Spaces:
Running
Running
File size: 15,689 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import dataclasses
import math
import operator
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
import torch
from torch._subclasses.fake_tensor import FakeTensor
from torch.export import ExportedProgram
from torch.utils._pytree import (
_register_pytree_node,
Context,
FlattenFunc,
FromDumpableContextFn,
KeyPath,
keystr,
MappingKey,
SequenceKey,
ToDumpableContextFn,
UnflattenFunc,
)
def _check_input_constraints_for_graph(
input_placeholders: List[torch.fx.Node], flat_args_with_path, range_constraints
):
def get_keystr(key_path: KeyPath) -> str:
"""For a given index into the flat_args, return a human readable string
describing how to access it, e.g. "*args["foo"][0].bar"
"""
# Prefix the keypath with "*args" or "**kwargs" to make it clearer where
# the arguments come from. Ultimately we ought to serialize the
# original arg names for the best error message here.
args_kwargs_key_path = key_path[0]
assert isinstance(args_kwargs_key_path, SequenceKey)
if args_kwargs_key_path.idx == 0:
return f"*args{keystr(key_path[1:])}"
else:
kwarg_key = key_path[1]
assert isinstance(kwarg_key, MappingKey)
name = str(kwarg_key)[1:-1] # get rid of the enclosed []
return f"{name}{keystr(key_path[2:])}"
import sympy
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_convert_range_to_int,
)
from torch.utils._sympy.solve import try_solve
if len(flat_args_with_path) != len(input_placeholders):
raise RuntimeError(
"Unexpected number of inputs "
f"(expected {len(input_placeholders)}, got {len(flat_args_with_path)})"
)
# NOTE: export already guarantees that the same symbol is used in metadata
# for all InputDims related by equality constraints, so we can just unify
# symbols with given input dimension values to check equality constraints.
unification_map: "Dict[sympy.Symbol, Any]" = {}
for (key_path, arg), node in zip(flat_args_with_path, input_placeholders):
node_val = node.meta.get("val")
if isinstance(node_val, FakeTensor):
if not isinstance(arg, torch.Tensor):
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be a tensor, but got {type(arg)}",
)
if len(node_val.shape) != len(arg.shape):
raise RuntimeError(
f"Unexpected number of dimensions in input at {get_keystr(key_path)}.shape "
f"(expected {node_val.shape}, got {arg.shape})"
)
for j, (arg_dim, node_dim) in enumerate(zip(arg.shape, node_val.shape)):
# TODO(avik): Assert the following property in the IR verifier:
# node_dim is either an int or a SymInt containing an int or a unary sympy.Expr
if (
isinstance(node_dim, torch.SymInt)
and len(node_dim.node.expr.free_symbols) == 1
):
symbol = next(iter(node_dim.node.expr.free_symbols))
if symbol in unification_map:
existing_dim = node_dim.node.expr.subs(unification_map)
if arg_dim != existing_dim:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{existing_dim}, but got {arg_dim}",
)
else:
if (
isinstance(arg_dim, torch.SymInt)
and not arg_dim.node.expr.is_number
):
# This can happen when, say, arg is a fake tensor.
# We do not run checks on symbolic shapes of fake inputs as
# such checks can affect the shape env.
pass
else:
solution = try_solve(
sympy.Eq(node_dim.node.expr, arg_dim), symbol
)
if solution is None:
raise RuntimeError( # noqa: TRY200
f"Expected input {node.name}.shape[{j}] = {arg_dim} to be "
f"of the form {node_dim.node.expr}, where {symbol} is an integer"
)
else:
unification_map[symbol] = int(solution[1])
if node_dim.node.expr in range_constraints:
min_val, max_val = _convert_range_to_int(
range_constraints[node_dim.node.expr]
)
# NOTE: we allow dimensions to be 0/1 at runtime
if min_val > 2:
if arg_dim < min_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be >= "
f"{min_val}, but got {arg_dim}",
)
if max_val < math.inf:
if arg_dim > max_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be <= "
f"{max_val}, but got {arg_dim}",
)
else:
if arg_dim != node_dim:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{node_dim}, but got {arg_dim}",
)
elif isinstance(node_val, (int, float, str)):
if type(arg) != type(node_val) or arg != node_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be equal to {node_val}, but got {arg}",
)
def register_dataclass_as_pytree_node(
cls: Type[Any],
flatten_fn: Optional[FlattenFunc] = None,
unflatten_fn: Optional[UnflattenFunc] = None,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
return_none_fields: bool = False,
) -> None:
assert dataclasses.is_dataclass(
cls
), f"Only dataclasses can be registered with this function: {cls}"
def default_flatten_fn(obj: Any) -> Tuple[List[Any], Context]:
flattened = []
flat_names = []
none_names = []
for f in dataclasses.fields(obj):
name, val = f.name, getattr(obj, f.name)
if val is not None or return_none_fields:
flattened.append(val)
flat_names.append(name)
else:
none_names.append(name)
return flattened, [flat_names, none_names]
def default_unflatten_fn(values: Iterable[Any], context: Context) -> Any:
flat_names, none_names = context
return cls(**dict(zip(flat_names, values)), **dict.fromkeys(none_names))
flatten_fn = flatten_fn if flatten_fn is not None else default_flatten_fn
unflatten_fn = unflatten_fn if unflatten_fn is not None else default_unflatten_fn
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
raise ValueError(
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
"be None or registered."
)
_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
def is_param(program: ExportedProgram, node: torch.fx.Node) -> bool:
"""
Checks if the given node is a parameter within the exported program
"""
return node.name in program.graph_signature.inputs_to_parameters
def get_param(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.nn.Parameter]:
"""
Returns the parameter associated with the given node in the exported program.
Returns None if the node is not a parameter within the exported program
"""
if is_param(program, node):
parameter_name = program.graph_signature.inputs_to_parameters[node.name]
return program.state_dict[parameter_name]
return None
def is_buffer(program: ExportedProgram, node: torch.fx.Node) -> bool:
"""
Checks if the given node is a buffer within the exported program
"""
return node.name in program.graph_signature.inputs_to_buffers
def get_buffer(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the buffer associated with the given node in the exported program.
Returns None if the node is not a buffer within the exported program
"""
if is_buffer(program, node):
buffer_name = program.graph_signature.inputs_to_buffers[node.name]
if buffer_name in program.graph_signature.non_persistent_buffers:
return program.constants[buffer_name]
else:
return program.state_dict[buffer_name]
return None
def is_lifted_tensor_constant(
program: ExportedProgram,
node: torch.fx.Node,
) -> bool:
"""
Checks if the given node is a lifted tensor constant within the exported program
"""
return node.name in program.graph_signature.inputs_to_lifted_tensor_constants
def get_lifted_tensor_constant(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the lifted tensor constant associated with the given node in the exported program.
Returns None if the node is not a lifted tensor constant within the exported program
"""
if is_lifted_tensor_constant(program, node):
lifted_tensor_name = program.graph_signature.inputs_to_lifted_tensor_constants[
node.name
]
return program.constants[lifted_tensor_name]
return None
def sequential_split(gm: torch.fx.GraphModule, node_call_back) -> torch.fx.GraphModule:
"""
Splits the graph module into multiple submodules based on the node_call_back.
The node_call_back should return True if the node is a delimiter. Delimiter will be
the first node in the next submodule.
"""
from torch.fx.passes.split_module import split_module
split_map = {}
split_id = 0
for node in gm.graph.nodes:
if node_call_back(node):
split_id += 1
split_map[node] = split_id
new_gm = split_module(
gm,
gm,
lambda node: split_map[node],
keep_original_order=True,
keep_original_node_name=True,
)
# Keep the codegen from original graph module to preserve e.g. pytree info.
new_gm.graph._codegen = gm.graph._codegen
new_gm.recompile()
return new_gm
def nodes_filter(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""Returns the nodes that match the node_call_back as a list."""
return [node for node in nodes if node_call_back(node)]
def nodes_first(
nodes: List[torch.fx.Node], node_call_back=None
) -> Optional[torch.fx.Node]:
"""
Returns the first node that matches the node_call_back. If no node matches, returns None.
When node_call_back is None, returns the first node in the node list.
"""
ret = nodes_filter(nodes, node_call_back if node_call_back else lambda node: True)
if len(ret) > 0:
return ret[0]
return None
def nodes_count(nodes: List[torch.fx.Node], node_call_back) -> int:
"""Returns the number of nodes that match the node_call_back."""
return len(nodes_filter(nodes, node_call_back))
def nodes_map(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""
Sequentially visit the nodes list and invoke node_call_back on each element.
Returns the nodes list after the node_call_back is invoked on each element.
"""
for node in nodes:
node_call_back(node)
return nodes
def node_replace_(
old_node: torch.fx.Node, new_node: torch.fx.Node, delete_old: bool = False
) -> None:
"""
Replace all uses of old_node with new_node.
"""
old_node.replace_all_uses_with(new_node)
if delete_old:
old_node.users.clear()
old_node.graph.erase_node(old_node)
def node_inline_(call_mod_node: torch.fx.Node) -> None:
"""
Inline the submodule of the given node into the parent module.
Note: we only support the case where submodule takes tensors inputs.
"""
assert call_mod_node.op == "call_module"
gm = call_mod_node.graph.owning_module
assert isinstance(call_mod_node.target, str)
sub_gm = getattr(gm, call_mod_node.target)
phs = (node for node in sub_gm.graph.nodes if node.op == "placeholder")
body = (
node for node in sub_gm.graph.nodes if node.op not in ("placeholder", "output")
)
output = [node for node in sub_gm.graph.nodes if node.op == "output"]
for ph, arg in zip(phs, call_mod_node.args):
assert isinstance(arg, torch.fx.Node)
node_replace_(ph, arg, delete_old=True)
with gm.graph.inserting_before(call_mod_node):
for node in body:
new_node = gm.graph.node_copy(node)
node_replace_(node, new_node, delete_old=True)
if len(output) > 0:
assert len(output) == 1 and len(output[0].args) == 1
new_output = output[0].args[0]
if isinstance(new_output, torch.fx.Node):
node_replace_(call_mod_node, new_output, delete_old=True)
elif isinstance(new_output, (list, tuple)):
# Inline the get_item calls for the output node.
get_item_users = nodes_filter(
list(call_mod_node.users.keys()),
lambda node: node.op == "call_function"
and node.target == operator.getitem,
)
# get_item_node.args[1] is the idx referring to new_output[idx]
nodes_map(
get_item_users,
lambda get_item_node: node_replace_(
get_item_node,
new_output[get_item_node.args[1]],
delete_old=True,
),
)
call_mod_node.graph.erase_node(call_mod_node)
else:
raise NotImplementedError(
f"Unsupported output type {type(new_output)}. Expect it to be a Node or a list/tuple of Nodes."
)
else:
call_mod_node.graph.erase_node(call_mod_node)
gm.delete_all_unused_submodules()
gm.recompile()
return gm
|