait(node):
from . import ir
return isinstance(node, ir.Wait) or type(node) == ir._WaitKernel
def num_fw_fixed_arguments(dynamo_gm_num_inputs: int, aot_fw_gm_num_inputs: int):
"Computes the number of inputs to the aot fw graph which have fixed addresses (params and buffers)"
num_rng_seed_offset_inputs = (
2 if torch._functorch.config.functionalize_rng_ops else 0
)
return aot_fw_gm_num_inputs - dynamo_gm_num_inputs - num_rng_seed_offset_inputs
def count_tangents(fx_g: torch.fx.GraphModule):
"""
Infers which inputs are static for a backwards graph
"""
def is_saved_tensor(x):
return (
"tangents" not in x.name
and "bwd_seed" not in x.name
and "bwd_base_offset" not in x.name
)
arg_count = 0
static_arg_idxs = []
for n in fx_g.graph.nodes:
if n.op == "placeholder":
if is_saved_tensor(n):
static_arg_idxs.append(arg_count)
arg_count += 1
assert static_arg_idxs == list(range(len(static_arg_idxs)))
return len(static_arg_idxs)
@dataclasses.dataclass
class BoxedBool:
value: bool
def __bool__(self):
return self.value
@staticmethod
def disable(obj):
if isinstance(obj, BoxedBool):
obj.value = False
return obj
return False
@contextlib.contextmanager
def collect_defined_kernels(kernel_list):
from .codegen.wrapper import WrapperCodeGen
orig_define_kernel = WrapperCodeGen.define_kernel
def new_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs):
nonlocal kernel_list
kernel_list.append(kernel_code)
return orig_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs)
with unittest.mock.patch.object(WrapperCodeGen, "define_kernel", new_define_kernel):
yield
|