File size: 22,131 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import collections
import contextlib
import cProfile
import dataclasses
import functools
import itertools
import logging
import os
import os.path
import pickle
import pstats
import shutil
import subprocess
from typing import Any, Dict, List, Optional
from unittest.mock import patch

from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled

import torch
from torch import fx as fx

from torch._dynamo.repro.after_aot import save_graph_repro, wrap_compiler_debug
from torch._dynamo.utils import get_debug_dir
from torch.fx.graph_module import GraphModule
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.fx.passes.tools_common import legalize_graph
from torch.utils._pytree import tree_map

from . import config, ir  # noqa: F811, this is needed
from .scheduler import (
    BaseSchedulerNode,
    FusedSchedulerNode,
    NopKernelSchedulerNode,
    OutputNode,
    SchedulerNode,
)
from .virtualized import V

log = logging.getLogger(__name__)

SchedulerNodeList = List[Any]
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]


@functools.lru_cache(None)
def has_dot() -> bool:
    try:
        subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE)
        return True
    except subprocess.SubprocessError:
        return False


def draw_buffers(nodes: List[BaseSchedulerNode], print_graph=False, fname=None):
    """

    Draw a graph in fname.svg.

    """
    if not has_dot():
        log.warning("draw_buffers() requires `graphviz` package")
        return

    if fname is None:
        fname = get_graph_being_compiled()

    graph = create_fx_from_snodes(nodes)

    for node in graph.nodes:
        if "fusion_meta" not in node.meta:
            continue
        group = node.meta["fusion_meta"].group
        if isinstance(group, tuple):
            if isinstance(group[1], int):
                group = (group[1],)
            else:
                group = group[1]

        # gather meta data
        dtype = None
        if isinstance(node, ir.ComputedBuffer):
            dtype = node.data.dtype

        metadata = TensorMetadata(group, dtype, None, None, None, None, None)  # type: ignore[arg-type]
        node.meta["tensor_meta"] = metadata

    if print_graph:
        print(graph)

    gm = GraphModule({}, graph)
    legalize_graph(gm)
    gm.graph.lint()
    draw_graph(
        gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
    )


def create_fx_from_snodes(snodes: List[BaseSchedulerNode]) -> fx.Graph:
    """

    Creates a FX Graph from a list of SchedulerNode objects.

    """

    def get_fake_func(name):
        def func1(*args):
            return 0

        func1.__name__ = name
        return func1

    FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])

    buf_to_fx_node = {}
    graph = torch.fx.Graph()
    first_node = None

    outputs = []
    group: Any = None
    # create call_function node for each Buffer and Kernel
    for snode in snodes:
        if snode.is_extern():
            node_type = "extern"
            group = node_type
        elif snode.is_template():
            node_type = "template"
            group = node_type
        elif isinstance(snode, NopKernelSchedulerNode):
            node_type = "nop"
            group = node_type
        elif isinstance(snode, SchedulerNode):
            node_type = "compute"
            group = snode.group
        elif isinstance(snode, FusedSchedulerNode):
            node_type = "fused"
            group = snode.group
        else:
            raise RuntimeError("Unknown node type")

        fused_name = torch._inductor.utils.get_fused_kernel_name(
            snode.get_nodes(), "original_aten"
        )
        func_name = f"{node_type}: {fused_name}"
        node_func = get_fake_func(func_name)
        kwargs = {}
        if hasattr(snode, "get_device"):
            kwargs = {"device": snode.get_device()}
        fx_node = graph.call_function(node_func, args=(), kwargs=kwargs)

        def in_output(snode):
            if isinstance(snode, FusedSchedulerNode):
                return any(in_output(x) for x in snode.snodes)
            return any(isinstance(user.node, OutputNode) for user in snode.users)

        if in_output(snode):
            outputs.append(fx_node)
        name = snode.get_name()
        fx_node.name = name

        fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)

        if isinstance(snode, FusedSchedulerNode):
            for x in snode.snodes:
                buf_to_fx_node[x.get_name()] = fx_node
        buf_to_fx_node[name] = fx_node

        if first_node is None:
            first_node = fx_node

    # create edges between nodes
    for snode in snodes:
        name = snode.get_name()
        deps = snode.read_writes.reads

        fx_node = buf_to_fx_node[name]
        new_args = []
        for dep in deps:
            if dep.name in buf_to_fx_node:
                dep_node = buf_to_fx_node[dep.name]
            else:
                with graph.inserting_before(first_node):
                    dep_node = graph.placeholder(dep.name)
                    buf_to_fx_node[dep.name] = dep_node
            new_args.append(dep_node)

        fx_node.args = tuple(new_args)

    graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
    return graph


def update_orig_fx_node_name_to_buf_name(

    nodes: SchedulerNodeList,

    node_name_to_buf_name: Dict[str, str],

    parent_buf_name: Optional[str] = None,

    n_origins: int = 0,

):
    if nodes is None:
        return
    for node in nodes:
        # for FusedSchedulerNode, traverse recursively into get_nodes()
        buf_name = node.get_name()
        children_nodes = node.get_nodes()
        if children_nodes is not None and len(children_nodes) > 1:
            update_orig_fx_node_name_to_buf_name(
                children_nodes,
                node_name_to_buf_name,
                buf_name if parent_buf_name is None else parent_buf_name,
            )
            continue
        else:
            assert len(children_nodes) == 1 and children_nodes[0] == node

        ir_node = node.node
        if ir_node is None or ir_node.origins is None:
            continue
        for origin in ir_node.origins:
            node_name = origin.name
            # when buf1 and buf2 both have origin=node1
            # we draw node1 according to buf1
            if node_name not in node_name_to_buf_name:
                node_name_to_buf_name[node_name] = (
                    buf_name if parent_buf_name is None else parent_buf_name
                )


def get_node_name_to_buf_meta(node_name_to_buf_name: Dict[str, str]):
    buf_name_to_n_node = {}
    for node_name, buf_name in node_name_to_buf_name.items():
        if buf_name not in buf_name_to_n_node:
            buf_name_to_n_node[buf_name] = {node_name}
        else:
            buf_name_to_n_node[buf_name].add(node_name)

    node_name_to_buf_meta = {}
    for node_name, buf_name in node_name_to_buf_name.items():
        n_node = len(buf_name_to_n_node[buf_name])
        node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
    return node_name_to_buf_meta


def annotate_orig_fx_with_snodes(

    gm: torch.fx.GraphModule, snodes: SchedulerNodeList

) -> None:
    """

    Creates a FX Graph from a list of SchedulerNode objects.

    """
    node_name_to_buf_name: Dict[str, str] = {}
    update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
    if node_name_to_buf_name is None:
        return
    node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
    for node in gm.graph.nodes:
        if node.name in node_name_to_buf_meta:
            node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)


@contextlib.contextmanager
def enable_aot_logging():
    compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"

    import torch._functorch.aot_autograd

    log = logging.getLogger(torch._functorch.aot_autograd.__name__)

    stack = contextlib.ExitStack()
    if not compile_debug:
        try:
            yield
        finally:
            stack.close()
        return

    # Enable all graphs to be logged to a file by setting the flags to True
    # and the log level of the file logger to DEBUG
    stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))

    path = os.path.join(get_debug_dir(), "torchinductor")
    os.makedirs(path, exist_ok=True)

    fh = logging.FileHandler(
        os.path.join(
            path,
            f"aot_{get_aot_graph_name()}_debug.log",
        )
    )
    fh.setLevel(logging.DEBUG)
    fh.setFormatter(
        logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
    )
    log.addHandler(fh)
    try:
        yield
    finally:
        log.removeHandler(fh)
        stack.close()


class DebugContext:
    _counter = itertools.count()

    @staticmethod
    def wrap(fn):
        @functools.wraps(fn)
        def inner(*args, **kwargs):
            with DebugContext():
                return fn(*args, **kwargs)

        return wrap_compiler_debug(inner, compiler_name="inductor")

    @staticmethod
    def create_debug_dir(folder_name: str) -> Optional[str]:
        debug_dir = config.trace.debug_dir or get_debug_dir()
        for n in DebugContext._counter:
            dirname = os.path.join(
                debug_dir,
                "torchinductor",
                f"{folder_name}.{n}",
            )
            if not os.path.exists(dirname):
                os.makedirs(dirname)
                return dirname
        return None

    def __init__(self):
        self._prof = None
        self._path = None
        self._stack = contextlib.ExitStack()

    def copy(self, new_path: str):
        if not self._path:
            return
        assert new_path.endswith(".debug"), new_path
        if os.path.exists(new_path):
            shutil.rmtree(new_path)
        try:
            shutil.copytree(self._path, new_path)
            self._path = new_path
        except OSError:
            log.warning(
                "Failed to copy debug files from %s to %s", self._path, new_path
            )
            pass

    def fopen(self, filename: str, write_mode: str = "w", *args, **kwargs):
        assert self._path
        return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)

    @contextlib.contextmanager
    def fopen_context(self, filename: str, write_mode: str = "w", *args, **kwargs):
        assert self._path
        with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
            yield f

    def filename(self, suffix: str):
        assert self._path
        return os.path.join(self._path, suffix)

    def upload_tar(self):
        if config.trace.upload_tar is not None:
            import tarfile

            assert self._path
            tar_file = os.path.join(
                self._path, f"{os.path.basename(self._path)}.tar.gz"
            )
            with tarfile.open(tar_file, "w:gz") as tar:
                tar.add(self._path, arcname=os.path.basename(self._path))
            config.trace.upload_tar(tar_file)

    def __enter__(self):
        if config.debug:
            log = logging.getLogger("torch._dynamo")
            prev_level = log.level
            log.setLevel(logging.DEBUG)

            def reset_log_level(level):
                log.setLevel(level)

            self._stack.callback(reset_log_level, prev_level)

        self._stack.enter_context(V.set_debug_handler(self))

        if not config.trace.enabled:
            return

        self._path = self.create_debug_dir(get_aot_graph_name())

        if config.trace.debug_log:
            self._setup_log_capture("debug.log", logging.DEBUG)
        if config.trace.info_log:
            self._setup_log_capture("info.log", logging.INFO)
        if config.trace.compile_profile:
            self._prof = cProfile.Profile()
            self._prof.enable()

    def _setup_log_capture(self, filename: str, level: int):
        log = logging.getLogger("torch._inductor")
        fd = self._stack.enter_context(self.fopen(filename))
        ch = logging.StreamHandler(fd)
        ch.setLevel(level)
        ch.setFormatter(
            logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
        )
        log.addHandler(ch)
        log.setLevel(min(log.level, level))
        self._stack.callback(log.removeHandler, ch)

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self._prof:
            self._prof.disable()
            self._save_profile_data()

        if self._path:
            self.upload_tar()
            log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
        self._stack.close()

    def _save_profile_data(self):
        assert self._prof
        self._prof.dump_stats(self.filename("compile.prof"))
        with self.fopen("compile.stats") as fd:
            stats = pstats.Stats(self._prof, stream=fd)
            stats.strip_dirs()
            stats.sort_stats("cumtime")
            stats.print_stats(100)
            stats.sort_stats("tottime")
            stats.print_stats(100)

    def __getattr__(self, name):
        if config.trace.enabled and getattr(config.trace, name):
            try:
                return getattr(DebugFormatter(self), name)
            except Exception:
                log.warning("Ignoring exception in debug code", exc_info=True)
        else:

            def ignored(*args, **kwargs):
                pass

            return ignored


class DebugFormatter:
    def __init__(self, handler):
        self.fopen = handler.fopen
        self.fopen_context = handler.fopen_context
        self.filename = handler.filename
        self.handler = handler

    def fx_graph(self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]):
        with self.fopen("fx_graph_runnable.py") as fd:
            save_graph_repro(fd, gm, inputs, "inductor")

        with self.fopen("fx_graph_readable.py") as fd:
            fd.write(gm.print_readable(print_output=False))

    def fx_graph_transformed(

        self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]

    ):
        with self.fopen("fx_graph_transformed.py") as fd:
            fd.write(gm.print_readable(print_output=False))

    def ir_pre_fusion(self, nodes: SchedulerNodeList):
        self._write_ir("ir_pre_fusion.txt", nodes)

    def ir_post_fusion(self, nodes: SchedulerNodeList):
        self._write_ir("ir_post_fusion.txt", nodes)

    def _write_ir(self, filename: str, nodes: SchedulerNodeList):
        with self.fopen(filename) as fd:
            log.info("Writing debug ir to  %s", fd.name)
            for node in nodes:
                fd.write(node.debug_str())
                fd.write("\n\n\n")

    def graph_diagram(self, nodes: SchedulerNodeList):
        draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))

    def draw_orig_fx_graph(self, gm: torch.fx.GraphModule, nodes: SchedulerNodeList):
        annotate_orig_fx_with_snodes(gm, nodes)
        draw_graph(
            gm,
            fname=self.filename("orig_fx_graph_diagram.svg"),
            clear_meta=False,
            prog=GRAPHVIZ_COMMAND_SCALABLE,
            parse_stack_trace=True,
            dot_graph_shape=config.trace.dot_graph_shape,
        )

    def output_code(self, filename):
        shutil.copy(filename, self.filename("output_code.py"))

    def log_autotuning_results(

        self,

        name: str,

        input_nodes: List[ir.IRNode],

        timings: Dict["ChoiceCaller", float],  # type: ignore[name-defined] # noqa: F821

        elapse: float,

    ):
        import json

        from .ir import FixedLayout

        def build_node_info(node: ir.IRNode):
            if hasattr(node, "name"):
                node_name = node.name
            else:
                node_name = ""
            node_info = {
                "name": node_name,
                "type": type(node).__name__,
            }
            try:
                layout = node.get_layout()
                if isinstance(layout, FixedLayout):
                    offset = 0
                    try:
                        offset = int(layout.offset)
                    except Exception:
                        try:
                            offset = V.graph.sizevars.size_hint(
                                layout.offset, fallback=0
                            )
                        except Exception:
                            pass
                    static_layout = FixedLayout(
                        layout.device,
                        dtype=layout.dtype,
                        size=list(V.graph.sizevars.size_hints(layout.size)),
                        stride=list(V.graph.sizevars.size_hints(layout.stride)),
                        offset=offset,
                    )
                    node_info["layout"] = str(static_layout)
                else:
                    node_info["layout"] = str(node.get_layout())
            except Exception as e:
                pass
            try:
                node_info["dtype"] = str(node.get_dtype())
            except Exception as e:
                pass
            try:
                node_info["device"] = str(node.get_device())
            except Exception as e:
                pass
            try:
                node_info["stride"] = str(
                    V.graph.sizevars.size_hints(node.get_stride())
                )
            except Exception as e:
                pass
            try:
                node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size()))
            except Exception as e:
                pass
            try:
                node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
            except Exception as e:
                pass
            if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
                node_info["data"] = build_node_info(node.data)
            return node_info

        general_properties = {
            "op_name": name,
            "cuda_device_name": torch.cuda.get_device_name(),
            "cuda_device_count": torch.cuda.device_count(),
            "input_nodes": [build_node_info(node) for node in input_nodes],
            "autotuning_time": elapse,
        }
        with self.fopen_context(
            "autotuning_result_json_list.txt", "at", encoding="utf-8"
        ) as fd:
            for caller, time in timings.items():
                info_dict = dict(caller.info_dict())
                info_dict.update(general_properties)
                info_dict["benchmark_result"] = time
                json.dump(info_dict, fd)
                fd.write("\n")


@dataclasses.dataclass
class TensorMetadataHolder:
    tensor_metadata: TensorMetadata
    device: torch.device


save_args_cnt = itertools.count()


def save_args_for_compile_fx_inner(*args, **kwargs):
    """

    This function is used to save arguments for a compile_fx_inner function call

    to the file system.  Later on one can replay the compile_fx_inner call

    with the saved arguments using load_args_and_run_compile_fx_inner.

    """

    folder = "/tmp/inductor_saved_args"
    if not os.path.exists(folder):
        os.mkdir(folder)

    def handle_tensor(x):
        """

        Pickle FakeTensor will result in error:

        AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'



        Convert all Tensor to metadata. This may also makes pickle faster.

        """
        if isinstance(x, torch.Tensor):
            return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
        else:
            return x

    args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))

    fn_name = "compile_fx_inner"
    path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
    with open(path, "wb") as f:
        pickle.dump((args_to_save, kwargs_to_save), f)

    if log.isEnabledFor(logging.DEBUG):
        message = f"""

Arguments for a compile_fx_inner call is saved to {path}. To replay the call,

run the following:



from torch._inductor.debug import load_args_and_run_compile_fx_inner

load_args_and_run_compile_fx_inner({path!r})

        """
        # call print rather than log.debug. log.debug will print message
        # prefix for each line which makes the code snippet harder to be
        # copied.
        # Not a big deal since the code is already been guarded by checking
        # the log level.
        print(message)


def load_args_and_run_compile_fx_inner(path: str):
    from torch._inductor.compile_fx import compile_fx_inner

    with open(path, "rb") as f:
        args, kwargs = pickle.load(f)

    def handle_tensor(x):
        if isinstance(x, TensorMetadataHolder):
            return torch._dynamo.testing.rand_strided(
                x.tensor_metadata.shape,
                x.tensor_metadata.stride,
                x.tensor_metadata.dtype,
                x.device,
            )
        else:
            return x

    fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
    with fake_mode, config.patch("save_args", False):
        args, kwargs = tree_map(handle_tensor, (args, kwargs))
        return compile_fx_inner(*args, **kwargs)